
Linguistic Rule Extraction by Genetics-Based Machine Learning

Hisao Ishibuchi

Dept. of Industrial Engineering
Osaka Prefecture University

1-1 Gakuen-cho, Sakai, Osaka 599-8531, JAPAN
E-mail: hisaoi@ie.osakafu-u.ac.jp

Phone: +81-722-54-9350

Tomoharu Nakashima

Dept. of Industrial Engineering
Osaka Prefecture University

1-1 Gakuen-cho, Sakai, Osaka, 599-8531, JAPAN
E-mail: nakashi@ie.osakafu-u.ac.jp

Phone: +81-722-54-9351

Abstract

This paper shows how linguistic classification
knowledge can be extracted from numerical data
for pattern classification problems with many
continuous attributes by genetic algorithms.
Classification knowledge is extracted in the form
of linguistic if-then rules. In this paper, emphasis
is placed on the simplicity of the extracted
knowledge. The simplicity is measured by two
criteria: the number of extracted linguistic rules
and the length of each rule (i.e., the number of
antecedent conditions involved in each rule). The
classification ability of extracted linguistic rules,
which is measured by the classification rate on
given training patterns, is also considered. Thus
our task is formulated as a linguistic rule
extraction problem with three objectives: to
maximize the classification rate, to minimize the
number of extracted linguistic rules, and to
minimize the length of each rule. For tackling
this problem, we propose a multi-objective
genetics-based machine learning (GBML)
algorithm, which is a hybrid algorithm of
Michigan approach and Pittsburgh approach. Our
hybrid algorithm is basicall y a Pittsburgh-style
algorithm with variable string length. A
Michigan-style algorithm is combined as a kind
of mutation for partiall y modifying each string.

1. INTRODUCTION

Recently fuzzy rule-based systems have been often
applied to pattern classification problems (Ishibuchi et al.,
1992, Rhee & Krishnapuram, 1993, and Cordon et al.,
1999). Main characteristic features of fuzzy rule-based
classification systems are their nonlinearity and
comprehensibility. Since fuzzy rule-based systems are

universal approximators of nonlinear functions (Kosko,
1992, and Wang, 1992), they can handle highly nonlinear
classification problems. Many studies on fuzzy rule-based
classification systems tried to improve their classification
abilit y. Some studies used neuro-fuzzy techniques
(Uebele et al., 1995, Mitra et al., 1997, Nauck & Kruse,
1999), and other studies employed genetic algorithms for
designing fuzzy rule-based classification systems
(Ishibuchi et al., 1994, Yuan & Zhuang, 1996, and
Cordon et al., 1998). In those studies, emphasis was
placed on the classification abil ity of fuzzy rule-based
systems rather than their comprehensibility. That is, fuzzy
rule-based systems were tuned for maximizing
classification rates on given training patterns using
various learning techniques. Another research direction in
fuzzy rule-based classification is to extract linguistic
classification knowledge from numerical data in the form
of linguistic if-then rules (Ishibuchi et al., 1997). In this
research direction, emphasis is placed on the
comprehensibility of extracted linguistic knowledge rather
than the classification performance.

Our task in this paper is to extract a small number of
comprehensible linguistic rules from numerical data for
high-dimensional pattern classification problems with
many continuous attributes. We use linguistic rules of the
following form for an n-dimensional pattern classification
problem with c classes and n continuous attributes:

Rule jR : If 1x is 1jA and ... and nx is jnA

 then Class jC with jCF , Nj 1,2,...,= , (1)

where jR is the label of the j-th linguistic rule,

),...,(1 nxx=x is an n-dimensional pattern vector, jiA is
a linguistic value such as small and large for the i-th
attribute, jC is a consequent class (i.e., one of the c

classes), jCF is a certainty grade in the unit interval [0,1],

and N is the number of linguistic rules.

