
Genetic Programming with Statically Scoped Local Variables

Evan Kirshenbaum

Hewlett-Packard Laboratories
1501 Page Mill Road
Palo Alto, CA 94304

kirshenbaum@hpl.hp.com

Abstract

This paper presents an extension to genetic
programming to allow the evolution of programs
containing local variables with static scope
which obey the invariant that all variables are
bound at time of use. An algorithm is presented
for generating trees which obey this invariant,
and an extension to the crossover operator is
presented which preserves it. New genetic
operators are described which abstract sub-
expressions to variables and delete variables.
Finally, extensions of this work to iteration and
functional constructs are discussed.

1 BACKGROUND

The promise of genetic programming (Koza 1990,
Banzhaf, et al. 1998) is the automatic discovery of
computer programs that solve arbitrary problems. In
practice, however, the ingredients of such programs are
typically severely restricted. In the original formulation
(Koza 1990, 1992) they were limited expressions formed
by applying operators drawn from a fixed set to
expressions, with each operator being required to be able
to take as an argument the value returned by any available
operator.

Later extensions brought to the field more of the tools that
human programmers rely on. These include strong typing
(Montana 1995), user-defined functions (Koza 1994,
1994b), data structures (Langdon 1996), and restricted
forms of loops and iterations (Koza, et al. 1999). One
very important tool used by human programmers is the
notion of the “variable” both as means of naming
semantically important values which may be used
multiple times and also as a location for recording
intermediate results.

The first of these uses does not appear to have received
much attention within the genetic programming
community (with the exception of zero-argument
automatically defined functions.) The second has been
addressed largely by the provision of global variables or
data structures. In early work (Koza 1992), global
scratchpad registers could be written with dedicated

storage operators (SET-X val). This was later extended
to allow selection from an arbitrary set of registers,
indexed memory (Teller 1994), and finally a generalized
“automatically defined store” (Koza, et al. 1999).1

These approaches suffer from three drawbacks. First, with
the exception of automatically defined stores, the number
of such storage locations is typically fixed as a parameter
of the run. Second, the program must evolve to ensure
that the storage is written to before it is read, and behavior
must be defined for situations in which this is not the
case. Third, since the only way to store a value is to
compute it and write it to the storage location, it is
possible for one part of a calculation to destroy a stored
value needed by another part. While such cross-talk is at
times beneficial (and may be seen as an advantage of
evolved programs over designed programs), it can also
get in the way.

The canonical solution to this problem in programming
languages is the local variable. This is a variable whose
visibility is bounded to a given scope (e.g., block or
expression), and which typically receives its (initial) value
at the same time as it becomes available. Local variables
are typically introduced by a construct such as Lisp’s
LET:

(LET ((R0 (+ X (* Y Y))))
 (* 4 (* R0 R0)))

which computes the function 2 24()x y+ . Using LET, the
variables defined in the bindings are accessible only to the
body form, and their definitions may be based on any
(and only) variables visible to the LET expression itself.

A more radical approach is the dataflow-like Cartesian
Genetic Programming described in (Miller 1999).
Representing the program as a directed acyclic feed-
forward graph (encoded by a linear genome), this
formalism has many of the advantages of the statically
scoped local variables described here (at arguably
considerably less cost), but the choice of representation
would appear to preclude taking advantage of types or
performing other than constant-time computation.

Another approach that introduces lexically scoped
variables are the Automatically Defined Functions of

1 A different sort of “memory” is presented in (Brave 1996), in which a
“mental model” in the form of a graph is built up during one phase of
execution and used during a second phase.

(Koza 1992, 1994). In these, the function parameters may
only be used within the scope of the function itself. The
invariant described in section 2 is maintained under this
approach by restricting subtrees selected for crossover to
coming from “the same” function or at least functions
with identical signatures and therefore identically named
and typed parameters.

