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Abstract

By following the guidelines set in one
of our previous papers, in this paper we
face the problem of Kolmogorov complexity
estimate for binary strings by making use
of a Genetic Programming approach. This
consists in evolving a population of Lisp
programs looking for the \optimal" program
that generates a given string. By taking
into account several target binary strings
belonging to di�erent formal languages, we
show the e�ectiveness of our approach in
obtaining an approximation from the above
of the Kolmogorov complexity function.
Moreover, the adequate choice of \similar"
target strings allows our system to show
very interesting computational strategies.
Experimental results indicate that our tool
achieves promising compression rates for
binary strings belonging to formal languages.
Furthermore, even for more complicated
strings our method can work, provided that
some degree of loss is accepted. These results
constitute a �rst step in using Kolmogorov
complexity for string compression.

1 Introduction

The complexity of a computation is a measurement
of computational requirements needed to execute it.
One of the most important approaches to static
complexity (related to program structure and size) is
due to Kolmogorov. He [Kol65] and Chaitin [Cha66]
developed the notion of algorithmic complexity
independently of one another and of Solomono�'s
notion [Sol64] of algorithmic probability. In his paper
Kolmogorov described an algorithmic approach to
information theory and he de�ned the complexity of
a �nite object. Though Kolmogorov complexity (KC)
seems a heavily theoretical subject, it may indeed have
practical applications in information representation,

compression and transmission, both lossless and lossy.
As an example, it seems to �t well the MPEG4
environment. Unfortunately, despite of its promising
appeal, until now KC has not been used to achieve
practical results in this �eld. The main problem is the
impossibility in evaluating KC for a given string, since
this is not computable.

This paper deals with a Genetic Programming
approach to KC estimate for binary strings, by means
of an approximation from the above of the Kolmogorov
complexity function. We were the �rst to use this
approach ([Con97]). The present paper constitutes a
more formal and rigorous generalisation of the contents
of that paper. New strings are taken into account, and
new problems are presented. Moreover, compression
is explicitly faced. This paper is organized as follows:
Section 2 provides the reader with the historical
framework KC was originated in, and resumes its
basic features (for their more detailed description
the reader may see our above referenced paper or
[Gam99] or [Wal99]). Section 3 gives details about our
GP approach. In Section 4 our experiments and the
related results are reported. Finally, our conclusions
and foreseen improvements follow.

2 Kolmogorov Complexity

In 1965 Kolmogorov published a paper ([Kol65]) on
the algorithmic approach to information theory where
he de�ned the complexity of a �nite object and
also showed how to measure the amount of mutual
information of one (�nite) object about another.
Intuitively, it was clear to everyone that there are
`simple' objects and `complex' ones. The problem was
the diversity of the ways of describing objects: an
object can have a `simple' description (i.e. short) in
one language but not in another. The discovery made
independently by him and by Solomono� was that with
the help of the theory of algorithms it is possible to
restrict this arbitrariness and de�ne complexity as an
invariant concept.



Since then the study and applications of the
complexity of a body of information have followed
at least three di�erent streams, springing from three
independent views of the concept. The �rst stream
was that initiated by Kolmogorov with important
later developments by Martin-L�of [Lof66] and Chaitin
[Cha66]. The second stream (chronologically the �rst)
springs from the work of Solomono�, while the third
was introduced by Wallace and Boulton [Wal68],
with a similar but independent development by
Rissanen [Ris78]. The motivations behind their work
were completely di�erent: for example Solomono�, on
the one hand, was interested in inductive inference
and arti�cial intelligence, with reference to the
problem of sequential prediction and to unordered
data prediction. Kolmogorov, on the other hand, was
interested in the foundations of probability theory and,
also, of information theory.

We will make reference, in the following of this paper,
to the �rst stream, i.e. that by Kolmogorov. In it the
body of information is usually assumed to be a �nite
string of binary digits x. We will write l(x) for the
length of x. The theory of Kolmogorov complexity is
based on the introduction, by Alan Turing in 1936, of
the universal Turing machine (U). Turing found that
there exists one Turing machine which can simulate
any other Turing machine.

De�nition 1. TheKolmogorov complexity or algorith-
mic complexity of x, i.e. K(x), with respect to some
speci�ed universal Turing machine U may be de�ned
as the length l of the shortest binary string I (repre-
senting a program), which, when supplied to U , causes
U to output x and stop.