Let us assume that we have iK linguistic values for
describing the i-th attribute of our n-dimensional pattern
classification problem (ni 1,2,...,=). One of those iK

linguistic values is used as the antecedent linguistic value

jiA for the i-th attribute in each linguistic rule. In this
case, the total number of possible combinations of the

linguistic values is nKKK ××× ...21 . It is impractical to
examine all the possible combinations for extracting
linguistic rules when our pattern classification problem

involves many attributes (i.e., when n is large). For
example, the total number of the possible combinations of
the linguistic values is more than one billi on when 13=n

and 5=iK for 131,2,...,=i . This example shows that the
exponential increase in the number of linguistic rules
prevents the use of any exhaustive examination method in

the case of high-dimensional pattern classification
problems. Such exponential increase can be also
explained by the exponential decrease in the covered area

by each linguistic rule. That is, a linguistic rule with many
antecedent conditions can cover only a tiny fraction of the
n-dimensional pattern space. Thus a large number of

linguistic rules with many antecedent conditions are
necessary for covering the whole pattern space. Due to the
exponential increase in the number of linguistic rules, the

comprehensibility of linguistic knowledge is drasticall y
impaired as the dimensionality of the pattern space
increases. The increase in the number of antecedent

conditions also impairs the comprehensibil ity of each
linguistic rule. In general, it is much easier for users to
intuiti vely understand short linguistic rules with only a

few antecedent conditions than long rules with many
conditions.

In this paper, we try to extract comprehensible
classification knowledge from numerical data in the form

of a small number of simple linguistic rules. Only a few
antecedent conditions are specified by linguistic values in
simple linguistic rules. The other conditions are viewed as

“don’ t care” conditions. This can be implemented by
considering “don’t care” as an additional linguistic value.
In this case, each antecedent linguistic value jiA of our

linguistic rules in (1) is selected from the given iK

linguistic values and “don’t care” . Because “don’ t care”
conditions can be omitted, linguistic rules with many

“don’ t care” conditions are written as simple rules. For
example, in a computer simulation described in Section 5,

we extracted the following linguistic rules for a 13-

dimensional pattern classification problem:

1R : If 7x is medium and 11x is medium

 then Class 1 with =1CF 0.56, (2)

2R : If 10x is small then Class 2 with =2CF 0.94, (3)

3R : If 7x is small and 13x is medium small

 then Class 3 with =3CF 0.84. (4)

Because we use “don’ t care” as an additional l inguistic

value for each of the n attributes, the total number of the
possible combinations of the linguistic values is
calculated as)1(...)1(1 +××+ nKK . Our task in this

paper is to find a small number of simple linguistic rules
in the huge search space consisting of those combinations
of the linguistic values. The diff iculty of our task lies in

the size of the search space. In the following sections, we
show how genetic algorithms can tackle this diff icult task.

2. PROBLEM FORMULATION

Let us assume that we have m training patterns

)...,,(1 pnpp xx=x , mp ,...,2,1= from c classes in our
n-dimensional pattern classification problem. For
simplicity of explanation, each attribute value is assumed

to be a real number in the unit interval [0,1]. This means
that the pattern space of our pattern classification problem
is the n-dimensional unit hyper-cube n]1,0[. In computer

simulations of this paper, every attribute value was
normalized into a real number in the unit interval [0,1].

We also assume iK linguistic values and their

membership functions have already been given by users
for describing the i-th attribute (ni 1,2,...,=). We do not
modify the given membership function of each linguistic

value because the modification may cause a gap between
the modified membership function and the users’
understanding of each linguistic value. Any shapes of

membership functions can be handled by our approach in
this paper. The point is that the membership function of
each linguistic value should be consistent with the users’

domain knowledge and intuition. In computer simulations
of this paper, we used a typical set of linguistic values
with triangular membership functions for each attribute

because we have no domain knowledge about data sets
used in our computer simulations. An example of such a
typical set of linguistic values is shown in Fig. 1.

S MS M ML L

0.0

1.0

1.0

Membership

Input variable

Figure 1: Typical examples of linguistic values (S: small,
MS: medium small, M: medium, ML: medium large, and

L: large).