In this paper, we present a mechanism for evolving
programs containing locally scoped, LET-bound
variables. We discuss the generation of the initial
population, evaluation of trees containing local variables,
modifications to standard genetic operators to handle
local variable bindings, and new genetic operators that
introduce and delete such bindings.

Other operators may also introduce local variables. These
include iteration operators, which introduce variables for
indices and elements, and function-defining operators
such as LAMBDA, which introduce variables for para-
meters. Iteration operators will be discussed in section 9.1
and function-defining operators will be touched on in
section 9.2.

The paper is organized as follows. In section 2, we
introduce an invariant that needs to be maintained. In
sections 3 through 8, we describe algorithms which
generate trees which meet this invariant (section 3),
evaluate expressions containing local variables
(section 4), and preserve the invariant during crossover
(section 5) and mutation (section 6), as well as during the
application of variable-specific genetic operators
(section 7), finishing up with a summary of run
parameters introduced (section 8). In section 9 we discuss
the use of local variables in iteration and function
abstraction, and we finish up with a discussion of our
findings (section 10) and conclusions (section 11).

2 PROBLEM

The main problem faced when adding local variables to
genetic programming is that they introduce the following
invariant that must be maintained:

INVARIANT: any use of a local variable must be
properly contained within a form that binds it.

The example from the prior section satisfies the invariant,
but the following do not:2

(+ RO 3)

(LET ((R0 (* R0 7)))
 (+ R0 X))

(LET ((R0 5)
 (R1 (* R0 0)))
 (+ R0 R1))

In all of these, the bold-faced R0 is not properly contained
within a form that binds it. Note in particular that the

2 In this paper, R0, I0, … represent local variables, while X, Y, …
represent global quantities such as program parameters.

variables introduced by the LET operator are only
considered to be bound within the final, result-producing
subexpression.

The existence of the invariant has two implications for an
implementation. First, all initially-generated trees must
meet it, and second, it must be preserved by the
application of genetic operators. Each of these will be
covered in the following sections.

3 GENERATING CORRECTLY
SCOPED TREES

When generating trees in strongly-typed genetic
programming, one is given a target type T and a set of
available operators O. The traditional algorithm is
roughly3

1. Select from O an operator Op whose return type
is a subtype of T.

2. For each argument of the operator, generate a
tree of the appropriate type over the same set of
operators O.

3. Construct a tree from the selected operator and
generated argument trees.

To handle local variables, it helps to generalize the input
from a set of operators to a set of operator schemata,
where each schema can be thought of as a template
capable of returning concrete operators when presented
with a given context, which consists of a desired return
type and a set of available schemata. So, for example, the
LET schema represents any LET operator and can, for
instance generate “the LET operator binding I25 and
returning a Boolean”. Similarly, a single IF schema can
suffice to generate IF operators typed to return any
particular type, and the so-called “ephemeral constants”
can also be considered as schemata which simply choose
a different constant each time they are invoked. All
concrete operators, including terminals and local
variables, are trivially operator schemata, which return
themselves.

For the new algorithm, we assume the following
functions:

For a set S of operator schemata, bound(S) is the
subset of S consisting of local variables.

For an operator Op, bindings(Op, i) is the set of
local variables introduced by Op that are considered
bound in the ith argument form.

bound represents the set of local variables available to us
at a given point, which, if the invariant is being
maintained will be those which are statically bound at this
point in the tree. When generating the topmost tree, there

3 Ignoring complications such as target depth or bushiness.

should be no local variables in the set of available
schemata, so bound will be empty.4

The algorithm for generating a tree over a set S of
operator schemata returning a type T then becomes

1a. Select from S an operator schema capable of
returning an operator whose return type is a
subtype of T.

1b. Use the schema to obtain an operator Op given S
and T.

2. For each argument i of Op, generate a tree of the
appropriate type, given (,)S bindings Op i∪ .

3. Construct a tree from the selected operator and
generated argument trees.

If the local variables are the only schemata that can return
local variables when invoked, it is clearly true that the
only way a local variable v can be introduced as the
operator of a node in the tree is if the node is a descendent
of the jth child of a node with operator O, where

(,)v bindings O j∈ .

