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Abstract

This paper shows how linguistic dasdfication
knowledge @n be extracted from numericd data
for pattern clasdfication problems with many
continuous attributes by genetic algorithms.
Clasdfication knowledge is extracted in the form
of linguistic if-then rules. In this paper, emphasis
is placed on the dmplicity of the etracted
knowledge. The smplicity is measured by two
criteria: the number of extracted linguistic rules
and the length of each rule (i.e., the number of
antecalent conditionsinvolved in each rule). The
clasdfication ability of extracted linguistic rules,
which is measured by the dasdfication rate on
given training petterns, is also considered. Thus
our task is formulated as a linguistic rule
extraction problem with three objectives. to
maximize the dassfication rate, to minimize the
number of extracted linguigtic rules, and to
minimize the length of each rule. For tackling
this probdem, we propose a multi-objective
genetics-based machine leaning (GBML)
algorithm, which is a hybrid agorithm of
Michigan approach and Pittsburgh approach. Our
hybrid agorithm is basicdly a Pittsburgh-style
algorithm with variable string length. A
Michigan-style algorithm is combined as a kind
of mutation for partially modifying each gring.

1. INTRODUCTION

Recently fuzzy rule-based systems have been often
applied to pettern classfication problems (Ishibuchi et al.,
1992 Rhee & Krishnapuram, 1993, and Cordon et al.,
1999. Main characterigtic features of fuzzy rule-based
clasdfication systems are ther nonlineaity and
comprehensibility. Since fuzzy rule-based systems are
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universal approximators of nonlinea functions (Kosko,
1992 and Wang, 1992), they can hand e highly nonlinea
clasdfication probdems. Many studies on fuzzy rule-based
clasdfication systems tried to improve their classfication
ability. Some studies used neuro-fuzzy tedniques
(Uebele et al., 1995, Mitra & a., 1997, Nauck & Kruse,
1999, and other studies employed genetic dgorithms for
designing fuzzy rule-based clasdfication systems
(Ishibuchi et al., 1994, Yuan & Zhuang, 1996, and
Cordon et al., 199). In those studies, emphasis was
placed on the dasdfication ability of fuzzy rule-based
systems rather than their comprehensibility. That is, fuzzy
rule-based systems were tuned for maximizing
clasdfication rates on gven training patterns using
various leaning techniques. Another reseacch diredion in
fuzzy rule-based clasdfication is to extract linguistic
clasdfication knowledge from numericd data in the form
of linguistic if-then rules (Ishibuchi et a., 1997. In this
reseach dredion, emphasis is placed on the
comprehensibility of extracted lingu stic knowledge rather
than the clasdfication performance

Our task in this paper is to extract a smal number of
comprehensible linguistic rules from numerical data for
high-dimensional pattern clasdfication problems with
many continuous attributes. We use linguistic rules of the
following form for an n-dimensional pattern classfication
problem with ¢ classes and n continuous attributes:

Rule Rj: If xq is Aj; and ... and xp is Aj,
then Class C; with CF;, i=12,..N, (1

where R; is the label of the j-th linguistic rule,
X =(Xq,...Xn) IS an n-dimensional pattern vedor, Aj is
a linguistic value such as small and large for the i-th
atribute, C; is a cnsequent class (i.e, one of the ¢
classs), CF; isacetainty gradein the unit interval [0,1],



and N is the number of linguistic rules.