This program I is said to be canonical for x.

The universality of U ensures that for all strings x the
di�erence between the complexities of x with respect
to two di�erent U 's V and Z is bounded above by a
constant independent of x, namely the length of the
longer of the programs required to make V imitate Z
and to make Z imitate V . Thus K(x) is absolute in
the sense of being independent of the programming
language .

It is evident that there are strings which can be
described by programs much shorter than themselves,
but the majority of strings can hardly be compressed
at all. For every l there are 2l binary strings of
length l, but only 2l � 1 possible shorter descriptions.
Therefore, there is at least one binary string x of
length l such that K(x) � l. We call such strings
`incompressible'. For every constant c, a string x is
c{incompressible if K(x) � l(x) � c. Strings that
are incompressible (say, c{incompressible with small
c) are patternless, since a pattern could be used to
reduce the description length. Intuitively, we think
of such patternless sequences as being random, so
that `random sequence' is used synonymously with

`incompressible sequence'. For every constant c � 1
the majority of all strings of length l (with l > c) is
c{incompressible.

An important theorem states that K(x) is not partial
recursive, i.e. given a string x it is not possible to
algorithmically compute its canonical program. So the
problem of computing the K function is unsolvable.
Nevertheless, another theorem proves that there exists
a total recursive function �(t; x), monotonically non-
increasing in t, and such that

lim
t!1

�(t; x) = K(x) :

This function �(t; x) provides us with an approxima-

tion from above to the non{recursive function K.

An attempt at approximating the function K may
consist in evaluating the function �(t; x). To do so
one needs: a universal computer in order to run
the programs in turn; a program generator providing
syntactically correct programs for the chosen universal
computer; a supervising routine [Con97].

The universal computer chosen is the TOY Lisp
written by Chaitin [Cha94]. This implementation of
Lisp has been chosen because it works on very short
strings, allows an upper limitation on the number of
evaluation steps and, �nally, is extremely fast. The
primitive functions of this Lisp are listed in Table 1
[Cha94]. As can be seen, the functions, whose names
appear in the �rst column, are represented by single
literals. Their values are displayed in the last column.
It should be noted that the last two functions, unusual
in standard Lisp implementations, have been de�ned
by Chaitin and are particularly valuable for our kind
of application.

The program generator is based on a grammar
written for M{expressions, i.e. the programs for the
TOY Lisp. Besides generating syntactically correct
programs this module is endowed with some heuristics
in order to generate \sensible" programs. In this
grammar we have as terminals the atoms 0; 1; () and
j; k; s; t; v; w; y; z for the newly de�ned atoms. The
symbol set of the functions is composed by the symbols
of the primitive functions of the TOY Lisp and by the
following symbols a(g); b(h); c(i); d(lm); e(no); f(pqr)
for the newly de�ned functions, where the symbols in
the brackets represent the variables.

Since in [Con97] we ran into intractable space and time
diÆculties while performing an initial almost brute{
force attempt, and since the fundamental problem was
one of searching the program space we, very naturally,
turned to evolutionary methods. Precisely, instead of
approximating the function K(x) for a generic x, we
launched a search for pairs of strings x and their
generating programs u, while minimizing the length of
the latter. This might be a �rst step toward ful�lling
the compression goal alluded to in Section 2 of [Nor96].



Table 1. The TOY Lisp atoms and primitive functions. (From [Cha94].)

Atom Symbol

Empty ()
False 0
True 1

Function Symbol No. of args Value

Quote ' 1 '(xyz)! (xyz)
Atom : 1 :x! 1 :'(x) ! 0
Equal = 2 =xx! 1 =xy ! 0
Car + 1 +'(xyz)! x +x! x
Cdr � 1 �'(xyz)! (yz) �x! x
Cons � 2 �x'(yz)! (xyz) �xy ! x

If{then{else = 3 =1xy ! x =0xy ! y
Eval ! 1 !x! evaluate x

Append ^ 2 '̂(xy)'(zk)! (xyzk)
De�ne & 2 &xy ! x is y &(yx)z ! y is &(x)z
Try ? 3 ?yxz ! evaluate x times y with bits z
Let : 3 :xy z ! ('&(x)z y) :(yx)z k ! ('&(y)k'&(x)z)

3 The GP Approach

GP [Cra85, Koz92, Koz94] is well suited for our
application since our aim is to search for pairs (u; x)
such that a program u in TOY Lisp generates a binary
string x. The number of programs u able to produce a
given string x is { even obviously limiting oneselves to
programs of length not much larger than the length of
the string { enormous and the program landscape has
a very large number of suboptima. So, our approach
consists in �xing a given target string x and in using
a GP algorithm in order to search the program space
looking for optimal generating programs.