When we use the five linguistic values in Fig. 1 and “DC:
don’ t care” for each attribute of our n-dimensional pattern

classification problem, all the n6 combinations of the six
antecedent linguistic values can be written as

.withthen

DC
L

ML
M
MS
S

isand...and

DC
L

ML
M
MS
S

isIf 1 jjn CFCxx

î

î

(5)

In this case, our task is to find a small number of
linguistic rules from these n6 rules. For example, the

total number of the linguistic rules in (5) is over 13 bil lion
in a wine data set with 13 attributes used in our computer
simulations. It should be noted that the determination of

the consequent class jC and the certainty grade jCF is
not included in our linguistic rule extraction problem.
This is because jC and jCF of each linguistic rule can

be easily determined by a heuristic method in Ishibuchi et
al.(1992) from training patterns (see Section 3).

As we have already mentioned, the comprehensibility of

extracted linguistic knowledge is impaired by the increase
in the number of linguistic rules. Thus we try to minimize
the number of extracted rules. From the viewpoint of the

comprehensibility of each linguistic rule, many antecedent
conditions deteriorate the comprehensibility. Thus we also
try to minimize the number of antecedent conditions

involved in each rule. This means that we try to use
“don’ t care” conditions in each rule as many as possible.
At the same time, we want to extract linguistic knowledge

that can correctly classify the given training patterns as
many as possible. Thus the number of correctly classified
training patterns is maximized. Let us denote a set of

extracted linguistic rules by S. Then our linguistic rule

extraction is formulated as the following three-objective

optimization problem:

Maximize)(1 Sf , minimize)(2 Sf , and minimize)(3 Sf ,
 (6)

where)(1 Sf is the number of correctly classified training
patterns by S,)(2 Sf is the number of linguistic rules in S,

and)(3 Sf is the total number of antecedent conditions in
S. For example, when the rule set S consists of the three
linguistic rules in (2)-(4),)(2 Sf and)(3 Sf are

calculated as =)(2 Sf 3 and =)(3 Sf 5, respectively. The
first objective)(1 Sf is calculated by classifying all the
given training patterns by the rule set S. In Section 3, we

briefly describe how each training pattern is classified by
linguistic rules in the rule set S. As we will show later
using simulation results, there exists a tradeoff among the

above three objectives. Thus the task of genetic
algorithms in this paper is to find non-dominated
solutions (i.e., non-dominated rule sets) of our linguistic

rule extraction problem. Several GA-based approaches
have already been proposed for finding non-dominated
solutions of multi-objective optimization problems
(Fonseca & Fleming, 1995, and Zitzler & Thiele, 1999).

3. LINGUISTIC CLASSIFICATION

Before describing genetic algorithms for solving our
linguistic rule extraction problem, we briefly mention

some related issues: determination of the consequent part
of each linguistic rule, classification of new patterns by a
set of linguistic rules, and specification of the membership

function of each linguistic value.

Basicall y the consequent part of each linguistic rule is
determined from training patterns in the subspace

specified by its antecedent part (Ishibuchi et al., 1992).
First we calculate the compatibility grade)(pj xµ of
each training pattern) ..., ,(1 pnpp xx=x with the
linguistic rule jR by the product operation as

)(...)()(11 pnjnpjpR xx
j

µµµ ××=x , (7)

where)(⋅jiµ is the membership function of the
antecedent linguistic value jiA . For example, the
membership function of “S: small” in Fig. 1 is written as

}41,0max{)(xxsmall −=µ for 10 ≤≤ x . (8)

Then we calculate the total compatibilit y grade of the
given training patterns from each class with the linguistic
rule jR as

∑
∈

=
h

pRjh
p

j
R

 Class
 Class)()(

x
xµβ , ch 1,2,...,= . (9)

The consequent class jC is determined as the class with
the maximum total compatibil ity grade:

)}(...,),({Max)(Class1Class Class jcjjC RRR
j

βββ = . (10)

The certainty grade jCF is specified as

∑
=

−=
c

h
jhjCj RRCF

j
1

 Class Class)(/})({ βββ , (11)

where

∑

≠
=

−=
c

Ch

h
jh

j

cR
1

Class)1/()(ββ . (12)

If no training pattern is compatible with jR , we can not
determine the consequent part of jR . That is, we can not

extract the linguistic rule jR .