Let us assuume that we have K; linguistic values for
describing the i-th attribute of our n-dimensional pattern
clasdfication probem (i =1,2,...n). One of those K;

linguistic values is used as the antecalent linguistic value
A;i for the i-th attribute in each linguistic rule. In this
case, the total number of possble cmmbinations of the
linguistic valuesis Ky x Ky x ... xKp . It isimpractical to
examine all the possble @mbinations for extracting
linguistic rules when our pattern classfication problem
involves many attributes (i.e, when n is large). For
example, the total number of the posshle cmbinations of
the linguigtic values is more than one hillion when n=13
and K; =5 for i =1,2,..13. This example shows that the
exponentia increase in the number of lingustic rules
prevents the use of any exhaustive examination method in
the @se of high-dimensona pattern clasdfication
problems. Such exponential increase can be also
explained by the exponential deaease in the covered area
by each linguistic rule That is, alinguistic rule with many
antecedent conditions can cover only atiny fraction of the
n-dimensional pattern space Thus a large number of
linguistic rules with many antecalent conditions are
necessary for covering the whole pattern space Due to the
exponentia increase in the number of lingustic rules, the
comprehensibility of linguistic knowledge is drasticdly
impaired as the dimensionality of the pattern space
increases. The increase in the number of antecelent
conditions also impairs the mmprehensibility of each
linguistic rule. In general, it is much easier for users to
intuitively undergand short lingustic rules with only a
few antecelent conditions than long rules with many
conditi ons.

In this paper, we try to extract comprehensible
clasdfication knowledge from numericd data in the form
of a small number of simple linguistic rules. Only a few
antecalent conditions are spedfied by linguistic values in
simplelingustic rules. The other conditions are viewed as
“donit care’ conditions. This can be implemented by
considering “don't care” as an additional lingugtic value.
In this case, each antecadent lingustic value A; of our
linguigtic rules in (1) is sleded from the given K;

linguistic values and “don't car€’. Becuse “dorit care’
conditions can be omitted, linguistic rules with many
“donit care’ conditions are written as smple rules. For
example, in a computer simulation described in Sedion 5,

we tracted the following linguistic rules for a 13
dimensional pattern classfication problem:

Ry : If x7 ismediumand x;; ismedium
then Class1 with CF; =0.56, (2

Ry 1 If X109 issmall then Class2with CF, =0.94, (3)

Rs: If x7 issmall and x3 is medium small
then Class3 with CF3 =0.84. 4

Because we use “dont care” as an additiona linguistic
value for each of the n attributes, the total number of the
posible mbinations of the linguigic values is
calculated as (K;+1)x...x(K,+1). Our task in this
paper isto find a small number of simple linguigtic rules
in the huge seach space nsisting of those cmbinations
of the lingugtic values. The difficulty of our task liesin
the size of the seach space In the following sedions, we
show how genetic dgorithms can tackle this difficult task.

2. PROBLEM FORMULATION

Let us asume that we have m training patterns
Xp =(Xp1, - Xpn) » P=12,...,m from c classs in our
n-dimensional pattern clasdfication problem. For
simplicity of explanation, each attribute value is assumed
to be areal number in the unit interval [0,1]. This means
that the pattern space of our pattern classfication probem
is the n-dimensional unit hyper-cube [0,1]". In computer
simulations of this paper, every attribute value was
normalized into ared number in the unit interval [0,1].

We aso asaime K; linguistic values and their
membership functions have aready been given by users
for describing the i-th attribute (i =1,2,...n). We do not
modify the given membership function of each lingugtic
value becuse the modification may cause a gap between
the modified membership function and the users
understanding o each linguistic value. Any shapes of
membership functions can be handled by our approach in
this paper. The paint is that the membership function of
each linguistic value should be @mnsistent with the users
domain knowledge and intuition. In computer simulations
of this paper, we used a typical set of linguigtic values
with triangular membership functions for each attribute
because we have no domain knowledge about data sets
used in or computer smulations. An example of such a
typical set of lingustic valuesis shown in Fig. 1.
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Figure 1: Typical examples of linguistic values (S: small,
MS: medium small, M: medium, ML: medium large, and
L: large).