For the specific case of the LET-constructing schema,
every time it is invoked with a context of S and T, it

1. Determines a number n of bindings to introduce,

2. Creates an n-element set of types for which trees
can be constructed over S,

3. For each type, obtains a local variable over that
type, and

4. Constructs an 1n + -argument LET operator, for
which bindings(i) is the set of introduced
variables for i n= and is empty for all other i.
The operator’s first n arguments are of the sel-
ected types, and its last argument is of type T.

The careful reader will have noticed that three of the four
steps in the above algorithm contain rather vague phrases.
This is because it is not yet apparent to us what the
“correct” approach is. We now briefly discuss possible
approaches to each.

3.1 CHOOSING THE NUMBER OF VARIABLES
TO INTRODUCE

The first decision to make is the number of variables that
the LET form will bind. The most straightforward answer
is to say that each LET binds a single variable. Since the
framework on which this was implemented generates
depth-bounded trees, it was thought that doing so would
prove too limiting in, on the one hand, the number of
variables that could be introduced over a given scope and,
on the other hand, the size of the resulting scope.

Another option would be to choose uniformly between
one and some maximum specified as a run parameter.
Rather than use a hard maximum, we instead decided to

4 Alternatively, the program inputs can be treated as implicitly bound
local variables.

use an exponential fall-off, repeatedly adding variables to
the set with a run-parameter-specified probability.

In early runs it became apparent that this approach
resulted in most of the variables introduced being very
near the leaves of the tree—since in any bushy tree most
nodes are near the leaves—resulting in very narrow
scope. In an attempt to push the variable bindings further
up the tree, we introduced a discount factor of 1/ 2depth on
the probability, where the root of the tree is at 0depth = .
To make it more likely that local variables would be
created even when the set of available operators was
large, the LET schema itself is chosen with this
probability. (In retrospect, this may have been an
unnecessary and perhaps even detrimental “optimization”,
as the discount factor quickly makes it less likely to
introduce local variables as one goes down the tree.)

3.2 CHOOSING THE VARIABLE TYPES

Once the number of variables has been chosen, the next
question to be answered is how to choose the types of the
variables. For simplicity, in our prototype, we made the
set of allowed local variable types a run parameter, but it
would be reasonable to automatically determine it based
on the sets of types that can be returned by and accepted
as arguments by the operators generable by the available
schemata.

3.3 OBTAINING THE VARIABLES

Finally, given a set of types one must actually choose the
variables. The first method we attempted for the prototype
kept track of all variables created for each type, indexed
by their order of creation, and allocated the lowest
numbered variable not in bound(S) where S is the set of
schemata passed in to the LET schema, subject to the
restriction that no variable may be used more than once in
a given LET.

This resulted in the outermost real-valued variable(s) in
every tree being R0, the next being R1, etc. After running
this way for a while, we began to suspect that this resulted
in competition among subpopulations over what the
lowest numbered variables were supposed to mean. We
therefore switched to a scheme in which variables are
selected uniformly from a set whose size is specified as a
run parameter, with the question of whether a variable
may be rebound within a given scope (in the initial
population) also controlled by a run parameter. More
testing needs to be done to determine whether one method
is better than the other.

The variables themselves are operators of type
MemCell<T>, which is a proper subtype of both T and
Lvalue<T>.5 The assignment operator := takes an
Lvalue<T> and modifier operators, such as ++ and *=,
take MemCell<T>s, so these variables are available for

5 The GPLab framework used to implement the prototype supports
contravariant lvalue types, so this is also a subtype of Lvalue<U> for
any subtype U of T.

modification when such operators are thrown into the
mix. It would be possible at this point to distinguish
between normal variables, as described, and read-only
variables of type T, perhaps controlled by a run parameter
specifying the probability of each being chosen.

