
GP+Echo+Subsumption = Improved Problem Solving

W.F. Punch

Computer Science and Engineering
Michigan State University

punch@cse.msu.edu
http://www.cse.msu.edu/~punch

W.M. Rand

Computer Science and Engineering
Michigan State University

randwill@msu.edu
http://www.msu.edu/~randwill

Abstract

Real-time, adaptive control is a difficult problem
that can be addressed by EC architectures. We
are interested in incorporating into an EC
architecture some of the features that Holland’s
Echo architecture presents. Echo has been used
to model everything from cultures to financial
markets. However, the typical application of
Echo is a simulation to observe the dynamics of
the modeled elements such as found in control
problems. We show in this paper that some
aspects of Echo can be incorporated into Genetic
Programming to solve control problems. The
paper discusses EAGP (Echo Augmented
Genetic Programming), a modified GP
architecture that uses aspects of Echo, and
subsumption. We demonstrate the usefulness of
EAGP on a robot navigation problem.

1 BACKGROUND

1.1 ECHO

Echo, as described by Holland in the book Hidden Order
[Holland95], is an umbrella architecture consisting of
various models for experiments with complex adaptive
systems (CAS). An Echo architecture has a number of
independent “agents” that exist within a particular
environment. The hallmark of an Echo simulation is the
development of interactions between agents that allow
them to thrive in the environment, creating complex
communities of different types of agents. Interactions and
agent types develop over time by allowing each agent to
adapt to the environment and to the other agents in the
community. To create an Echo model, Holland lists six
criteria:

1. Simplicity: Echo “is meant for thought experiments
rather than for emulation of real systems.”

2. Geography: Agents in Echo should move within a
“geography”, where location “matters, in terms of the

input an agent receives and how interactions with
other agents occur.

3. Fitness: Fitness is not fixed externally but should
depend on the context of the environment.

4. Mechanisms: The mechanisms in an Echo
architecture should have counterparts in real CAS.

5. Frameworks: The developed model must allow easy
insertion of other established CAS frameworks.

6. Analysis: The model should be amenable to
mathematical analysis.

Holland also lists a set of properties and mechanisms that
should be universally available in a CAS system that is
listed in Table 1.

Table 1: The basic properties and mechanisms required for a
CAS system

Properties Mechanisms

Aggregation Tags

Nonlinearity Internal Models

Flows Building Blocks

Diversity

Most of these are self-explanatory. Flows involve the
sharing of resources in the developed community of
agents. Tags provide a means of identifying agents, and
are the means for most interactions. Internal models are
the “code” that drives the agent’s interactions with the
environment. Building blocks are the basic unit of
heredity, the passing of useful information from parent to
child, as found in GAs.

A number of Echo implementations exist.
Gecko[Booth97] is an implementation of the Echo
architecture specialized for modeling ecosystems. It
focuses on spatial distribution and interactions as could be
found in an ecology[Schmitz96]. Swarm[swarm] is a
system for simulating multiple, interacting agents and has

been used in implement a wide variety of CAS systems,
including Echo-like systems.

2 FOUNDATIONS OF EAGP

Most CAS and Echo-like systems focus on the simulation
of multiple agents in a complex environment. Holland
purposefully states in criteria 3 above that no fixed
measure of fitness should be provided. The goal is not to
solve problems so much as to provide an environment in
which complex interactions can develop given certain
conditions. However, it seems clear that a modified Echo
model, or at least models that embody Echo properties,
could indeed be used to solve problems, especially
complex problems that have multiple, interacting aspects
such as would be found in design or planning.

Our goal is to create a Echo Augmented Genetic
Programming (EAGP) by starting with the basic Echo
description and modifying only those aspects necessary to
introduce problem-solving capabilities. Thus we wish to
keep as many aspects of the original Echo approach as
possible.

2.1 PRINCIPLES USED

Our goal will be to use some of the ideas presented in
Echo. In particular we will use the concept of Tags,
Aggregation, Internal Models and Building Blocks. In
summary:

• By using Genetic Programming [Koza92] as the
underlying architecture, we incorporate the concept
of the building block as represented by the subtrees
of the individual trees (Section 3.1).

• For aggregation, we allow an EAGP to consist of
multiple individuals, each of which can be acquired
over time from other EAGPs (Section 3.3).