Let S be a set of extracted linguistic rules. We classify all
the training patterns by S for calculating the first objective

)(1 Sf . Each training pattern px is classified by a single
winner rule *jR , which satisfies the following condition
(Ishibuchi et al., 1992):

}|)(max{)(**
SRCFCF jjpRjpR jj

∈⋅=⋅ xx µµ . (13)

In our linguistic rule extraction problem, it is possible to
define each linguistic value by a non-fuzzy interval (see
Fig. 2). Because linguistic values should be consistent

with the users’ domain knowledge and intuition in a
particular pattern classification problem, the choice
between crisp partitions and fuzzy partitions is totally

dependent on the users’ preference. Here we compare
these two types of partitions from the viewpoint of the
performance of linguistic rule-based systems.

As we have already explained, the consequent part of

each linguistic rule jR in (1) is determined by training
patterns compatible with its antecedent part. This means
that we can not generate any linguistic rule when there is

no training pattern in the subspace jnj AA ×× ...1 . As we
can see from Fig. 2, the main difference between two
types of partitions is the existence of overlaps between

neighboring linguistic values in the case of fuzzy
partitions. For clearly demonstrating the effect of such
overlaps on the rule generation, let us consider how many

linguistic rules can be generated from a single training
pattern. In the case of crisp partitions, only a single rule
can be generated from a single training pattern as shown

in Fig. 2. This is because there is no overlap between

subspaces corresponding to neighboring linguistic rules.

In Fig. 2, a linguistic rule in the shaded area can be
generated. The generated linguistic rule classifies new
patterns in the same shaded area. Thus the training pattern

has an influence on the classification of new patterns
within that subspace (i.e., the shaded area) including the
training pattern. On the other hand, if we use the fuzzy

partition in Fig. 1, four fuzzy if-then rules can be
generated from the single training pattern in Fig. 2. The
generated four linguistic rules cover a much larger

subspace than the shaded area. In general, n2 linguistic
rules can be generated from a single training pattern in
our n-dimensional pattern classification problem in the

case of fuzzy partitions.

Figure 2: Non-fuzzy partition.

For comparing fuzzy partitions with crisp partitions, we
examine the classification performance of generated
linguistic rules through computer simulations on iris data.

The iris data set involves 150 patterns with four
continuous attributes from three classes. For the iris data
set, we used K linguistic values for each attribute where K
was specified as =K 3,4,5,6 (e.g., 5=K in Fig. 1 and
Fig. 2). In computer simulations of this section, all the

4K combinations of the K linguistic values are examined

for generating linguistic rules. This means that the four-
dimensional pattern space was divided by the

KKKK ××× grid. We used such a simple specification

in the rule generation procedure just for comparing fuzzy
partitions with crisp partitions.

We examined the generali zation ability of generated
linguistic rules by computer simulations where only five

patterns from each class were used as training data. The

S MS MLM L

S
M

S
M

M
L

L

0.0 1.0

1.0

other 135 patterns were used as test data for calculating

the classification rate. This calculation was iterated 50
times using different selections of training patterns in our
computer simulations. Simulation results are summarized

in Table 1. This table clearly shows that the generalization
abilit y of fuzzy partitions is superior to crisp partitions.
This superiority is due to the overlaps of neighboring

rules in the case of fuzzy partitions.