4 EVALUATING EXPRESSIONS

4.1 BASIC EXECUTION

In the absence of locally defined functions (section 9.2),
each local variable can be thought of as maintaining a
stack of values of the appropriate type. When a LET form
is entered, each variable definition argument is evaluated,
and then each value is pushed onto the stack of the
appropriate variable.6 Then the body form is evaluated,
and all of the bound variables have their stacks popped.
When a local variable is evaluated, the value at the top of
its stack is returned.

(Strictly speaking, this implements dynamic scoping
rather than static scoping, and so when locally defined
functions are added, a free variable within a function will
get the value most recently associated with that named
variable rather than the value of the lexically enclosing
binding. The variable evaluation mechanism will have to
be changed to support true static scoping.)

4.2 OPTIMIZATIONS

When running with local variables, it quickly becomes
evident that the system spends a good deal of its time
evaluating the definitions of variables that are never used
in their scope. In the absence of operators which produce
side-effects, a simple optimization can recover nearly all
of this time.

The first step is to compute, for each node n in a tree,
vars-needed(n), which is the set of local variables whose
bindings are actually needed in order to compute n’s
value. To compute this set, we first assume the existence
of two functions:

 free-vars(Op) computes the set of local variables
that the operator itself requires to be bound. For
most operators, this is the empty set. For local
variables, it is the singleton set containing the
operator itself.

bindings(Op, i) computes the bindings introduced
by Op that cover its ith argument. For most
operators, this is the empty set for all i. For LET, it
is the empty set for all arguments but the last, for
which it is the set of variables bound.

vars-needed(n) can then be computed as follows:

1. Start with free-vars(Op).

6 It is important to do this in two passes, or the definitions for the later-
bound variables will be incorrectly evaluated in the context of the earlier
bindings, yielding, in Lisp terminology, LET* rather than LET.

2. For each argument i, add to the set the set
difference between vars-needed(argument(n, i))
and bindings(Op, i).

For LET forms, each this is process is modified to only
add vars-needed(argument(n, i)) if the ith variable is in
vars-needed(body-arg).

When evaluating a LET, a defining form is evaluated and
a variable bound only if the corresponding variable is
contained within vars-needed(body-arg).

This scheme must be elaborated a bit when side-effect–
producing operations are present, as it may be necessary
to evaluate a variable definition for its side-effects even
though the value will be unused. The above algorithm can
be straightforwardly extended to consider two sets
associated with each node: the variables needed for
evaluation and the variables needed for side-effect, along
with a flag indicating whether the node should be
evaluated for side-effect. In such a case, a definition is
evaluated only for side-effects if its binding is unneeded
by the body form, but the definition contains a side-effect.

It should be apparent that if these sets were computed at
run-time the expense would swamp any savings, so they
should be computed at tree-construction time and cached
in the node itself. This may seem expensive, but the
expense is mitigated by the fact that most of these sets are
(1) empty, (2) singletons, which can be represented by the
variables themselves, or (3) identical between parent and
one or more children, so a considerable degree of sharing
is possible.

5 INVARIANT-PRESERVING
CROSSOVER

Once invariant-observing trees have been generated and
evaluated, the next step is to reproduce them using genetic
operators modified to preserve the invariant. The most
important such operator is the crossover operator, which
takes a subtree from one tree (the “father”) and uses it to
replace a subtree from another tree (the “mother”).

We assume extensions of the free-vars and bindings
functions from operators to nodes, with free-vars being
defined (without exception) as is the default definition of
vars-needed above and bindings being the union of the
parent node’s bindings for the argument index of the node
in question and the node’s operator’s bindings for the
argument index in question.

The obvious invariant-preserving modification to cross-
over would simply be to declare two fragments to be
incompatible if the free-vars of the father’s subtree was
not a subset of the bindings of the argument slot covering
the mother’s subtree. While this would work, it would
also rule out a large number of crossover points and was
felt to be too restrictive and unlikely to allow the merging
of two “almost good” programs.