• For internal models, we allow the EAGP to acquire
those models that best optimize the problem-solver’s
behavior (Section 2.3).

• For tags, we allow each EAGP to be identified based
on the aspects of the fitness function that it may
address (Section 3.2).

These will be explained in more detail in the indicated
sections.

2.2 FITNESS

An Echo model and a genetic algorithm occupy the poles
of a continuum when it comes to fitness evaluation.
Holland’s Echo provides no external measure of fitness.
Each agent is provided with resources and the potential to

gather and exchange those resources with the
environment and other agents. Those agents that develop
effective internal models for dealing with their
environment will be successful in maintaining those
resources and therefore thrive and propagate their success
via their building blocks to their children. A traditional
GA has a specific, external fitness function that directly
measures the success of any GA solution. Those solutions
that perform “better” as measured by the fitness function
have a better chance of propagating their building blocks
to the next generation.

EAGP must occupy a midpoint between these two poles.
To be an effective problem-solving system we must
provide some measure of success in order to foster
strategies that better solve the problem. However, a
monolithic measure of success such as a GA fitness
function does not as easily foster the development of
interaction between agents, the hallmark of an Echo
system. EAGP therefore requires multiple fitness criteria
that can be independently measured. Furthermore, these
independent criteria can be combined to give higher levels
of fitness to agents that can solve more than one aspect.

Consider a simple example shown in Figure 1, based
roughly on the “ant” problem of Koza[Koza92]. A robot
must be trained to navigate the above environment. The
robot has three general goals:

• avoid hitting any walls

• avoid the light

• pick up any available food

The scoring of an agent’s performance in this
environment is based strictly on how well they solve each
goal with an equal weight given to each task. The scoring
of the problem-solver is based on how well it solves all of
the goals found in the fitness function based on the
performance of the agents it runs.

2.3 PROBLEM-SOLVERS AS GROUPS OF
INTERACTING AGENTS, A SUBSUMPTION
VIEWPOINT

Creating a multi-part fitness function does not in itself
create an environment that fosters interaction of multiple
agents to solve problems. We must also have multiple,
independent agents that have the possibility of interacting
with each other, where their fitness depends
fundamentally on these interactions. We accomplish this
by defining an EAGP problem-solver as a group of
agents, each of which can address any or all parts of the
fitness function. Those agents that can also work together,
i.e. interact, can solve more of the overall problem and the
overall problem-solver can accomplish more of the
aspects of the multi-valued fitness function.

Figure 1. A robot path: w= wall, l=light, #=food, .=dark.
In this case, all food is in the dark.

This approach is inspired by the subsumption architecture
of Brooks[Brooks91,Brooks97]. The standard
subsumption architecture defines multiple layers of
simple problem solving agents, often represented by
Finite State Machines (FSMs). The organization of these
simple problem-solvers (FSMs) is based on a kind of
priority hierarchy created for the subsumption architecture
by the programmer. Lower level behaviors are closer to
the hardware (actuators of robots for example) and can
over-ride higher behaviors since the lower behaviors
typically drive “survival” kinds of operations (predator
avoidance, cliff avoidance, etc.). Higher level functions
can come into play by driving the lower level behaviors
based on an implicit representation of higher goals (food
gathering, community activities). Thus multiple agents
can examine the present environment and each try to act
according to its own local model. The interaction of the
agents, based on the assigned priorities, determines the
overall behavior of the entity.

We incorporate, with some modifications, subsumption
principles into the EAGP approach. First, we define a
problem-solver as a group of interacting agents that, while
working together, can solve a problem that no agent itself
can fully solve. Second, we wish to limit the
computational complexity of any agent. This both
encourages the interactions mentioned above and makes
any part of the resulting solution more understandable.
Our philosophy is that the complexity of the solution
should arise from the interactions of the involved agents,
not the complexity of the agents themselves. Third, the
interaction of the agents is provided by their organization
in the problem-solver. Unlike subsumption however, we
have the freedom to evolve not only the agents, but also
their means of interaction. Thus the interaction need not
be fixed at the time of the design of the problem-solver,
but can evolve along with the agents in that problem-

solver. Fourth, we do not limit the ability of any agent to
evolve some measure of global state. Global state was
avoided in the original subsumption work because Brooks
wished to avoid model building. He wishes his systems to
be reactive to the conditions of the environment directly.
While his philosophy is understandable, a reaction to
building non “real-world” systems in the traditional AI
community, it does not obviate the usefulness of models
themselves.

