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Abstract

This paper proposes the adaptive wavelet
transform for lossless (reversible) data
compression using genetic algorithm (GA). In
the proposed method, the lifting scheme (LS),
which is the latest implementation method of
wavelet transformation, is adopted for lossless
compression, and GA optimizes the prediction
mechanism used in LS according to the
characteristics of the target image data, in order
to achieve high compression ratio. The computer
simulations demonstrate that the proposed
method exhibits 9.8% better accuracy in
prediction of pixel values in the target images,
and it leads 1.9% better entropy of the
transformed images than the conventional LS on
the average.

1 INTRODUCTION

The wavelet coding method has been recognized as an
efficient coding technique for lossy compression. The
wavelet transform decomposes a typical image data to a
few coefficients with large magnitude and many
coefficients with small magnitude. Since most of the
energy of the image concentrates on these coefficients
with large magnitude, lossy compression systems just
using coefficients with large magnitude can realize both
high compression ratio and the reconstructed image with
good quality at the same time. Wavelet transforms are
now under the consideration as a part of JPEG2000, the
next international standard for color image compression,
because of its ability for effective concentration of the
energy of an image (Charrier, 1999). However, applying
wavelet transforms to lossless compressions create two
problems. One is a fact that resulting transformed outputs

are no longer integers. This problem can be solved by
introducing lifting scheme (LS), one type of a spatial
domain construction of wavelets which can map integers
to integers easily (Calderbank, 1998). The another is
achieving high compression ratio in lossless systems is
difficult. Because lossless systems basically use all
coefficients with not only large magnitude but also small
magnitude which are usually neglected in lossy systems.

In this paper we give a solution to this problem and also
propose a new preliminary method to apply wavelet
transforms to lossless compression effectively. We adopt
lifting scheme (LS) which is a new framework to
construct wavelets in a spatial domain (Sweldens, 1997).
We choose LS, the best method we think, which conducts
wavelet transforms without any difficulties in mapping
integers to integers required in lossless image
compression systems (Calderbank, 1998). However, in
terms of compression efficiency, the LS is not good in an
effective compression, for the conventional LS has only
standard prediction functions to cope with wide range
real-world signals. Therefore, we have considered a
method of changing prediction functions for each image
to improve the compression ratio, gaining a more accurate
prediction of pixels in the image.

The goal of this paper is to propose such an adaptive LS
system using the genetic algorithm (GA) (Holland, 1975).
Specifically, GA is used to improve the accuracy of the
prediction functions in LS. The proposed method exhibits
9.8% better accuracy in prediction, and can reduce the
entropy 1.9% better than the conventional prediction
function on the average.

This paper is organized as follows: In section 2, the
overview of LS is explained. Section 3 proposes the
extended prediction function with GA in LS. In section 4,
the performance of the proposed method is discussed
through the results of computational simulations. Section
5 mentions two problems remained to be solved in the
future and section 6 concludes this paper.



2 LIFTING SCHEME

This section describes the overview of the lifting scheme,
and explains its advantages for lossless data compression.

2.1 OVERVIEW OF LIFTING SCHEME

The wavelet transform, which decomposes a signal into
constituent parts in the time-frequency domain, has been
successful in providing high compression ratios while
maintaining good image quality (Antonini, 1992). It is
well known that the wavelets can execute compression
with a higher signal-to-noise ratio than DCT (discrete
cosine transform) in the case of low bit-rate. Then,
JPEG2000, the next international standard, is being
developed based on wavelet transforms. However, the
conventional wavelet transform needs additional
mechanisms to execute lossless compression, of which
recovered data is identical to the original one.

In contrast, the lifting scheme (LS), which is the latest
implementation method of wavelet transform, doesn't
have such problems and is very suitable for the lossless
compression (Calderbank, 1998). It can decorrelate the
target data in the space domain without Fourier transform
(Sweldens, 1996). The considerable advantages of LS are,

(a) simple and fast procedure,

(b) ease of treating integer number, and

(c) ease of obtaining inverse transform.