Following [Koz92], the genotypes are TOY Lisp
programs encoded as tree structures with no �xed
bound on the size. The nodes of the trees are either
atoms or functions of our grammar. The phenotypes
are the strings x, obtained by the evaluation of the
genotypes u in the TOY Lisp environment.

The �tness function takes into account several needs:
�rstly, the length of the string x evaluated by the
program u (the closer to the target length the better
the �tness), then a \Hamming{like" distance from
the target (the lower the distance the better the
�tness), and the genotype (i.e. the program) length
(the lower its length the better the �tness). The
search for the shortest program is thus fully reduced
to a minimization problem, through the introduction
of a �tness function. Furthermore, we have tried to
favor programs which use new (i.e. \user"{de�ned)
functions, because only by using these functions is
it possible to achieve during the evolution shorter
and shorter programs which take advantage of the
pattern underlying the target string. This has been
e�ected through the use of a �tness function which
penalizes the programs that do not use new functions.

A further penalty is used to take care of programs
which do not stop within the limit on the number
of evaluation steps allowed by the TOY Lisp. These
penalties are obtained by assigning a high �tness value
to the relative phenotype. Hence, except for the above
penalties, we have written our �tness function as the
sum of terms each expressing one of the above needs,
and we have tried to balance all of these di�erent
and sometimes contrasting needs by means of weight
coeÆcients. Then, we have:

F(u) = a

kX
i=1

d(xi; �i) + bjl(x)� l(�)j+ c(l(u)� l(x))

where a, b and c are constants, u is the program that

computes in TOY Lisp x = x1 : : : xn, � = �1 : : : �m is
the target string, k = min(l(x); l(�)), and

d(xi; �i) =

(
0 if xi = �i
1 if xi 6= �i; xi 2 f0; 1g
2 if xi 6= �i; xi =2 f0; 1g

represents a \Hamming{like" distance for the strings

on the alphabet of the terminal symbols.

The program generator provides the starting randomly
generated population by using a grammar that
ensures the syntactic correctness of the programs.
The new elements in the population are generated
combining pairs of programs by means of a tree{
crossover operator that ensures the new programs to
be syntactically correct. We have assumed that this
operator can take place in function nodes only. A
node is randomly selected in each tree representing
the parents, then crossover swaps the nodes and their
relative subtrees from one parent to the other.

Mutation can be applied to any point in the string, so
it can operate on either a function node or an atom
node. The following kinds of mutation are allowed:



{ point mutation: a node in the tree is randomly
selected; if it is a function, either primitive
or de�ned, it is replaced by a new function.
Depending on both the functions, in some cases,
the mutation determines also the replacement of
the relative subtree with a new one randomly
generated. If the chosen node is an atom it is
simply replaced by a new atom;

{ insertion: a new random node is inserted in a
random point, along with the relative subtree if
it is necessary;

{ deletion: a node in the tree is selected and deleted
in a way that ensures the syntactic correctness.

To grant the e�ectiveness of the mutation when
applied to functions, we have decided to give to
each function the maximum number of arguments
occurring in the primitive functions constituting the
TOY Lisp, i.e. three, in order to avoid syntactic
problems when the tree{crossover and the mutation
operators try to replace a function with another one
having a di�erent number of arguments. Any function
will actually use the number of arguments it needs.
This choice is the same made byW. Banzhaf in [Ban93]
for the Pedestrian Genetic Programming. Finally, the
classical proportional and the truncation selection
mechanisms have been considered; the latter has been
chosen because it accelerates the convergence time to
a suboptimum. To this end, moreover, we have also
used a 1{elitism strategy with both mechanisms.

4 Experimental Findings

4.1 Languages Considered

The application of Kolmogorov Complexity to formal
languages is not new. In the present paper, di�erently
from other approaches in literature [Li93], target
strings are represented by instances of formal
languages. This choice allows us to avoid taking
pseudo{random sequences into account and is due to
to our wish to show the goodness of the tool at �nding
generating programs, when these are a priori known.