3 STRUCTURE OF EAGP

3.1 STRUCTURE

The foundation of an EAGP problem-solver is a modified
genetic programming [Koza89, Koza92] One of Koza’s
extensions to basic GP is the Automatically Defined
Function (ADF)[Koza94]. An ADF is a kind of
subroutine to be used in many places within an overall
GP. Its structure is shown in Figure 2.

The typical ADF-GP has a single Result Producing
Branch (RPB) which constitutes a main program, and
some number of ADF’s. Execution begins in the RPB,
which can subsequently call any of the ADFs. Each ADF-
GP has the same number of ADFs, though what functions
they consist of and how they are used via the RPB and
other ADFs is individual. Crossover between ADF-GP
solutions occurs on a one-to-one basis between its
elements. Thus, RPB’s crossover with RPBs, ADF1s with
ADF1s etc.

We modify this structure to create an EAGP problem-
solver. Instead of ADFs, each part of the EAGP problem-
solver is an agent. These are individual programs that can
address one or more of the multiple goals in the fitness
function. They are not subroutines to be called by another
part of the EAGP solution. They stand only as individual
programs. All the agents in an EAGP problem-solver are
executed individually when the problem-solver is
evaluated. Each agent posts to the Arbitrator program the
action it thinks it would take if it were given control. This
posting includes a result of “do nothing” if the agent feels
it is not appropriate in the present circumstances. The
input data available to the agent is based on the functions
it has evolved. Thus it may have access to all the input
data, or some stored/abstracted data, or to no data at all
depending on its structure.

The Arbitrator, once it receives all the agent responses,
then decides which agent will gain control in the present
circumstances. Alternately, the Arbitrator may decide
based upon the present conditions which agent will gain
control and then allow it to operate without examining
other agents. The complexity of the Arbitrator is one of
the variables in generating an EAGP system. It can range
anywhere from a fixed priority schedule to a completely
evolved program. However it chooses, the Arbitrator
selects the agent action to perform, and performs it. Based
on the action taken, the EAGP problem-solver is
evaluated.

 wwwwwwwwwwwwwwww
 wlllllll#######w
 wlllllll......#w
 wlllllll#######w
 wlllllll#......w
 wlllllll#######w
 wlllllll......#w
 wlllllll#######w
 wlllllll#......w
 wlllllll#######w
 wlllllll......#w
 wlllllll#######w
 wlllllll#......w
 wlllllll#######w
 wlllllll......#w
 wwwwwwwwwwwwwwww

Figure 2. The upper tree represents a typical ADF-GP.
The lower tree indicates the modifications for an EAGP
problem-solver

There are a few other, important differences, between a
ADF-GP system and an EAGP system. An EAGP
problem-solver can have 1 or more agents, limited only
by the initial setup of the system. Thus in the population
of an EAGP system each problem-solver can have
different numbers of active agents, unlike an ADF-GP
where each GP solution has the same number of ADFs.
We also purposefully limit the computational capabilities
of each agent by severely limiting the agent’s tree. We
limit the depth and/or the number of nodes that the agent
can contain.

3.2 TAGS

The normal operators of GP crossover and mutation are
maintained in an EAGP system. However, because each
EAGP problem-solver can have different numbers of
agents, we cannot simply perform crossover between the
problem-solvers on a one-to-one basis as in ADF-GP.
Instead, we must identify “similar” agents in each
problem-solver and initiate crossover between those
agents. We do this by tagging each agent. Tagging occurs
by evaluating each individual agent and identifying which
aspect of the multi-part fitness function it best addresses.
Continuing with our robot path example, if an agent
scores well on wall avoidance, but not well on light-
avoidance or food gathering, then we tag that agent as a
“wall-avoider”. Those agents can then crossover with
other “wall-avoider” agents in other EAGP problem-
solvers. This is an important concept because one of the
fundamental mechanisms of an Echo-like system (or any
GA derived EC approach) is the passing of building
blocks between like entities in the population. Were the
agents in an EAGP problem-solver not tagged, then we
could not appropriately pass building blocks between
agents and therefore could not take advantage of the
principle so well proven in GAs.