When we use the five linguigtic valuesin Fig. 1 and “DC:
don't care” for each attribute of our n-dimensional pattern
classfication problem, all the 6" combinations of the six
antecalent lingu stic values can be written as
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In this case, our task is to find a small number of
linguigtic rules from these 6" rules. For example, the
total number of thelingustic rulesin (5) isover 13 killion
in a wine data set with 13 attributes used in our computer
simulations. It should be noted that the determination of
the cnsequent class C; and the cetainty grade CF; is
not included in our linguistic rule extraction probem.
Thisis because C; and CF; of each linguistic rule can
be easily determined by a heuristic method in Ishibuchi et
al.(1992 from training patterns (seeSedion 3).

As we have already mentioned, the mmprehensibility of
extracted linguistic knowledge is impaired by the increase
in the number of linguistic rules. Thus we try to minimize
the number of extracted rules. From the viewpoint of the
comprehensibility of each linguistic rule, many antecealent
conditi ons deteriorate the ammprehensibility. Thuswe also
try to minimize the number of antecelent conditions
involved in each rule. This means that we try to use
“don't care’ conditionsin each rule as many as possble.
At the same time, we want to extract linguistic knowledge
that can corredly classfy the given training petterns as
many as possble. Thus the number of corredly classfied
training patterns is maximized. Let us denote a set of
extracted linguistic rules by S Then ou lingustic rule

extraction is formulated as the following threeobjective
optimization problem:

Maximize f1(S), minimize f,(S), and minimize f3(S),
(6)
where f1(S) isthe number of corredly clasdfied training
patternsby S, ,(S) isthe number of linguisticrulesin §
and f3(S) isthetotal number of antecalent conditions in
S For example, when the rule set S consists of the three
linguistic rules in (2)-(4), f>(S) and f3(S) are
calculated as f,(S) =3 and f3(S) =5, respedively. The
first objective f1(S) is calculated by classfying al the
given training petterns by therule set S In Sedion 3, we
briefly describe how each training pettern is classfied by
linguistic rules in the rule set S As we will show later
using smulation results, there eists a tradeoff among the
above three objectives. Thus the task of genetic
algorithms in this paper is to find non-dominated
solutions (i.e., non-dominated rule sets) of our linguistic
rule extraction problem. Several GA-based approaches
have already been proposed for finding non-dominated
solutions of multi-objedive optimization probdems
(Fonse@ & FHeming, 199, and Zitzler & Thiele, 1999.

3. LINGUISTIC CLASSIFICATION

Before describing genetic agorithms for solving our
linguistic rule etraction problem, we briefly mention
some related issues: determination of the mnsequent part
of each linguistic rule, classfication of new patterns by a
set of linguistic rules, and spedfication of the membership
function of each linguistic vaue.

Basically the mnsequent part of each lingustic rule is
determined from ftaining patterns in the subspace
spedfied by its antecalent part (Ishibuchi et a., 1992.
Firt we alculate the cmmpatibility grade pj(xp) of
each traning pattern X, =(Xp, ...,Xpn) With the
linguisticrule R; by the product operation as

HR; (Xp) = Hj1(Xpr) X .. X Hjn (Xpn) , M
where ;i (0 is the membership function of the

antecalent lingustic value A;. For example, the
membership function of “S; small” in Fig. 1 iswritten as

Usman(X) = max{0,1-4x} for 0< x<1. (8)

Then we alculate the total compatibility grade of the
given training patterns from each classwith the linguistic
rule R; as



BCIassh ( Rj )= z

/JRj (xp), h=1,2,...c. 9
xpEICIassh

The mnsequent class C; is determined as the classwith
the maximum total compatibil ity grade:
BCIasst (Rj) = MaX{BCIassl(Rj ), ---vBCIassc(Rj )} (10)

The cetainty grade CF; is edfied as

OF, =(Bossc, (R)=PH 3 Pomsn(®). (1
where _
B= 5 Powsn(R)/c-D. 12

h#Cj

If no training pattern is compatible with R;, we @n not
determine the consequent part of R;. That is, we can not
extract thelinguisticrule R; .