Table 1: Classification rates on test data for the iris data
set when only 15 patterns were used as training data.

of linguistic values 3 4 5 6

Fuzzy partition 92.0 87.1 92.1 91.7

Crisp partition 72.9 50.5 52.8 35.6

4. HYBRID GBML ALGORITHM

4.1. BASIC IDEA

In our previous studies on genetics-based machine
learning (GBML), we showed that Michigan-style GBML
algorithms can effectively find good linguistic rules

(Ishibuchi et al., 1996, 1999). We also showed that the
search abil ity of Pittsburgh-style GBML algorithms to
find good linguistic rules in a large search space is

inferior to Michigan-style algorithms (Ishibuchi et al.,
1996). Michigan-style algorithms, however, can not
directly optimize the three objectives in our linguistic rule

extraction problem because the evolution of linguistic
rules is driven only by the classification performance of
each linguistic rule. On the contrary, Pittsburgh-style

algorithms can directly optimize the three objectives
because each objective can be handled as a part of a
fitness function. Thus we try to hybridize these two

approaches into a single hybrid algorithm. Characteristic
features of our hybrid algorithm is as follows:

(1) Our hybrid algorithm is basically a Pittsburgh-style
GBML algorithm where an individual (i.e., a string)

corresponds to a set of linguistic rules.

(2) A Michigan-style GBML algorithm is used as a kind
of mutation in every generation of our hybrid algorithm

for partiall y modifying each rule set generated by
Pittsburgh-style genetic operations.

(3) For adjusting the number of linguistic rules, the string
length is variable (not fixed). The length of each string is

adjusted by a crossover operation.

(4) Our hybrid algorithm is a three-objective genetic

algorithm that is devised for finding non-dominated rule
sets of our linguistic rule extraction problem. We use two
tricks in our hybrid algorithm as in our previous studies

on multi-objective scheduling (Murata & Ishibuchi, 1995
and Ishibuchi & Murata, 1998). One is to store a tentative
pool of non-dominated solutions separately from the

current population during the execution of our hybrid
algorithm. Some non-dominated solutions are randomly
selected from the tentative pool and added to the current

population as elite solutions. The other is to randomly
update weight values for the three objectives whenever a
pair of parents is selected from the current population.

The outline of our hybrid algorithm can be written as
follows (some steps are explained in detail in the
following subsections):

Step 1) Initiali zation: Generate an initial population

consisting of setN rule sets (i.e., setN individuals)
where setN is the population size.

Step 2) Evaluation: Calculate the three objectives for

each rule set in the current population, and then
update the tentative pool of non-dominated rule sets.

Step 3) Selection: Repeat the following procedures to
select (eliteset NN −) pairs of rule sets.

a) Randomly specify three weight parameters iw as

)/(321 randomrandomrandomrandomw ii ++= ,
 1,2,3=i . (14)

where irandom is a non-negative random real

number (or non-negative random integer).

b) Calculate the value of the following scalar fitness
function for each rule set S in the current population

using the randomly specified three weight
parameters in (14).

)()()()(332211 SfwSfwSfwSfitness ⋅−⋅−⋅= .
(15)

Then select a pair of rule sets based on the fitness

value of each rule set S. We specify the selection
probabilit y of S in the current population Ψ using
the roulette wheel selection with the linear scaling:

∑
Ψ∈

Ψ−
Ψ−=

S
fSfitness

fSfitness
SP

)}()({
)()(

)(
min

min , (16)

where)(min Ψf is the minimum fitness value in the

current population Ψ .

Step 4) Crossover and mutation: Generate a new rule set

from each pair of selected rule sets by crossover and
mutation operations. These two operations are used
with prespecified probabiliti es. By the genetic

operations, (eliteset NN −) rule sets are generated.

Step 5) Michigan-style GBML algorithm: With a
prespecified probabilit y, apply a Michigan-style

GBML algorithm to each of the generated
(eliteset NN −) rule sets. In the Michigan-style
GBML algorithm, the fitness value of each linguistic

rule is defined by the number of correctly classified
training patterns by that rule (Ishibuchi et al., 1999).