3.3 OPERATORS

Besides crossover and mutation, we add new operators
that allows aggregation of agents in an EAGP problem-
solver. The extend operator adds a new agent of a
different tag to the present EAGP problem-solver by
copying that agent from a different problem-solver. It
works as follows. Under the normal rules of crossover,
two EAGP problem-solvers are selected. If one such
problem-solver has an “unfilled tag”, that is it does not
yet contain an agent that addresses one of the aspects of
the multi-valued fitness function, then that agent can copy
an agent of the unfilled tag from the other problem-solver,
if such an agent exists. The donating problem-solver is
not affected by the donation, but it too is given an
opportunity to extend itself if appropriate.

The swap operator plays a similar role. Two problem-
solvers are selected under the current rules of crossover. If
both problem-solvers have agents with the same tag, they
can swap those agents. Unlike the extend operation, both
problem-solvers are modified. As in crossover and
mutation, the frequency of occurrence of these operations
plays a role in the development of the problem-solving
capabilities of an EAGP system.

4 IMPLEMENTATION AND TESTS

This version of EAGP was implemented as a highly
modified version of the GP programming system,
lilgp[lilgp]. Lilgp is a public domain, C based
implementation of a GP that includes support for ADF, as
well as multiple populations, threading and others features
(see http://garage.cse.msu.edu/software/lilgp for more
details). Lilgp is very modular, has proven relatively easy
to modify, is well documented and has been used by a
number of other researchers to extend GP research
(constrained GP[lilgp-ct], strongly-typed GP[lilgp-st]).
Thus we have not yet implemented a full EAGP system
from scratch, something we hope to do in the near future.
As of now, the EAGP system is relatively difficult to
work with given the confounding of GP and EAGP in the
implementation.

Each problem-solver has a maximum number of agents it
can contain. For these experiments the number of aspects
in the multi-valued fitness function determined the
maximum. Each problem-solver begins with only one
agent, though in fact the problem-solvers are initialized
with the maximum number and those extra agents are
essentially ignored until the EAGP system recognizes it
(it is extended). The maximum tree depth for each agent
was kept relatively low, only 7, so as to limit the
computational abilities of each agent. The swap operator
was not used in the experiments described below.

We tested the EAGP system on three subsumption-like
problems involving robot navigation. The three problems
are shown in Figure 3. The problems present a range of
difficulty. The Dark trail requires only navigating to the
dark area to find food. The Sidewinder requires moving to
the dark area, but then must navigate a trail to find food.

RP B A D F1 A D F2

A rbitrator A gen t1 A gen t2

The modified Santa Fe trail is based on the Santa Fe trail
presented in the ant problem in Koza[Koza92]. We have
added more walls and some light sources to make the
problem more difficult and to have more aspects for the
fitness function (light and wall).

Figure 3. w=wall, l=light source, #=food. Darkness is
assumed unless a light source is directly indicated. Thus
the Dark trail and the Sidewinder trail all have their food
in darkness. All problem-solvers start in the top-left
corner.

The fitness measures were the ones mentioned before,
namely wall-avoidance, light-avoidance and food-
gathering. The fitness for wall-avoidance and light-
avoidance was a percentage based on the number of times
run and the number of time successfully run. Thus an
85% wall-avoidance means that 85% of the time, the
wall-avoiding agent when run avoided a wall. The food-
gathering evaluation was the percentage of food picked up
versus the food available. The overall score was presented
as a six-digit number. The first two digits are the wall-
avoidance percentage, the middle two is the light-
avoidance percentage and the last two are the food-

gathering percentage. All evaluations had a time limit on
the number of steps that could be taken (400).

5 RESULTS

We conducted experiments on all three trails listed in
Figure 3, and compared the results to running an
unmodified version of lilgp using ADFs. The conditions
were kept exactly the same for the corresponding
parameters (crossover %, tree depth max, etc.).

Our first experiments used a simple, fixed arbitrator. The
three fitness function aspects were ordered, that is the
problem-solver would choose an agent for execution
whose tag matched the highest priority fitness aspect
available. The order established was (in order): wall-
avoidance, light-avoidance and food-gathering. If the
agent returned the “do nothing” result, then the next agent
in the priority list was run.