Let Sbhe a set of extracted lingustic rules. We dassfy all
the training patterns by Sfor cdculating the first ohjedive
f1(S). Each training pattern x, is classfied by a single
winner rule R« which satisfies the following condition
(Ishibuchi et al., 1992):

/,le* (Xp) EFJ* = maX{[,le (Xp) BDFJ |R] DS} . (13)

In our linguistic rule etraction problem, it is possble to
define each linguistic value by a non-fuzzy interval (see
Fig. 2). Beause linguistic values sould be mnsistent
with the users domain knowledge and intuition in a
particular pattern classfication problem, the choice
between crisp partitions and fuzzy partitions is totally
dependent on the users preference Here we compare
these two types of partitions from the viewpoint of the
performance of linguistic rule-based systems.

As we have already explained, the mnsequent part of
each linguistic rule R; in (1) is determined by training
patterns compatible with its antecedent part. This means
that we can not generate any linguistic rule when there is
no training pettern in the subspace Ajy % ... X Aj, . As we
can see from Fig. 2, the main dfference between two
types of partitions is the eistence of overlaps between
neighboring linguistic values in the @se of fuzzy
partitions. For clealy demonstrating the effect of such
overlaps on the rule generation, let us consider how many
linguistic rules can be generated from a single training
pattern. In the ase of crisp partitions, only a single rule
can be generated from a single training pettern as shown
in Fig. 2. This is because there is no owrlap between

subspaces corresponding to neighbaring linguistic rules.
In Fig. 2, a linguistic rule in the shaded area cen be
generated. The generated linguistic rule dasdfies new
patternsin the same shaded area Thus the training pattern
has an influence on the classfication of new patterns
within that subspace (i.e., the shaded ared) including the
training pattern. On the other hand, if we use the fuzzy
partition in Fig. 1, four fuzzy if-then rules can be
generated from the singe training pettern in Fig. 2. The
generated four linguistic rules cover a much larger
subspace than the shaded area In general, 2" lingugtic
rules can be generated from a single training pattern in
our n-dimensional pattern classfication problem in the
case of fuzzy partitions.
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Figure 2: Non-fuzzy partition.

For comparing fuzzy partitions with crisp partitions, we
examine the dasdfication performance of generated
linguistic rules through computer smulations on iris data.
The iris data set involves 150 ptterns with four
continuous attributes from three dasses. For the iris data
set, we used K linguistic values for each attribute where K
was Pedfied as K =3,4,5,6 (eg.,, K=5 in Fig. 1 and
Fig. 2). In computer smulations of this sdion, all the
K4 combinations of the K linguistic values are examined
for generating linguistic rules. This means that the four-
dimensional pattern space was divided by the
KxKxK xK grid. We used such a simple spedfication
in the rule generation procedure just for comparing fuzzy
partitions with crisp partitions.

We eamined the generdization ability of generated
linguistic rules by computer smulations where only five
patterns from each classwere used as training data. The



other 135 patterns were used as test data for cdculating
the dasdfication rate. This calculation was iterated 50
times using different seledions of training patterns in our
computer simulations. Simulation results are summarized
in Table 1. Thistable dearly shows that the generalization
ability of fuzzy partitions is superior to crisp partitions.
This superiority is due to the overlaps of neighboring
rulesin the @se of fuzzy partitions.

Table 1: Clasdfication rates on test data for theiris data
set when only 15 patterns were used astraining data.

#of linguigticvalues| 3 4 5 6
Fuzzy partition 920 | 871|921 | 917
Crisp partition 729 | 505 | 528 | 356

4. HYBRID GBML ALGORITHM
41 BASICIDEA

In our previous dudies on genetics-based machine
leaning (GBML), we showed that Michigan-style GBML
algorithms can effedively find good lingudtic rules
(Ishibuchi et al., 1996, 199). We aso showed that the
search ability of Pittsburgh-style GBML agorithms to
find good linguistic rules in a large seach space is
inferior to Michigan-style algorithms (Ishibuchi et al.,
1996. Michigan-style algorithms, however, can not
diredly optimize the threeobjedivesin ou linguistic rule
extraction problem becuse the evolution of lingustic
rules is driven only by the dassdfication performance of
each linguigtic rule. On the contrary, Pittsburgh-style
algorithms can diredly optimize the three objectives
because each ohjedive @n be handled as a part of a
fitness function. Thus we try to hybridize these two
approaches into a single hybrid algorithm. Characteristic
features of our hybrid algorithm is asfoll ows:

(1) Our hybrid agorithm is basically a Pittsburgh-style
GBML algorithm where an individual (i.e, a string)
correspondsto a set of linguistic rules.