What we do instead is to declare that any two otherwise-
compatible crossover points remain compatible, with the

resulting tree taking definitional material from father’s
tree as needed to produce a correctly scoped child. The
basic notion is that if the mother does not have semantics
for a particular local variable, those of the father are used
as if they were part of the father’s fragment. Rather than
simply extending the father’s fragment, however, the
definitions are distributed along the spine of (the copy of)
the mother’s tree from the root to the crossover point,
resulting in a child whose bindings are a blend of those of
the two parents.

5.1 CROSSOVER EXAMPLE

To illustrate the invariant-preserving crossover, we will
consider the father to be

(+ …
 (LET ((R17 (* X Y))
 R2 X))
 (* 5
 (LET ((R4 Z)
 (R9 –2)
 (R2 (* 3 R17)))
 (- 5
 (* X
 (LET ((R1 R2))
 (+ (- R2 R17) R9))
))))))

with the fragment itself highlighted, and the mother to be

(LET ((R2 …)
 (R7 …))
 (* … (LET ((R6 …))
 (- Y 2))))

The free variables of the father’s subtree are R2, R9, and
R17, and the bindings enclosing the mother’s subtree are
R2, R6, and R7.

5.2 FATHER’S BINDINGS

The first step is to collect a list of the bindings that are in
effect at the father’s subtree. This can be done by walking
down the spine of the tree and storing in an array
<variable, definition> pairs for each binding introduced,
keeping track of where each level’s definition starts. For
the example, this results in the following list:

R17 (* X Y)

R2 X

R4 Z

R9 -2

R2 (* 3 R17)

Note that R2 is in the list twice (once for each binding)
and that R1 is not in the list at all, since its definition is
properly contained within the fragment.

5.3 COUNTING BINDINGS

The next step is to start with the list of free variables in
the father’s subtree and increment a counter associated
with the lowest corresponding row of the table. Whenever
a counter for a row is incremented, this step is repeated
recursively with the list of free variables from that row’s
definition, considering only the table above that row.
When this step is completed, the table looks like

R17 (* X Y) 2

R2 X 0

R4 Z 0

R9 -2 1

R2 (* 3 R17) 1

R17 has two uses (one from the fragment and one from
the second definition of R2), R9 and the second definition
of R2 each have one (from the fragment), and the other
two definitions have none. Only those rows of the table
with non-zero counts will be considered for incorporation.

The table also contains a variable identifying the last
unprocessed row.

5.4 MERGING

Five functions are then used to effect the merge:

copy-patched walks down the mother’s spine
copying nodes until it reaches the crossover point,
at which point it inserts the father’s fragment.

capture-vars looks to see whether variables in the
father’s tree are (or should be made to be)
available in the mother’s scope.

replace replaces all free occurrences of one
variable by another in a tree.

remove-binding recursively decrements the
counter associated with variables free in unneeded
definitions.

wrap-node probabilistically wraps a form in a LET
form with bindings taken from the binding list.

5.4.1 copy-patched

copy-patched is called initially with the mother’s tree, the
father’s subtree (as the fragment to be inserted), the list of
bindings, a depth of zero, and information needed to
determine the path from the root of the mother’s tree to
the insertion point (or “hole”).

When at the insertion point itself, copy-patched calls
capture-vars on the fragment, and passes the result to
wrap-node, whose value it returns.

When above the insertion point, copy-patched duplicates
the current node, calls itself recursively on the next child
down in the path (with a depth one greater), patches the

result in as the appropriate argument to the constructed
node, and passes the resulting node to wrap-node, whose
value it returns.

5.4.2 capture-vars

capture-vars walks through the list of free variables
associated with a node. For each variable, it checks to see
whether the variable is already bound at the current point
on the mother’s spine. If not, it probabilistically checks to
see whether it should replace the variable with some
variable that is bound at the current point on the mother’s
spine. If either condition is met, remove-binding is called
to update the table to reflect that a binding is no longer
needed. If a replacement is mandated, replace is called
with a randomly selected variable in scope.