The reasoning for this was straightforward. We wanted
the problem-solver to have a kind of “survival” mode so
that it always dealt with problems in importance order.
Thus it would be most important to not bang into walls
and damage yourself, while avoiding light sources was
also important so as to not exposure yourself to danger,
while food gathering was something one could do when
not threatened.

Table 2: The functions and terminals used for the
subsumption problem.

While well meaning, this proved to be a rather poor
choice of arbitration. The reasons are obvious. The
problem-solvers often evolved a wall-avoiding agent, and
since this was the priority agent it was always run first.
The hope was that this agent would “do nothing” when it
didn’t apply (there were no walls around), but in fact
there was no evolutionary pressure in this model to induce
this behavior. It was more “profitable” for the wall-
avoidance agent to simply “turn left” in a circle, meaning
that it never hit a wall (or rarely) and it always applied to

llllll wwwwwwww
ll #w
 # w .###..
 # w # #
 # w # #
 ####.##### .##.. .
lll w # . #
 w # # .
 w # # .
 w # # #
 llll w . # .
 w# . .
 #w . #
 # w # .
 l#l w # ...###.
 l.ll .#... #
 . .w .
 llll # . w .
 # # w .#...
 # # w #
 # # w .
 # # www .
 # . w...#.
 # . w#w
 ..##..#####. # w
 # # w
 # # w
 # .#######.. w
wwwwwwwwwww

Modified Santa Fe Trail

Functions:
• If_food_ahead(true result)(false result)
• If_wall_ahead(true result)(false result)
• If_light_ahead(true result)(false result)
• If_light(true result)(false result)

Terminals:
• Do_nothing
• Move_forward
• Turn_left
• Turn_right

any situation, so it always got a very high score. Thus no
other agents were ever run and no other behaviors ever
induced

5.1 DYNAMIC PRIORITY ARBITRATION

We modified the priority arbitration in the following way.
The fitness aspects were still prioritized as before, but
each was also given a “reservoir” or cache of reward.
Every action that an agent of a particular tag took would
remove some value from the reservoir. Every time that an
agent with a particular tag was in a situation where it
could have acted then some value added was to the
reservoir. The evaluation of this potential action was done
externally in the fitness functions using the same
functions that were available to the agent and determining
if there was a wall, light or food nearby. The latter
concept is the more difficult to understand. In the case of
the wall-avoiding function, if the wall-avoiding agent
acted, then value is removed from the reservoir. If that
same agent was near a wall, value was put back in the
reservoir.

The size of the reservoir would then modify the actions of
the priority list. The agents were queried in priority order,
but their chance of being run was based on the reservoir
size. If the reservoir was very low, then the probability of
running that agent was low, and vice versa. The result is a
modification of the priority order based on present
conditions. If the problem-solver is not hitting any walls
but the wall-avoider is running, then running the wall-
avoiding agent becomes less and less likely to be called in
the future, giving other agents better opportunities to run.
If hitting walls or approaching walls is a problem, then
the wall-avoiding agents become more necessary and its
action more likely in the future. Most importantly, each
agent is now given some evolutionary pressure to act only
when necessary, as doing so means it does not lose value
in the reservoir.

5.2 PROBLEM SET RESULTS

We ran both EAGP and ADF-GP on all three robot
navigation problems. All results represent the average
based on a series of ten runs. Both EAGP and ADF-GP
were able to solve the simple problems of the Sidewinder
trail and Dark trail so the more interesting comparison
comes form examining the results of the Santa Fe Trail.
The results for the three fitness functions are shown in
Table 3 below. These results are expressed as
percentages as described above.

Table 3: Fitness for each fitness function for the modified
Santa Fe Trail.

It is clear that the EAGP performs well on simple as well
as complex problems, though it is better used on more
complex problems (such as modified Santa Fe) where it
shows better performance. For instance, if you look at the
percentage of wall and light that both versions avoided,
they are fairly close but EAGP was able to score five
percent higher than the ADF-GP. However, where EAGP
truly does well is when gathering food. Here, the EAGP
more than doubles the score of the ADF-GP. In order to
avoid the wall and light the agent need only detect that it
will head into the wall or light on the next turn and turn
away from it. However, in order to gather food the agent
has to explore randomly looking for food, then when it
finds food concentrate on following the trail. EAGP has
the ability to switch between agents depending on which
situation it needed to address, which allows it to move
between behaviors, such as avoiding walls to following a
trail. This is probably one of most important features of
EAGP.