(2) A Michigan-style GBML algorithm is used as a kind
of mutation in every generation of our hybrid agorithm
for partialy modifying each rule set generated by
Pittsburgh-style genetic operations.

(3) For adjusting the number of lingustic rules, the string

length is variable (not fixed). The length of each sring is
adjusted by a crossover operation.

(4) Our hybrid agorithm is a threeobjedive genetic
algorithm that is devised for finding non-dominated rule
sets of our linguistic rule extraction problem. We use two
tricks in owr hybrid algorithm as in our previous gudies
on multi-objedive scheduling (Murata & Ishibuchi, 19%
and Ishibuchi & Murata, 1998). Oneisto store atentative
pod of non-dominated solutions sparately from the
current population during the exeaution of our hybrid
algorithm. Some non-dominated solutions are randomly
seleded from the tentative pool and added to the aurrent
population as elite solutions. The other is to randomly
update weight values for the three objedives whenever a
pair of parentsis seleded from the current population.

The outline of our hybrid algorithm can be written as
follows (some steps are eplained in detail in the
foll owing subsedions):

Step 1) Initidlization: Generate an initial population
consisting of Ngg rule sets (i.e., Nggt individuals)
where Ngg; iSthe population size.

Step 2) Evaluation: Calculate the three objedives for
each rule set in the arrent population, and then
update the tentative pod of non-dominated rule sets.

Step 3) Sdledion: Repeat the following procedures to
seled (Nggt— Ngjite) pairs of rule sets.

a) Randomly spedfy threeweight parameters w; as
w; =random /(random + random + randony) ,
i=1,2,3 (149
where random is a non-negative random real
number (or non-negative random integer).

b) Calculate the value of the following scdar fitness
function for each rule set Sin the aurrent population
usng the randomly spedfied three weight
parametersin (14).

fitneS$S) =W Dfl(S) — Wy sz(S) —Wg Df3(S) .

19

Then seled a pair of rule sets based on the fitness
value of each rule set S We spedfy the sdledion
probability of Sin the airent population ¥ using
theroulette whed seledion with the linea scaling:
P(S) = fitr]essﬁS) = Trnin (¥) 7
> { fitnesgS) — fin (W)}
Sow

(16)

where fin (W) isthe minimum fitnessvalue in the
current population W .



Step 4) Crosover and mutation: Generate a new rule set
from each pair of selected rule sets by crossover and
mutation operations. These two gperations are used
with prespedfied probabilities. By the genetic
operations, ( Nget— Nejite) rule sets are generated.

Step 5 Michigan-style GBML agorithm:  With a
prespedfied probability, apply a Michigan-style
GBML agorithm to each of the generated
(Nget— Ngjite) rule sets. In the Michigan-style
GBML algorithm, the fitness value of each lingustic
rule is defined by the number of corredly classfied
training petterns by that rule (Ishibuchi et a., 1999.

Step 6) Elitist strategy: Randomly sded Ngjje NON-
dominated rule sets from their tentative pod, and then
add the sdeded dite rule sets to the generated
(Nget— Ngjite) rule sets for constructing a new
population with Ngg rule sets.

Step 7) Termination test: If a prespedfied stopping
condition is stisfied, end the algorithm. Otherwise,
return to Step 2.