The classes of languages considered for our experi-
ments are summarized in Table 2. It is organized fol-
lowing the hierarchy introduced by Noam Chomsky,
who de�ned these classes as models of natural lan-
guages, and comprises four types of languages and
their associated grammars. It should be noted that
it is possible to prove that, except for the matter of
the empty string, these languages form a strict hier-
archy, i.e. the type{i language properly includes the
type{(i+ 1) language for i = 0; 1; 2.

4.2 The GP Implementation

As concerns the GP parameters, we have made
several trials with di�erent values for the population
size, the truncation rate, the crossover probability,
the mutation probability, so as to determine a
good parameter set for the problem at hand. As a
consequence of these preliminary runs the following
parameters have been employed: population size equal
to 300 individuals, truncation rate in the range 15 �
40%, crossover probability in the range 0:5 � 0:8 and
mutation performed systematically on one random
point in the program string. As regards the weight
coeÆcients of the �tness function, we have chosen a =
20:0, b = 30:0 and c = 2:0. Finally, the termination
criterion for the GP algorithm is only related to the
maximum number of generations allowed.

As regards the experimentation, several tests (in the
range 20� 30) for each problem have been performed
and the best results of these executions are discussed
in the following. It must be remarked here that the tool
has proved to be robust: in fact, the di�erent trials for
a same target string have yielded generating programs
which are very similar. They di�er mainly for the
presence of introns, so that some easy post{execution
manipulations allow to obtain the same program in
almost all runs. Moreover, the number of generations
needed to achieve such results is not greater than 100.

4.3 Results

Based on the above, the system has been initially
tested against strings that are instances of the regular
languages , as Lr1 and Lr2 in Table 2. Such strings are
characterized by a nucleus which is repeated a given
number of times to create the target string.

The target strings considered have been those with
j = 19, j = 30, j = 47, j = 64 and j = 77. We have
obtained the following pairs for these instances of Lr1

and Lr2 :

u =: (ag)̂ gg�1a�1aaa'(1) x = 119

u =: (ag)̂ gga�aaa'(11) x = 130

u =: (ag)̂ gg�aaaa'(111) x = 147

u =: (ag)̂ ggaaaaaa'(1) x = 164

u =: (ag)̂ gg�1aa�1a�1aaa'(1) x = 177

u =: (ag)̂ gĝ â aaa'(10)'(10)'(10) x = (10)19

u =: (ag)̂ gga��aaaa'(10) x = (10)30

u =: (ag)̂ gg��aaaa��aa'(10) x = (10)47

u =: (ag)̂ ggaaaaaa'(10) x = (10)64

u =: (ag)̂ gg��̂ aaaaaa'(10)a��aaa'(10) x = (10)77

In all the cases the GP algorithm has de�ned, using

Let , a new function that concatenates two lists of
atoms and uses such a function several times for the
construction of the string. Moreover, depending on the



Table 2. The Chomsky hierarchy and the languages employed.

Grammars Languages Examples

Type{0 Recursively enumerable Any computable function

Type{1 Context{sensitive Lcs1 = f1j0j1j j j 2 IN; j � 1g

Lcs2 = f12
j

j j 2 IN; j � 1g

Lcs3 = f12
j
+1

j j 2 IN; j � 1g

Lcs4 = f12
j
�1

j j 2 IN; j � 1g

Lcs5 = f12
j

02
j

j j 2 IN; j � 1g

Lcs6 = f12
j
+102

j
+1

j j 2 IN; j � 1g

Lcs7 = f12
j
�102

j
�1

j j 2 IN; j � 1g

Lcs8 = f12
j

012
j

j j 2 IN; j � 1g
Lcs9 = f1j j j is a primeg

Type{2 Context{free Lcf
1
= f1j0j j j 2 IN; j � 1g

Lcf
2
= f1j01j j j 2 IN; j � 1g

Type{3 Regular Lr1 = f1j j j 2 IN; j � 1g
Lr2 = f(10)j j j 2 IN; j � 1g

length of the target string, the algorithm employs the
function Cons for the insertion of an atom or performs
a Cdr for the complete generation of the target string.

Afterwards, the program has been successfully tested
against more complex strings as those that are
instances of the context{free languages Lcf

1
and Lcf

2
.