The advantage (a) means that LS is exceedingly suitable
for hardware implementation, because it uses only
addition and multiplication, and requires small memory
for calculations.

From the viewpoint of (b), the conventional wavelet
transform has a problem in mapping integers to integers.
It needs an additonal mechanism to cancel the rounding
error for lossless compression. LS is, on the other hand,
feasible to lossless compression, because it does not
require such mechanisms to treat integer data.

The last advantage (c) makes LS useful in practical
implementation. In the next subsection, LS is described in
detail.

2.2 PROCEDURE OF LIFTING

The procedure of LS consists of three steps: Split, Predict,
and Update (Figure 1).

Split: Split the signal into two disjoint subsets of samples.
We divide the original signal x[n] into even and odd
components: xe[n] and xo[n], where xe[n] = x[2n] and xo[n]
= x[2n+1].

Predict: Generate the detail signals d[n] as the prediction
error using a prediction operator P:

.])[(][][ nxPnxnd eo −= (1)

Figure 1: Lifting scheme

Figure 2: Inverse lifting scheme

Update: Generate the coarser signals c[n] by applying an
update operator U to d[n] and adding the result to xe[n]:

.])[(][][ ndUnxnc e += (2)

They represent a coarse approximation to the original
signal x[n].

These three operations can be applied to c[n] repeatedly.
Moreover, the important point to note is that, in contrast
to the conventional wavelet transform, we can easily
obtain the inverse lifting scheme of any combination of
prediction P and update U (Figure 2). From the equation
(1) and (2), the xe[n] and xo[n] can be calculated from c[n]
and d[n] as shown in the next equations:

,])[(][][ nxPndnx eo += (3)

.])[(][][ ndUncnxe −= (4)

This is the reason of the advantage (c) mentioned in the
previous subsection. In this paper, using these advantages,
the prediction function P is optimized by genetic
algorithm according to the characteristics of the image

2.3 LIFTING SCHEME ON TWO
DIMENSIONAL IMAGE DATA

When LS transforms the two dimensional data, the
procedure explained in the previous subsection is applied
two times (Figure 3).

At the first step, each row of the image is transformed and
divided into two subimages, the sets of {c[n]} and {d[n]}.
Secondly, each subimage is scanned vertically, and their
columns are transformed similarly.

As a result, the original image data is divided into four
subimages, cc, cd, dc and dd in Figure 3. The subimage cc
can be repeatedly transformed by LS, and this repetition is
called multi-resolution analysis.
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Figure 3: Multi-resolution sequential transformation

3 PROPOSED METHOD

In order to improve the performance of LS in lossless
compression, we focus an attention on the accuracy of the
prediction function P defined in equation (1). The
proposed method improves the prediction accuracy by the
following features:

- Development of the new prediction function (two
dimensional configuration of the reference pixels),

- Employment of different prediction functions according
to the local pattern of pixels (grouping pixel patterns into
some categories), and

- Optimization of the coefficients in the prediction
functions by means of genetic algorithm (GA).

In the next three subsections, these features are explained
in turn.

3.1 TWO DIMENSIONAL CONFIGURATION
OF REFERENCE PIXELS

Since  the  conventional  LS  is  based on  one  dimensional

signal processing, it does not make good use of two
dimensional signals such as image data. That is, at the
prediction of the pixels in xo[n], only the pixels in xe[n] on
the same line are allowed to be used in the prediction
function.

The configuration of reference pixels of typical LS is

illustrated in Figure 4, in which ][nxm
o  and ][nxm

e

indicate the pixels at the odd and even positions in the
m’th line of the image data, and the hatched pixels are

allowed to be referred for predicting ][nxm
o .

In the case of the most simple prediction, the pixel ][nxm
e

and ]1[ +nxm
e  are used for predicting ][nxm

o . Generally,

it would seem that the large number of reference pixels

leads to the more accurate prediction, but ]1[ −nxm
e  and

]2[ +nxm
e , the second closest pixels from ][nxm

o , don't

contribute to the accurate prediction so much, because

they are too distant from ][nxm
o  to correlate with it

strongly.