The probability of replacement is a run parameter.

In the example R2 from the father’s fragment is already
bound by the mother, but R9 and R17 are not. They
could, however, be replaced by the mother’s R2, R6 or
R7.

5.4.3 replace

replace simply recursively walks a tree, diving into any
subtree which has its target variable free and replacing all
occurrences of the target by the replacement.

5.4.4 remove-binding

remove-binding is passed in a variable and a row in the
binding list. It searches for the row of the list at or above
its parameter row which matches its parameter variable
and decrements the count for that variable. If the count
becomes zero (signifying that there is no further need to
consider copying this binding), remove-binding calls itself
recursively on all free variables in that row’s definition,
with a row parameter pointing just above the next highest
level boundary.

After calling remove-binding for R2, the table now looks
like

R17 (* X Y) 1

R2 X 0

R4 Z 0

R9 -2 1

R2 (* 3 R17) 0

The count for R17 has been decreased by one, but there is
still one reference from the father’s fragment itself.

5.4.5 wrap-node

wrap-node collects zero or more bindings from the end of
the binding list and creates a LET form wrapping its tree
parameter with the collected bindings. (If zero bindings
are collected, the tree parameter is simply returned.)

To decide whether to collect a binding, the binding list is
walked in reverse order, starting from the list’s (current)
last row. If the row under consideration has a count of
zero, the binding is unneeded, and the row is skipped. If
the count is non-zero, it is chosen for inclusion with a
probability 1/(1)depth + , where depth is the current depth
in the tree being constructed. This probability was chosen
for two reasons. First, when there is a single binding, it
makes the probability of the binding being inserted at any
level equal, and second, it makes the probability one at
top level, ensuring that all needed bindings eventually get
copied.

The algorithm as described needs a minor modification to
ensure that a let form is not constructed which tries to
combine two variables, the definition of the second of
which contains the first as a free variable. To prevent that
from happening, the set of free variables in all collected
definitions is kept. Whenever the decision is made to
collect a variable which is in that set, the LET form is
constructed with the current collected set, and the result is
passed recursively to wrap-node, with the same depth.
This results in two LET expressions, one wrapping the
other.

5.5 EXAMPLE RESULTS

Given the example father and mother trees shown above,
the following are all valid results of crossover, with the
father’s contribution highlighted:

(LET ((R2 …)(R7…))
 (LET ((R17 (* X Y)))
 (* … (LET ((R9 –2))
 (LET ((R6 …))
 (LET ((R1 R2))
 (+ (- R2 R17) R9))
)))))

(LET ((R2 …) (R7 …))
 (LET ((R17 (* X Y))
 (R9 –2))
 (* … (LET ((R6 …))
 (LET ((R1 R2))
 (+ (- R2 R17) R9))
))))

(LET ((R9 –2))
 (LET ((R2 …) (R7 …))
 (* … (LET ((R6 …))
 (LET ((R1 R2))
 (+ (- R2 R2) R9))
))))

Note that in each of these the free variable R2 has been
captured by the binding on the mother’s side. In the
second example, the bindings for R17 and R9 have been
lumped together into a single LET form, even though they
were widely spaced in the father. And in the final
example, the binding for R17 has disappeared, with the
free instance of that variable replaced by a variable bound
on the mother’s side (in this case, R2).

6 INVARIANT-PRESERVING
MUTATION

Since mutation in genetic programming is typically
implemented by choosing a node within a tree and
growing a new tree to replace it, the algorithm for
growing the initial trees will suffice to preserve the
invariant. To allow local variables to occur in the new
portion, it is simply necessary to ensure that all variables
bound at the chosen point are included in the set of
available operator schemata.

For “point mutation”, in which a random node is chosen
and its operator alone is replaced by a randomly chosen
operator having a compatible signature, there is again no
problem, with the caveat that local variables (of the
appropriate type) bound above the chosen node should be
considered when the node is a leaf.