Setting j equal to 19, 30, 47, 64 and 77 we have
obtained the following pairs for Lcf

1
and Lcf

2
:

u =: (ag)̂ gĝ �1a�1aaa'(1)�0a�0aaa'(0) x = 119019

u =: (ag)̂ gĝ a�aaa'(11)a�aaa'(00) x = 130030

u =: (ag)̂ gĝ �aaaa'(111)�aaaa'(000) x = 147047

u =: (ag)̂ gĝ aaaaaa'(1)aaaaaa'(0) x = 164064

u =: (ag)̂ gĝ �1aa�1a�1aaa'(1)
�0aa�0a�0aaa'(0) x = 177077

u =: (ag)̂ gg�a�0�1a�1aaa'(1) x = 1190119

u =: (ag)̂ gg�a�0a�aaa'(11) x = 1300130

u =: (ag)̂ gg�a�0�aaaa'(111) x = 1470147

u =: (ag)̂ gg�a�0aaaaaa'(1) x = 1640164

u =: (ag)̂ gg�a�0�1aa�1a�1aaa'(1) x = 1770177

It can be pointed out that in the second case the

GP algorithm has de�ned, using Let , a new function
that concatenates two lists and uses such a function
several times, along with the Cons and Cdr functions
for the construction of the string 01j . Successively, the

algorithm employs the function Cons for the insertion
of the atom 0 and �nally performs a Cdr for the
complete generation of the target string.

Following the Chomsky hierarchy, we have tested the
system on target strings belonging to context{sensitive
languages , i.e. strings are instances of the languages
Lcsi 8i 2 f1; : : : ; 9g.

Setting j equal to 19, 30, 47, 64 and 77 for Lcs1 , the
system has obtained the following pairs:

u =: (ag)̂ gĝ �̂1a�1aaa'(1)�0a�0aaa'(0)�1a�1aaa'(1)
x = 119019119

u =: (ag)̂ gĝ â�aaa'(11)a�aaa'(00)a�aaa'(11)
x = 130030130

u =: (ag)̂ gĝ �̂aaaa'(111)�aaaa'(000)�aaaa'(111)
x = 147047147

u =: (ag)̂ gĝ âaaaaa'(1)aaaaaa'(0)aaaaaa'(1)
x = 164064164

u =: (ag)̂ gĝ �̂1aa�1a�1aaa'(1)�0aa�0a�0aaa'(0)
�1aa�1a�1aaa'(1)
x = 177077177

It should be noted that in this case the GP algorithm

performs an action similar to that e�ected for the
construction of the strings belonging to the context{

free languages considered.

Setting j equal to 3; 4; 5; 6 and 7, we have obtained the
following pairs for Lcs2 , Lcs3 and Lcs4 respectively:



u =: (ag)̂ ggaaa'(1) x = 18

u =: (ag)̂ ggaaaa'(1) x = 116

u =: (ag)̂ ggaaaaa'(1) x = 132

u =: (ag)̂ ggaaaaaa'(1) x = 164

u =: (ag)̂ ggaaaaaaa'(1) x = 1128

u =: (ag)̂ gg�1aaa'(1) x = 19

u =: (ag)̂ gg�1aaaa'(1) x = 117

u =: (ag)̂ gg�1aaaaa'(1) x = 133

u =: (ag)̂ gg�1aaaaaa'(1) x = 165

u =: (ag)̂ gg�1aaaaaaa'(1) x = 1129

u =: (ag)̂ gg�aaa'(1) x = 17

u =: (ag)̂ gg�aaaa'(1) x = 115

u =: (ag)̂ gg�aaaaa'(1) x = 131

u =: (ag)̂ gg�aaaaaa'(1) x = 163

u =: (ag)̂ gg�aaaaaaa'(1) x = 1127

For the last three languages considered, it is possible

to note the emergence of a well de�ned structure. In
fact, the programs that generate strings belonging to
such languages assume the following form:

u =: (ag)̂ ggaj '(1) x = 12
j

u =: (ag)̂ gg�1aj '(1) x = 12
j
+1

u =: (ag)̂ gg�aj '(1) x = 12
j
�1

for any j 2 IN and j � 1. With the same values for j,

we have obtained the following results for Lcs5 , Lcs6 ,
Lcs7 and Lcs8 :