6 DISCUSSION

Figure 4: The Best EAGP Solution to the Modified Santa
Fe Trail

Our goal was to create an Echo-like problem-solving
system based on the interaction of multiple agents and a
more loosely defined sense of adaptive fitness via a
fitness function. EAGP accomplishes these goals and
appears to perform well on some standard problems of
robot navigation. It is interesting to note that despite the
fact that we severely limited the tree depth, the EAGP
solutions often contained only one or two agents, where
one agent could actually perform multiple functions. The
best EAGP approach can be seen in Figure 4. The “hits”
is a composite number for EAGP evaluation. In the
figure, the composite indicates the percentage of each

Light Food Wall

ADF-GP 77.28 6.96 92.56

EAGP 84.87 16.18 97.07

hits: 995099 number of agents:2
raw fitness: 400.0000

standardized fitness: 0.1667
adjusted fitness: 0.8571

ADF0: (type=light)
 (if-light-ahead left
 (if-wall-ahead (if-light nothing
 (if-light-ahead right left))
 (if-wall-ahead (if-light (if-wall-ahead right
 (if-food-ahead left move))nothing) move)))
ADF1: (type= wall)
 (if-light (if-wall-ahead (if-light left move) right)
 (if-food-ahead (if-light-ahead (if-light (if-wall-ahead rightright) move) move)
 (if-light-ahead left right)))
ADF2: (not used)
 (if-light-ahead (if-light left
 (if-food-ahead move
 (if-wall-ahead rightright)))
 (if-wall-ahead (if-wall-ahead leftleft) move))

goal accomplished; 99/100 for light, 50/100 for food, and
99/100 for the wall. We determine each number in the
composite value by evaluating each agent (subtree) on the
aspect of the multi-part fitness for which it was tagged.
Thus the first subtree is tagged as a “light” agent and is
evaluated on its light avoidance behavior. For this
solution , we list agent tags for readability sake. Note the
last agent exists but is not yet being used in evaluation.

In Figure 4, the solution contains only a wall-avoider and
a light-avoider, but those two agents were still capable of
addressing all three aspects of the fitness function since
the wall-avoider was quite capable of gathering food. We
need to investigate how stringently we can limit the
agents, pushing them to be less complex while not overly
restricting their abilities.

It is also worth noting that the behavior of the best ADF-
GP eventually got stuck in a loop. The virtual agent runs
back and forth across the board along a straight-line path.
Since it encounters no obstacles along this path it simply
repeats the behavior endlessly. The EAGP solution would
never remain in such a loop due to the fact that the
problem-solver’s agent reservoirs would be affected by
the looping and its overall behavior would eventually
change. Furthermore, the best EAGP solutions often had
fairly divergent agent behaviors that would prevent
another agent from picking up the same loop. Thus
EAGP has an innate ability to avoid looping behavior.

Creating subsumption like architectures to solve path
problems is not a simple task and has not yet really been
addressed by the Evolutionary Computation community.
Koza[Koza92] has claimed to create subsumption
architectures using a basic GP approach, but his claim is
based on the fact that the generated programs have if-
then-else statements which he equates with separate
agents interacting on solving a problem. This is not truly
the case. The if-then-else statements are not in fact
separate agents, but a single agent with conditions. The
clauses do not evolve independently nor do they get
evaluated independently. Finally, their fitness is not
directly based on interaction. We think EAGP is a more
faithful approach to subsumption problem-solving.

6.1 FUTURE WORK

The work described here is an outline of all the
possibilities we could address with EAGP. There are
many aspects we have not examined yet, and many more
we have not even considered. For example:

• We would like to test EAGP on more realistic and
difficult problems, to show what it can do. EAGP
appears to be most capable on complex, interactive
problems. Beyond reactive control problems, we
believe that design and planning problems would also
be appropriate and we plan to investigate these
problems more deeply in the future.

• Clearly more work needs to be done on models of
Arbitration. Presently we have not attempted to co-

evolve an Arbitrator along with the agents, an
important topic that needs to be addressed. We would
also like to investigate an arbitration directly between
the individual agents of the problem-solver that is not
centrally controlled. As mentioned, this is much more
Echo-like, though more expensive to run.