7 VARIABLE-SPECIFIC GENETIC
OPERATORS

In addition to the normal genetic operators, there are
several that deal directly with local variables.

7.1 LET ABSTRACTION

In LET abstraction, a node is selected randomly from a
tree and that node is replaced by a local variable, with the
tree rooted at the original node serving as the definition
for the binding of the variable, this definition being
distributed somewhere up the tree.

As an example, if the original tree is

(LET ((R0 5))
 (* … (LET ((R7 …))
 (+ Y (- X R0)))))

with the chosen subtree highlighted, possible results of
LET abstraction include

(LET ((R0 5))
 (LET ((R42 (- X R0)))
 (* … (LET ((R7 …))
 (+ Y R42)))))

(LET ((R0 5))
 (* … (LET ((R15 (- X R0)))
 (LET ((R7 …))
 (+ Y R15)))))

(LET ((R0 5))
 (* … (LET ((R7 …))
 (+ Y (LET ((R1 (- X R0)))
 R1)))))

A straightforward way to implement LET abstraction is as
a “self crossover” with the chosen subtree Foo replaced
by (LET ((var Foo)) var), as in the last enumerated
possible result. With the crossover algorithm described in
section 5, the “replacement” may be merely conceptual,
as it suffices to simply add a new row to the binding list
and treat the variable itself as the inserted fragment.

One consequence of treating LET abstraction as crossover
is that the variable introduced may safely migrate up the
tree past free variables contained in its definition, pulling
anything it needs up with it. Thus

(LET ((R0 5))
 (LET ((R19 (- X R0)))
 (LET ((R0 5))
 (* (LET ((R7 …))
 (+ Y R19))))))

is also a valid LET abstraction.

Note that the results of LET abstraction are almost
always, but not always, value preserving. The value can
be different if there are operators that produce side
effects, because the order of evaluation is changed, and it
is also possible to abstract expressions out of never-
evaluated or conditionally-evaluated branches. It is also
possible that if the introduced binding is raised above a
free variable used in the definition, the variable may be
bound in the outer scope to a different value.

7.2 VARIABLE DELETION

The flip side of LET abstraction is variable deletion. This
operator chooses a random node in the tree and replaces
within it a randomly chosen free variable with the
variable’s definition. An alternative form of this operator
limits itself to LET expressions and completely removes
one of the variables bound at the chosen one.

7.3 VARIABLE CAPTURE

One of the drawbacks with the LET abstraction operator
is that the introduced variable is only used a single time.
The variable capture operator introduces (potentially)
extra uses of variables. It chooses a random node and
replaces it by a variable bound at the node. This is,
needless to say, not value-preserving.

7.4 UNUSED VARIABLE DELETION

As discussed previously, one of the consequences of
introducing local variables is that many variables are
defined but never used. While the performance lost due to
evaluating unneeded definitions can be mostly recovered
by the optimization outlined above, another consequence
is that a great deal of the crossovers take place between
subtrees that are never evaluated and do not contribute to
the program’s fitness.

The presence of such code, roughly analogous to the
unexpressed introns or junk DNA of animal biology, has
its good points and its bad points. On the plus side, it can
be a storehouse of genetic variability, lessening or
removing the need for mutation. Also, when the fitness
landscape is subject to change, it can increase the gene
pool’s adaptability by keeping around solutions that “used
to be needed”. When its organism is relatively good, its
sheer size can make it less likely that the organism will be
harmed by a mutation or crossover. On the minus side,
however, it also has the effect of slowing the evolutionary

rate by making many genetic operations non-functional.
This is precisely what is needed (in nature, at least) when
a population is very close to the local optimum, but it can
impose a large performance penalty when searching for a
solution from an initially-random population. The benefit
or penalty of such code is a topic currently under much
debate and investigation. (Soule, et al. 1996, Nordin and
Banzhaf 1995)

The unused variable deletion genetic operator attempts to
work against this trend by selecting a LET form from
within a tree and snipping out one or more variables
which are unused in the body (as asserted by the vars-
needed function). If all of the variables are removed the
LET form itself may be replaced by its body.