Step 6) Elitist strategy: Randomly select eliteN non-
dominated rule sets from their tentative pool, and then

add the selected elite rule sets to the generated
(eliteset NN −) rule sets for constructing a new
population with setN rule sets.

Step 7) Termination test: If a prespecified stopping
condition is satisfied, end the algorithm. Otherwise,
return to Step 2.

4.2. CODING

Because the consequent part of each linguistic rule can be

easily determined by the heuristic procedure from training
patterns as described in Section 3, only its antecedent part
is coded. Each linguistic rule jR in (1) is represented by a

string of the length n in the form of jnjjj AAAR ⋅⋅⋅= 21 .
Thus a set of N linguistic rules is represented by a
concatenated string of the length Nn × . It should be

noted that the number of linguistic rules is minimized by
our hybrid algorithm. Thus the string length is variable.

4.3. GENETIC OPERATIONS

The number of linguistic rules in each string is adjusted
by a crossover operation in Step 4. We use a modified

version of the uniform crossover where two parents have
different masks as shown in Fig. 3. In this figure, jR

denotes a linguistic rule (i.e., a sting of the length n). The

point in our crossover operation is that the probabilit y of
each linguistic rule to be inherited to the child is not
always 0.5. The probabilit y is randomly and uniformly

specified in the unit interval [0,1] for each parent
whenever the crossover operation is performed.

A mutation operation in Step 4 randomly replaces an
antecedent linguistic value with a different linguistic

value. For example, a linguistic rule jnjjj AAAR ⋅⋅⋅= 21

in a rule set (i.e., in a string) may be modified by the
mutation operation as jnjj ABA ⋅⋅⋅21 .

Parent 1

Parent 2

R1 R2 R3 R4 R5 R6

RA RB RCRD RE RF

Child R1 RD RERA RBR3 R4

Figure 3: Crossover operation.

4.4. MICHIGAN-STYLE GBML ALGORITHM

In Step 5, we use a Michigan-style GBML algorithm for
partiall y modifying each rule set generated by the genetic

operations in Step 4. Such modification is mainly for
generating good rules and removing unnecessary rules. As
a Michigan-style GBML algorithm, we use our fuzzy

classifier system (Ishibuchi et al.,1999). In this algorithm,
each linguistic rule is evaluated by the number of
correctly classified training patterns by that rule. New

rules are generated from parent rules by the standard
uniform crossover. The mutation operation described in
the previous subsection is also used after the crossover

operation. Poor rules are removed from the current rule
set, and newly generated rules are added. The number of
added rules is the same as that of removed rules. For

preventing the increase in the CPU time, we use a single
iteration of our fuzzy classifier system in Step 5.

5. COMPUTER SIMULATIONS

We applied our hybrid algorithm to a wine data set
(available from UC Irvine Database). The wine data set is
a three-class pattern classification problem with 178

training patterns involving 13 continuous attributes. We
use the five linguistic values in Fig. 1 and “don’t care” as
antecedent linguistic values.

In the main part (i.e., Pittsburgh-style operations), we

used the following parameter specifications:

 Population size: 50 (i.e., 50 rule sets),
 The number of rules in each initial rule set: 100,

 Crossover probabilit y: 0.8,
 Mutation probabilit y: 0.01,

 The number of elite solutions: 5,
 Stopping condition: 2000 generations.

In Step 5 of our hybrid algorithm, the Michigan-style
algorithm (i.e., fuzzy classifier system) was applied to
each rule set with the probabilit y 0.5. We used the
following parameter specifications in Step 5:

 Crossover probabilit y: 0.8,
 Mutation probabilit y: 0.05,
 The number of replaced rules: 2,
 Stopping condition: one generation.

The application of our hybrid algorithm to the wine data
set was iterated ten times from different initial
populations. Nineteen non-dominated rule sets in Table 2

were obtained from those ten independent trials. From this
table, we can see that a small number of simple linguistic
rules can correctly classify many training patterns. For

example, the three linguistic rules in (2)-(4) in Section 1
were obtained as a non-dominated rule set, which can
correctly classify 165 training patterns (i.e., 92.7% of the

given 178 training patterns). In Table 2, we can observe a
clear tradeoff between the classification performance and
the number of linguistic rules.