u =: (ag)̂ gĝ aaa'(1)aaa'(0) x = 1808

u =: (ag)̂ gĝ aaaa'(1)aaaa'(0) x = 116016

u =: (ag)̂ gĝ aaaaa'(1)aaaaa'(0) x = 132032

u =: (ag)̂ gĝ aaaaaa'(1)aaaaaa'(0) x = 164064

u =: (ag)̂ gĝ aaaaaaa'(1)aaaaaaa'(0) x = 11280128

u =: (ag)̂ gĝ �1aaa'(1)�0aaa'(0) x = 1909

u =: (ag)̂ gĝ �1aaaa'(1)�0aaaa'(0) x = 117017

u =: (ag)̂ gĝ �1aaaaa'(1)�0aaaaa'(0) x = 133033

u =: (ag)̂ gĝ �1aaaaaa'(1)�0aaaaaa'(0) x = 165065

u =: (ag)̂ gĝ �1aaaaaaa'(1)�0aaaaaaa'(0) x = 11290129

u =: (ag)̂ gĝ �aaa'(1)�aaa'(0) x = 1707

u =: (ag)̂ gĝ �aaaa'(1)�aaaa'(0) x = 115015

u =: (ag)̂ gĝ �aaaaa'(1)�aaaaa'(0) x = 131031

u =: (ag)̂ gĝ �aaaaaa'(1)�aaaaaa'(0) x = 163063

u =: (ag)̂ gĝ �aaaaaaa'(1)�aaaaaaa'(0) x = 11270127

u =: (ag)̂ gg�a�0aaa'(1) x = 18018

u =: (ag)̂ gg�a�0aaaa'(1) x = 1160116

u =: (ag)̂ gg�a�0aaaaa'(1) x = 1320132

u =: (ag)̂ gg�a�0aaaaaa'(1) x = 1640164

u =: (ag)̂ gg�a�0aaaaaaa'(1) x = 112801128

Also for the last four languages considered, the

emergence of a well de�ned structure can be noted.
In fact, the programs that generate strings belonging
to such languages assume the following form:

u =: (ag)̂ gĝ aj '(1)aj '(0) x = 12
j

02
j

u =: (ag)̂ gĝ �1aj '(1)�0aj '(0) x = 12
j
+102

j
+1

u =: (ag)̂ gĝ �aj '(1)�aj '(0) x = 12
j
�102

j
�1

u =: (ag)̂ gg�a�0aj '(1) x = 12
j

012
j

for any j 2 IN and j � 1. As regards Lcs9 , setting j

equal to 7, 11, 13, and 19, we obtained the following
pairs:

u =: (ag)̂ gg�aaa'(1) x = 17

u =: (ag)̂ gg�aa'(111) x = 111

u =: (ag)̂ gg�1aa'(111) x = 113

u =: (ag)̂ gg�1a�1aa'(11) x = 119

Finally, the system has been tested on target strings

as the following:

� : 12021404 : : : 12
j

02
j

with j 2 IN

By setting j = 2 and j = 3, we have obtained the
following pairs:

u =: (ag)̂ gĝ ^̂a'(1)a'(0)aa'(1)aa'(0)
x = 110011110000
u =: (ag)̂ gĝ ^̂^̂a'(1)a'(0)aa'(1)aa'(0)aaa'(1)aaa'(0)
x = 1100111100001111111100000000

Similar pairs (too lengthy to be reproduced here) have

been obtained for j = 4 and j = 5. This results in a
general structure as:

u =: (ag)̂ gĝ ((2�j)�1)a'(1)a'(0)a2'(1)a2'(0) : : : aj '(1)aj '(0)

x = 12021404 : : : 12
j

02
j

4.4 Compression Considerations

For all the previous strings the program has turned
out to be able to write short M{expressions which
obtain the target string by concatenating several times
the repeating nucleus, thus demonstrating the string
simplicity. The compression ratio r = l(x)=l(u) can be
simply evaluated by counting the number of symbols
in the program u and in the relative output string x.

It can be simply noted that for Lcs2 , Lcs3 and Lcs4 ,
while we increase j by 1, (thus about doubling the
string length) the length of the generating programs
simply increases by 1. Similarly, for Lcs5 , Lcs6 and
Lcs7 , while we increase j by 1 (thus about doubling
l(x)) l(u) increases by two. For Lcs8 , while l(x) almost
doubles, u(x) increases by 1.