To overcome the difficulty, the proposed method arranges
the reference pixels in two dimensional configuration as
shown in the Figure 5. The additional reference pixels,

][1 nxm
e

− , ]1[1 +− nxm
e , ][1 nxm

e
+ , ]1[1 ++ nxm

e , are expected

to correlate with ][nxm
o  better than ]1[ −nxm

e  and

]2[ +nxm
e , because they are closer to ][nxm

o .

Using the extended configuration of the reference pixels,
the prediction function of the equation (1) is redefined as:
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where pk,l is the coefficient.

The next two subsections explain the relation between the
coefficients and the method to optimize them according to
the characteristics of the image, respectively.

Figure 4: Configuration of reference pixels of conventional lifting scheme

Figure 5: Two dimensional configuration of reference pixels
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3.2 GROUPING OF PIXEL PATTERNS

The proposed method employs different prediction
functions according to the pixel patterns neighboring the
target pixels. In this subsection, we explain how the pixel
patterns are categorized, and what prediction function is
applied to each category.

We assume that the relations between coefficients in
figure 5 are defined as:
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In these equations, p0,0 is the only variable, and the other
coefficients are calculated using it as follows:
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These are the basic relations between the coefficients, but
we cannot use it at the boundaries of the image, because
not all reference pixels are available. Then, some different
prediction functions are prepared, and one of them is
selected according to the positional relation between

][nxm
o  and the boundaries. To improve the accuracy

moreover, we change the coefficient p0,0 according to the
patterns of pixel values.

3.2.1 Classification based on Positional Relation
between Pixels and Boundaries

We classify all probable pixel patterns into six cases as
shown in Figure 6. In the figures, thick lines indicate the
boundaries of the image, and x indicates the position of

][nxm
o , the target pixel to be predicted.

In the case (a), based on the equation (6), the relation
between the coefficients in the prediction function is
defined as follows:
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Then, if the coefficient p0,0 is determined, all other
coefficients are calculated as,
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Similarly, the coefficients of the case (b) are
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and the coefficients of the case (c) are
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The prediction accuracy in the cases (d) and (e) hardly
influences the compression ratio, because these cases
occur at only the corners of the image. Then, we fix their
coefficients without optimization. The coefficients of the
case (d) are

,75.0
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0,1

=
=

p

p
(12)

and the ones of (e) are

.25.0

,75.0

0,1

0,0

=
=

−p

p
(13)

The prediction function of case (f) is already defined in
the equation (7), but we further classify it according to the
pattern of the pixel values, as mentioned below.

                     p0,0          x          p0,1                                         p-1,0

                     p1,0                      p1,1                                         p0,0          x                             p-1,0                    p-1,1

                                                                                               p1,0                                         p0,0          x          p0,1

                                   (a)                                                        (b)                                                        (c)

                                   p0,0         x                                                                                          p-1,0                    p-1,1

                                   p1,0                                                      p-1,0                                         p0,0         x          p0,1

                                                                                               p0,0          x                              p1,0                     p1,1

                                   (d)                                                        (e)                                                        (f)

Figure 6: Patterns of relation between target pixel and boundaries of image



3.2.2 Classification According to Pattern of Pixel
Values

Only the case (f) is classified into the four categories
according to the correlation among the pixels neighboring
the target pixel to be predicted, such as (i) Flat correlation,
(ii) Horizontally flat correlation, (iii) Vertically flat
correlation, and (iv) No correlation.

By using the different set of coefficients in each case, the

pixel ][nxm
o  can be predicted more accurately.