4.2. CODING

Because the mnsequent part of each linguigic rule can be
easily determined by the heuristic procedure from training
patterns as described in Sedion 3, only its antecedent part
is coded. Each linguisticrule R; in (1) isrepresented by a
string o the length nin the form of R; = Aj1 Aj, IA, .
Thus a set of N lingustic rules is represented by a
concatenated string o the length nx N . It should be
noted that the number of linguistic rules is minimized by
our hybrid algorithm. Thusthe string length is variable.

4.3. GENETIC OPERATIONS

The number of linguitic rules in each string is adjusted
by a crossover operation in Step 4. We use a modified
version of the uniform crossover where two parents have
different masks as shown in Fig. 3. In this figure, R;
denotes alingustic rule (i.e,, asting o thelength n). The
point in owr crosover operation is that the probability of
each linguistic rule to be inherited to the child is not
aways 0.5. The probability is randomly and uwniformly
spedfied in the unit interval [0,1] for each parent
whenever the crosover operation is performed.

A mutation operation in Step 4 randomly replaces an
antecadent lingustic value with a different linguistic

value. For example, alinguistic rule Rj = Aj A, [IA,
in arule set (i.e, in a string) may be modified by the
mutation operation as Aj1B;, LA, .

Y Yk
Parent 1 [R1[R2[Rs[R4[Rs|Re|

b b SR db* ¢
Parent 2 |Ra|Rs|RJRo|RE[RF]

e

|Ry[Rs|Ra|Ra[Re[Ro[RE|

Child

Figure 3: Crossover operation.

44. MICHIGAN-STYLE GBML ALGORITHM

In Step 5, we use a Michigan-style GBML algorithm for
partialy modifying each rule set generated by the genetic
operations in Step 4 Such modification is mainly for
generating goad rules and removing unnecessary rules. As
a Michigan-style GBML algorithm, we use our fuzzy
clasgfier system (Ishibuchi et al.,1999. In this algorithm,
each linguistic rule is evaluated by the number of
corredly classfied training petterns by that rule. New
rules are generated from parent rules by the standard
uniform crosover. The mutation operation described in
the previous subsedion is also used after the crosover
operation. Poar rules are removed from the arrent rule
set, and newly generated rules are added. The number of
added rules is the same as that of removed rules. For
preventing the increase in the CPU time, we use a single
iteration of our fuzzy clasdfier system in Step 5.

5. COMPUTER SIMULATIONS

We applied our hybrid algorithm to a wine data set
(available from UC Irvine Database). The wine data set is
a threeclass pattern classfication problem with 178
training petterns involving 13 continuous attributes. We
use the five linguigtic valuesin Fig. 1 and “dorit care” as
antecalent lingu stic values.

In the main part (i.e, Pittsburgh-style operations), we
used the foll owing parameter spedfications:

Population size: 50 (i.e., 50rule sets),

The number of rulesin each initia rule set: 100,
Crossver probability: 0.8,

Mutation probability: 0.01,



The number of eite solutions: 5,
Stopping condition: 2000 generations.

In Step 5 of our hybrid algorithm, the Michigan-style
algorithm (i.e., fuzzy clasdfier system) was applied to
each rule sat with the probability 0.5. We used the
following parameter spedficationsin Step 5.

Crossver probability: 0.8,
Mutation probability: 0.05,

The number of replaced rules: 2,
Stopping condition: one generation.

The application of our hybrid algorithm to the wine data
st was iteated ten times from different initia
populations. Nineteen non-dominated rule setsin Table 2
were obtained from those ten independent trias. From this
table, we @n seethat a small number of simple lingugtic
rules can corredly clasdfy many training patterns. For
example, the threelinguistic rules in (2)-(4) in Sedion 1
were obtained as a non-dominated rule set, which can
corredly classfy 165 training petterns (i.e., 92.7% of the
given 178 training patterns). In Table 2, we @an observe a
clear tradeoff between the dasdfication performance and
the number of linguistic rules.