• The tagging system needs to be better implemented.
In the present system, the type of an agent is set at
initialization and maintained for the entire run. This
was a result of the expense of constantly evaluating
the appropriate tag for each agent. This could be
addressed with some caching of tags and the genetic
operations performed on the agent (subtree).
Updating types and maintaining multiple types for
more complex agents are but a few of the other issues
we need to address.

ACKNOWLEDGEMENTS

We like to thank John Holland and Rick Riolo for their
helpful discussion and comments on this work. We would
also like to acknowledge David Fogel’s book[Fogel98] on
the history of Evolutionary Computation. It has been
invaluable for this research. Finally, we would like to
thank our reviewers for their insightful comments.

REFERENCES
[Booth97] G. Booth (1997), “Gecko: A continuous 2-D world
for ecological modeling,” Artificial Life Journal, Vol. 3, No. 3,
pp. 147-163.

[Brooks91] R.A. Brooks (1991), “Intelligence Without
Representation,” Artificial Intelligence Journal, Vol. 47, pp.
139-159.

[Brooks97] R.A. Brooks (1997), “From Earwigs to Humans,”
Robotics and Autonomous Systems, Vol. 20, No. 2--4, pp. 291-
304.

[Fogel98], (ed.) D. Fogel (1998), Evolutionary Computation:the
Fossil Record, IEEE Press, New York,NY.

[Holland62] J.H. Holland (1962), “Outline for a logical theory
of adaptive systems,” Journal of the Association of Computing
Machinery, Vol. 9, pp. 297-314.

[Holland73] J.H. Holland (1973), “Genetic algorithms and the
optimal allocation of trials,” SIAM Journal of Computing, Vol.
2, pp. 88-105.

[Holland75] J.H. Holland (1975), Adaptation in Natural and
Artificial Systems, University of Michigan Press, Ann Arbor,
MI.

[Holland78], J.H. Holland and J.S. Reitman (1978), “Cognitive
Systems Based on Adaptive Algorithms,” Pattern-Directed
Inference Systems, D. A. Waterman and F. Hayes-Roth(eds.),
Academic Press, NY, pp. 313-329.

[Holland95], J.H. Holland (1995), Hidden Order:How
Adaptation Builds Complexity, Addison-Wesley, Reading, MA.

[Holland98] J.H. Holland (1998), Emergence:from Chaos to
Order, Addison-Wesley, Reading, MA.

[Koza89] J.R. Koza (1989), “Hierarchical genetic algorithms
operation on populations of computer programs,” Proceedings
of the 11th Joint Conference on Artificial Intelligence, N.S.
Sridharan (ed.), Morgan Kaufmann, San Mateo, CA, pp. 768-
774,

[Koza92] J.R. Koza (1992), Genetic Programming: On the
Programming of Computers by Means of Natural Selection,
MIT Press, Cambridge, MA.

[Koza94] J.R. Koza (1994), Genetic Programming II: Automatic
Discovery of Reusable Programs, MIT Press, Cambridge MA.

[lilgp] D. Zongker and W.F. Punch, “lilgp, a genetic
programming system in C,”
http://garage.cps.msu.edu/software/software
-index.html#lilgp

[lilgp-st] S. Luke, “Strongly-typed lilgp,”
http://www.cs.umd.edu/users/seanl/gp/patche
d-gp/

[lilgp-ct] C. Janikow, “Constrained lilgp,”
http://laplace.cs.umsl.edu/~janikow/cgp-
lilgp

[Lin94] S-C Lin, W.F. Punch and E.D. Goodman (1994),
“Coarse-grain Genetic Algorithms, Categorization and New
Approaches,” Sixth IEEE Parallel and Distributed Processing,
pg. 28-37.

[Punch98] W.F. Punch (1998), “How Effective are Multiple
Populations in Genetic Programming", Genetic Programming
1998: Proceedings of the Third Annual Conference, pp. 308-
313, July 22-25, 1998, University of Wisconsin, Madison,
Wisconsin.

[Schmitz96] O.J.Schmitz and G. Booth (1996) “Modeling food
web complexity: the consequence of individual-based spatially
explicit behavioral ecology on trophic interactions,”
Evolutionary Ecology, Vol. 11, pp. 379-398.

[swarm] C. Langton, “The Swarm Simulation
System,”
http://www.santafe.edu/projects/swarm