For examining the effect of the hybridization, we applied
our Pittsburgh-style algorithm to the wine data. That is,
the Michigan-style algorithm in Step 5 was removed from

our hybrid algorithm in this computer simulation. The
other conditions were the same as the above computer
simulation. While Step 5 in our hybrid algorithm was

skipped, the average CPU time did not decrease (13.2
minutes by the hybrid algorithm and 13.9 minutes by the
Pittsburgh-style algorithm on a PC with a Pentium II

400MHz). This is because the number of linguistic rules
in each rule set (i.e., in each string) influences the CPU
time. The hybrid algorithm decreased the size of rule sets

more quickly in its execution than the Pittsburgh-style
algorithm.

From ten independent trials with the Pittsburgh-style
algorithm, we obtained very similar results to those in

Table 2 obtained by the hybrid algorithm. While the final
results obtained by these two algorithms were very similar,
the hybrid algorithm could find good rule sets more

efficiently. In Table 3, we summarize intermediate results
during the execution of each algorithm. Table 3 shows the
average value of the highest classification rate at each

generation over ten independent trials. From this table, we
can see that the search abil ity of the Pittsburgh-style

algorithm was improved by the hybridization with the

Michigan-style algorithm.

Table 2: Simulation results by the hybrid algorithm.

Number of
rules

Classification
rates

Average
rule length

1 39.9% 0
2 65.7% 0.5
2 66.9% 1.0
2 68.0% 1.5
3 86.0% 0.7
3 90.4% 1.0
3 91.6% 1.3
3 92.7% 1.7
4 94.9% 1.0
4 95.5% 1.3
4 96.6% 1.5
5 96.6% 1.0
5 97.2% 1.2
5 98.3% 1.4
6 97.8% 1.0
6 98.9% 1.3
6 99.4% 1.5
7 100% 2.0
8 100% 1.6

Table 3: Average value of the highest classification rate at
each generation over ten independent trials.

Generation 50 100 200 500 1000 2000
Hybrid 48.5 86.9 95.4 98.1 98.9 99.4
Pittsburgh 25.6 58.7 87.4 96.6 98.5 99.1

We also examined the fuzzy classifier system (i.e., Step 5
of our hybrid algorithm) by applying it to the wine data

set using the following parameter specifications:

 The number of linguistic rules: 10,
 Crossover probabilit y: 0.8,

 Mutation probabilit y: 0.05,
 The number of replaced rules: 2,
 Stopping condition: 2000 generations.

This computer simulation was iterated ten times from

different initial populations. Since only a single rule set
exists in each generation of the Michigan-style GBML
algorithm, the CPU time drasticall y decreased from 13.2

minutes (by the hybrid algorithm) to 0.33 minutes. The
following average results were obtained:

 Average classification rate: 97.2%,
 Average rule length: 1.43.

Since the fuzzy classifier system could not minimize the

number of linguistic rules, this computer simulation was
performed with the very small population size (i.e., 10
linguistic rules). Thus we could not obtain high

classification rates. If we use more linguistic rules (e.g.,
60 rules) in each population of the fuzzy classifier system,
we can obtain very high classification rates (see Ishibuchi

et al., 1999). In this case, the comprehensibil ity of
linguistic knowledge is impaired by a large number of
extracted rules.

6. CONCLUSIONS

In this paper, we formulated the linguistic rule extraction
from numerical data for high-dimensional pattern

classification problems as a three-objective optimization
problem. Our goal was to present classification
knowledge to users in a human-understandable manner.

That is, emphasis was placed on the comprehensibilit y of
extracted linguistic knowledge. For finding non-
dominated rule sets of the three-objective rule extraction

problem, we proposed a hybrid algorithm where a
Michigan-style GBML algorithm was used as a kind of
mutation in a Pittsburgh-style GBML algorithm. Its

effectiveness was demonstrated by computer simulations
on the wine data. That is, it was shown that our hybrid
algorithm could find a small number of comprehensible
linguistic rules with high classification ability.