This seems a very intriguing feature. It appears
that the Genetic Programming has discovered the



j 3 4 5 6 7 8 9

l(x) 18 34 66 130 258 514 1026
l(u) 27 29 31 33 35 37 39

r 0.666 1.172 2.129 3.939 7.371 13.891 26.307

Table 3. Values of r as a function of j for Lcs6
.

logarithm. To investigate more explicitly this fact, we
have taken into account two strings belonging to the
above languages, namely Lcs6 and �. For the former
language we have performed further experiments as a
function of j by taking into account for j values of 8
and 9. For it we have obtained the values of r as a
function of j reported in Table 3.

This shows that, since the system has \discovered" the
regularity underlying the structure of the strings, the
compression ratio increases as j does. In fact, when
passing from a value of j to the next, l(u) increases
by two symbols, while l(x) almost doubles. The same
results are reported in Fig. 1(a) which shows a linear
dependence of r on l(x), and a logarithmic one on j.

For the string � we have performed more runs setting
for j values from 6 to 8.

We have obtained the values of r as a function of j
reported in Table 4:

Fig. 1(b) reports the dependence on j and on l(x) for
this string as well. In this case we obtain a quasi{linear
curve as a function of l(x), and a logarithmic one as a
function of j.

These results are of extremely high interest from the
point of view of string compression in information
transmission. In fact, this means that the generating
program for a short sequence and that for a very
long one are of comparable length, provided that the
two strings have a similar structure, which should
be the case when they belong to the same language.
Therefore, compression becomes more e�ective when
the string becomes longer.

Unfortunately most strings are not Kolmogorov{
compressible, so all of the above holds true for few
strings only. However, if we accept some degree of
loss in information [Sow97], we can hope that, given a
string xu not belonging to a simply structured formal

j 2 3 4 5 6 7 8

l(x) 12 28 60 124 252 508 1020
l(u) 33 49 67 87 109 133 159

r 0.363 0.571 0.895 1.425 2.311 3.819 6.415

Table 4. Values of r as a function of j for �.

language, yet close to one of them (say Lw), our tool
gives as the generating program for xu that for Lw; in
fact this can produce a string close to xu.

To ascertain the capability of our system in this
situation, we have performed a set of experiments
by taking into account the string Lcf1 with j = 77.
We have randomly swapped one bit, then two bits,
then three bits, and so on. Of course, the higher the
number of mutated bits, the more diÆcult is it that
the generating program for Lcf1 can be useful for the
modi�ed string as well. Nonetheless the system has
been able to obtain the same program. Namely, the
original program has always been found for strings
with up to nine modi�ed bits, while other programs
appear when ten or more bits are changed. Since,
as shown above, the canonical program has a length
l(u) � 40 we have obtained in all of these successful
cases a compression ratio r = 144=40 = 3:6, with an
error ranging from 1=144 = 0:69% to 9=144 = 6:25%.

5 Conclusion

For all of the considered Chomsky classes of languages
our GP{based system has proved capable of �nding
the LISP programs generating given instances of those
languages. More interestingly, the generating programs
for strings showing similar structures are similar as
well, and often di�er only by the number of times a
function is applied.

Experiments have provided us with interesting
compression rates for the classes of strings taken into
account. Furthermore, for many such languages the
compression ratio increases linearly or about linearly
as the string length does, and depends logarithmically
on j. This is of high interest when the strings become
longer.

Moreover, we have shown that the same structure
of generating program works both for the strings
belonging to a given language and for strings showing a
suÆciently high degree of similarity to the former ones.
Thus, if we accept some degree of loss of information
in compression, our method can be of high interest.

Since we have only performed a single characterization
of the pairs (u; x) (i.e. we search only for the shortest
program u generating x), our prospects of future work
will concern the use of a GP approach to try to e�ect
a characterization of whole classes of strings so as to
make contacts with the formal languages theory. To
this end, a GP methodology, able to generate a whole
population of pairs (u; x) such that the target strings
x fall into a given formal language, should be realized.

We are interested in making use of our approach to
further investigate the idea of lossy approximations to
given strings as well. Namely, we wish to determine
the minimum similarity degree between a new string
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and one for which the generating program is already
known, so as to obtain a successful lossy compression
for the former one.

Finally, we wish to implement a parallel version of
our system on an MIMD machine in order to further
improve the quality of the solutions.
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