(i) Flat Correlation

In Figure 5, if the pixels neighboring the target pixel

][nxm
o  satisfy the next equations, they seem to have very

similar values.
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(ii) Horizontally Flat Correlation

The next equations detect the horizontal flatness in the

neighborhood of ][nxm
o .
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In this case, the coefficients are fixed as defined in the
next equations because it is expected that only the

horizontally adjacent pixels correlate to ][nxm
o .
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(iii) Vertically Flat Correlation

When the reference pixels of ][nxm
o  have the relation

shown in the next equation, the vertical correlation is
strong in the local area.
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Table 1: Summary of classification

(i) (ii) (iii) (iv)

(a) Eqn.(9)

(b) Eqn.(10)

(c) Eqn.(11)

(d) p0,0 = 0.75,  p1,0 = 0.25

(e) p-1,0 = 0.25,  p0,0 = 0.75

(f) Eqn.
(7)

p0,0 = p0,1 = 0.5
p-1,0 = p1,0 = p-1,1 = p1,1 = 0

Eqn.
(7)

Eqn.
(7)

(iv) No Correlation

If the reference pixels don't satisfy the above three

conditions, the pixels neighboring ][nxm
o  have no special

correlation between them.

Table 1 summarizes the results of the above two types of
classification. In the table, the phrase “Eqn. (y)” means
that, in the corresponding case, the relation between the
coefficient p0,0 and the others are defined in equation y,
and p0,0 has to be determined as shown in the next
subsection. That is, the proposed method requires seven
parameters (six p0,0's and one threshold T) to execute one
dimensional wavelet transform.

As mentioned in section 2.3, when the conventional LS
executes multi-resolution analysis of the image, it uses the
same prediction function three times for horizontal
transformation of the original image, vertical
transformation of the subimage {c[n]}, and vertical
transformation of the subimage {d[n]}. By contrast, to
achieve a better compression ratio, the proposed method
uses three different prediction functions for three
executions of one dimensional transformation. It means
that the proposed method requires 7 × 3 = 21 parameters
to process one image, since it needs seven parameters for
one dimensional wavelet transform.

3.3 DECISION OF COEFFICIENTS BY
GENETIC ALGORITHM

To optimize the 21 parameters, 18 p0,0’s and 3 T’s,
introduced in the previous subsection, we use the genetic
algorithm, which is the powerful search procedure
inspired from the adaptation of natural organisms
(Holland, 1975). It has a population of 30 chromosomes,
each of them representing a set of parameters. In this
paper, the length of the chromosomes is 168 (Each
parameter is represented in 8 bits).

At the initial state, the population is generated at random,
and the chromosomes are evaluated to calculate the
fitness value. The evaluation function F used in this paper
is defined as follows:
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where H and W represent height and width of the image
data respectively, and the coefficients of p are determined
by the chromosome itself. This function sums up the
prediction error over all the image and returns the total
value with a negative sign.

The genetic operations and GA parameters used in the
proposed method are shown in Table 2. After evaluation,
the chromosomes are processed by three genetic
operators: the tournament selection, the uniform crossover,
and the point mutation. The set of evaluation and genetic
operations are repeated 100 times.

Table 2: Genetic operations and parameter setting of GA

Genetic operation

GA model Elitist simple GA

Selection Tournament

Crossover One point

Parameter setting of GA

Total generation 100

Population size 100

Gene length 8

Tournament size 10

Crossover ratio 0.8

Mutation ratio 0.03

4 COMPUTATIONAL SIMULATION
AND DISCUSSION

To evaluate the performance, the proposed system is
applied to six test images contained in SIDBA (Standard

Image Data BAse), as shown in Figure 7. The two types
of prediction function in the conventional LS are also
applied to the same test images. They use the following
prediction functions (Fernandez, 1996):
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These two equations are called “linear prediction” and
“cubic prediction”, respectively. Also, we apply hill-
climb instead of GA to evaluate how much proposed
system is done by GA than the other methods.

Table 3 shows the prediction errors of the conventional
LS, hill-climb and the proposed method. This table tells
us three facts: First, the cubic prediction exhibits worse
performance than the linear prediction, even though it
uses more reference pixels. It means that the pixels distant
from the target pixel don’t contribute to the prediction
accuracy. This fact supports evidence that two
dimensional configuration of the reference pixel
(proposed in section 3.1) is effective to improve the
prediction accuracy.