For examining the dfed of the hybridization, we applied
our Pittsburgh-style algorithm to the wine data. That is,
the Michigan-style algorithm in Step 5was removed from
our hybrid agorithm in this computer smulation. The
other conditions were the same as the above mmputer
simulation. While Step 5 in our hybrid algorithm was
skipped, the average CPU time did not deaease (13.2
minutes by the hybrid algorithm and 13.9 minutes by the
Pittsburgh-style algorithm on a PC with a Pentium 1l
400MHz). This is because the number of linguistic rules
in each rule set (i.e, in each gring) influences the CPU
time. The hybrid algorithm deaeased the size of rule sets
more quickly in its exeaution than the Pittsburgh-style
algorithm.

From ten independent trials with the PFittsburgh-style
algorithm, we ohtained very similar results to those in
Table 2 oltained by the hybrid algorithm. Whil e the final
results obtained by these two algorithms were very similar,
the hybrid algorithm could find good rule sets more
efficiently. In Table 3, we summarize intermediate results
during the exeaution of each algorithm. Table 3 shows the
average value of the highest clasdfication rate at each
generation over ten independent trials. From thistable, we
can see that the seach ability of the Pittsburgh-style

algorithm was improved by the hybridization with the
Michigan-style algorithm.

Table 2: Simulation results by the hybrid a gorithm.

Number of | Clasdfication | Average
rules rates rule length

1 39.9% 0

2 65.7% 0.5
2 66.9% 1.0
2 68.0% 15
3 86.0% 0.7
3 90.4% 1.0
3 916% 13
3 92.7% 17
4 94.9% 1.0
4 95.5% 13
4 96.6% 15
5 96.6% 1.0
5 97.2% 12
5 98.3% 14
6 97.8% 1.0
6 98.9% 13
6 99.4% 15
7 100% 2.0
8 100% 1.6

Table 3: Average value of the highest classfication rate at
each generation over ten independent trials.

Generation 50| 100| 200| 500 1000|2000
Hybrid 485 | 869 | 954 | 981 | 989 | 994
Pittsburgh | 256 | 587 | 87.4 | 966 | 985 | 99.1

We also examined the fuzzy clasdfier system (i.e,, Step 5
of our hybrid agorithm) by applying it to the wine data
set using the foll owing parameter spedfications:

The number of linguistic rules: 10,
Crossover probability: 0.8,

Mutation probability: 0.05,

The number of replaced rules: 2,
Stopping condition: 2000 generations.

This computer simulation was iterated ten times from
different initial populations. Since only a single rule set
exists in each generation of the Michigan-style GBML
algorithm, the CPU time drasticdly deaeased from 13.2
minutes (by the hybrid algorithm) to 0.33 minutes. The
foll owing average results were obtained:

Average dasdfication rate: 97.2%,
Averagerule length: 1.43.



Since the fuzzy classfier system could not minimize the
number of linguistic rules, this computer smulation was
performed with the very small population size (i.e, 10
linguistic rules). Thus we ould not obtain high
clasdfication rates. If we use more linguistic rules (e.g.,
60 rules) in each population of the fuzzy classfier system,
we @n obtain very high classfication rates (seelshibuchi
et a., 1999. In this case, the comprehensbility of
linguistic knowledge is impaired by a large number of
extracted rules.

6. CONCLUSIONS

In this paper, we formulated the linguistic rule etraction
from numerical data for high-dimensional pattern
clasdfication problems as a threeobjedive optimization
probdem. Our goa was to pesent classfication
knowledge to users in a human-understandable manner.
That is, emphasis was placed on the cmprehensbility of
extracted linguistic knowledge. For finding non-
dominated rule sets of the threeobjedive rule ectraction
problem, we proposed a hybrid agorithm where a
Michigan-style GBML algorithm was used as a kind o
mutation in a Pittsburgh-style GBML agorithm. Its
eff ediveness was demonstrated by computer simulations
on the wine data. That is, it was shown that our hybrid
algorithm could find a smal number of comprehensible
linguistic rules with high classfication ability.
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