References

O. Cordon, M. J. del Jesus, and F. Herrera (1998),
“Genetic learning of fuzzy rule-based classification
systems cooperating with fuzzy reasoning methods,”
International Journal of Intell igent Systems 13, 1025-
1053.

O. Cordon, M. J. del Jesus, and F. Herrera (1999), “A
proposal on reasoning methods in fuzzy rule-based
classification systems,” International Journal of
Approximate Reasoning 20, 21-45.

C. M. Fonseca and P. J. Fleming (1995), “An overview of
evolutionary algorithms in multiobjective optimization,”
Evolutionary Computation 3, 1-16.

B. Kosko (1992), “Fuzzy systems as universal
approximators,” Proc. of 1st IEEE International
Conference on Fuzzy Systems, 1153-1162.

H. Ishibuchi, K. Nozaki, and H. Tanaka (1992),
“Distributed representation of fuzzy rules and its
application to pattern classification,” Fuzzy Sets and

Systems 52, 21-32.

H. Ishibuchi, K. Nozaki, N. Yamamoto, and H. Tanaka
(1994), “Construction of fuzzy classification systems with
rectangular fuzzy rules using genetic algorithms,” Fuzzy
Sets and Systems 65, 237-253.

H. Ishibuchi, T. Nakashima, and T. Murata (1996),
“Genetic-algorithm-based approaches to the design of
fuzzy systems for multi-dimensional pattern classification
problems,” Proc. of 3rd IEEE International Conference
on Evolutionary Computation, 229-234.

H. Ishibuchi, T. Murata, and I. B. Turksen (1997),
“Single-objective and two-objective genetic algorithms
for selecting linguistic rules for pattern classification
problems,” Fuzzy Sets and Systems 89, 135-149.

H.Ishibuchi and T.Murata (1998), “A multi-objective
genetic local search algorithm and its application to
flowshop scheduling,” IEEE Trans. on Systems, Man, and
Cybernetics - Part C: Applications and Reviews 28 392-
403.

H. Ishibuchi, T. Nakashima, and T. Murata (1999),
“Performance evaluation of fuzzy classifier systems for
multi-dimensional pattern classification problems,” IEEE
Trans. on SMC - Part B: Cybernetics 29, 601-618.

S. Mitra, R. K. De, and S. K. Pal (1997), “Knowledge-
based fuzzy MLP for classification and rule generation,”
IEEE Trans. on Neural Networks 8, 1338-1350.

T. Murata and H. Ishibuchi (1995), “MOGA: Multi-
objective genetic algorithms,” Proc. of 2nd IEEE
International Conference on Evolutionary Computation,
289-294.

D. Nauck and R. Kruse (1999), “A neuro-fuzzy method to
learn fuzzy classification rules from data,” Fuzzy Sets and
Systems 89, 277-288.

F. C. -H. Rhee and R. Krishnapuram (1993), “Fuzzy rule
generation methods for high-level computer vision,”
Fuzzy Sets and Systems 60, 245-258.

V. Uebele, S. Abe, and M. -S. Lan (1995), “A neural-
network-based fuzzy classifier,” IEEE Trans. on Systems,
Man, and Cybernetics 25, 353-361.

L. Wang (1992), “Fuzzy systems are universal
approximators,” Proc. of 1st IEEE International
Conference on Fuzzy Systems, 1163-1170.

Y. Yuan and H. Zhuang (1996), “A genetic algorithm for
generating fuzzy classification rules,” Fuzzy Sets and
Systems 84, 1-19.

E. Zitzler and L. Thiele (1999), “Multiobjective
evolutionary algorithms: A comparative case study and
the strength Pareto Approach,” IEEE Trans. on
Evolutionary Computation 3, 257-271.