Second, the proposed method exhibits better performance
than the conventional LS in all test images. Then, it is
expected that the proposed method may work well on a
wide variety of images. In addition, the small prediction
error caused by the accurate prediction is efficient in lossy
coding as well as lossless coding.

                                

Lenna                                                 Baboon                                               Stream

                                

Milk                                                  Boat                                                    Girl

Figure 7: Test images. All images are 512 × 512.



Table 3: Prediction error of conventional methods, hill-climb and proposed method

Conventional Method Proposed Method

Improvement(%)

Image

Linear Cubic

Hill-Climb

from Linear from Cubic from H-C.

Lenna 579490 586356 570252 553036 104.8 106.0 103.1

Baboon 2707202 2819412 2704855 2654867 102.0 106.2 101.9

Stream 1745753 1819541 1741177 1713726 101.9 106.2 101.6

Milk 548860 583705 532643 512408 107.1 113.9 103.9

Boat 1120762 1149974 1070015 1033743 108.4 111.2 103.5

Girl 823559 863326 761741 748876 110.0 115.3 101.7

Average 105.7 109.8 102.6

Table 4: Entropy of images transformed by conventional methods, hill-climb, and proposed method

Conventional Method Proposed Method

Improvement(%)

Image

Linear Cubic

Hill-Climb

from Linear from Cubic from H-C.

Lenna 3.881 3.895 3.870 3.846 100.9 101.3 100.6

Baboon 5.031 5.057 5.042 5.017 100.3 100.8 100.5

Stream 4.305 4.439 4.377 4.367 98.6 101.7 100.2

Milk 3.580 3.634 3.550 3.522 101.7 103.2 100.8

Boat 4.332 4.351 4.297 4.269 101.5 101.9 100.6

Girl 4.138 4.174 4.082 4.069 101.7 102.6 100.3

Average 100.8 101.9 100.5

Third, when we compare GA with hill-climb, GA’s
performances exceed hill-climb’s ones over all images.
This fact tells us that GA works better than hill-climb for
optimizing parameters in this problem.

Table 4 shows the entropy of the test images transformed
by the conventional LS, hill-climb, and the proposed
method. In almost all images, the proposed method
succeeds to reduce the entropy, but the ratio of
improvement is very small compared with improvement
in the prediction error. On the contrary, in “Stream”, the
entropy of the proposed method becomes worse than the
linear prediction. This deterioration originates in the fact
which is mentioned below. Since the evaluation function
defined in equation (18) does not concern the entropy,
there is no guarantee of improvement in the entropy. Then,
the evaluation function of GA needs to be modified to
obtain a better entropy.

5 FUTURE DEVELOPMENTS

We still leave two problems to be considered in the
proposed method. First, although we evaluate only
prediction functions, the lifting scheme should be
evaluated as an entire system including update operations.

Second, since a nonlinear prediction function is used, the
nonlinearity is propagated to the low frequency
component, c[n] in Figure 1, which is the target of the
following lifting scheme. The nonlinearity would be
accumulated in the low frequency component while
implementing the multi-resolution analysis. It could
influence bad effects for the image compression.

In the future, we will study the above two problems
carefully and complete the whole adaptive lifting scheme.

6 CONCLUSION

In this paper, we proposed the method to optimize
wavelet function for lossless data compression using
genetic algorithm (GA). In the proposed method, the
lifting scheme (LS), which is the latest implementation
method of wavelet transform, is combined with GA.
Specifically, GA optimizes the prediction function of LS
according to the target image to be compressed. The
computer simulation demonstrated that the proposed
method presented 5.7% or 9.8% better accuracy than
linear or cubic prediction function in prediction error, and
reduced the entropy of the transformed image 0.8% or
1.9% better than the above two conventional functions.
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