8 SUMMARY OF PARAMETERS

As described above, a run of a genetic programming
experiment in the presence of statically scoped local
variables is parameterized by several factors:

• the probability that a local variable is added to
the tree during generation,

• the permitted types of local variables for
generated trees,

• the initial number of local variables per type,

• whether “shadowing” bindings should be
allowed in generated programs,

• the probability that a free variable in the father’s
contribution is replaced by a bound variable from
the mother’s contribution, and

• the probabilities of applying the genetic
operators LET abstraction, variable deletion,
variable capture, and unused variable deletion.

9 OTHER OPERATORS

Perhaps the most important benefit of the addition of
statically scoped local variables is that it makes it
straightforward to add a raft of new operators
corresponding to more sophisticated control structures
and higher-level functions. In this section we will briefly
discuss bounded iteration constructs, which we have
prototyped, and locally defined functions, which we have
not.

9.1 BOUNDED ITERATION

One of the primary limitations of genetic programming,
as typically implemented, is that the evolved programs
can only implement constant-time algorithms. This is due
to the fact that the operators implemented do not allow
either recursion or iteration. For problems that require
iteration for their solutions, the experimenter must set up
the experiment harness to repeatedly invoke the program
and combine the results in some ad hoc manner.

Human programmers, by contrast, have access to a wide
array of iteration constructs, which can be invoked at any
time and which can nest arbitrarily. It would be nice to be
able to take advantage of them in evolved programs.

Unbounded iteration constructs, such as C++’s while
are problematic because poor programs which use them
can easily fail to terminate. Much of the use of iteration
by humans, however, involves iterating over data
structures such as a strings, vectors, or lists or iterating
over numbers between a minimum and a maximum. Such
bounded iteration constructs are more well-defined.
Unfortunately, other than a simple “repeat n times”
operator, they are difficult to implement in standard
genetic programming, as each iteration requires access to
the current element of the data structure or the current
value of the index.

With local variables, such operators are simple to define,
from a general (for (I17 min max) body), in
which I17 is available within body, to forms that iterate
over specific data structures. Useful examples of the latter
include

(foreach (v vector) body)

which sets v to successive elements of the value returned
by (the vector-returning expression) vector while
executing body,

(sum (v vector) body)
(product (v vector) body)
(map (v vector) body)
(select (v vector) pred)

which do the same thing, but return as values the sum or
product of the values returned by body, combine the
values into a new vector, or select those elements
satisfying a predicate, and the general

(accumulate ((v1 vector) body)
 (((v2 init) v3) comb))

which binds v1 within body for each element and
combines the result (as v3) and the previous result (as
v2) by evaluating comb(inator).

The self-contained nature of such forms allows for their
easy reuse, and early results of experiments indicate that
they make the use of variable-sized data structures quite
tractable.

As an example, a symbolic regression from a vector of
real numbers to the mean of the squares of the values
turned out to be trivial given (in addition to the vector
itself, the canonical arithmetic operations and integer
constants between –10 and 10), a sum operator that
mapped each element of a vector to a real number and
summed the result. Running on a population of 5,000 for
a maximum of 50 generations over only ten training
cases, validated solutions were found on 21 of 30 runs.
Surprisingly, half (11) of the solutions were found within
the first 4 generations, including three in the initial
random generation. The expected effort for this problem
to reach 99% confidence is 210,000 evaluations (21 runs

to generation 1). An example of a correct solution to this
problem guessed in the initial generation is

(/ (+ (sum (R6 v)(- R6 R6))
 (sum (R5 v)(* R5 R5)))
 (sum (R9 v)(+ (- R9 R9)
 (/ R9 R9))))

This program walks the input vector three times. In the
numerator, it is walked twice, once to compute a constant
zero and again to compute the sum of squares. In the
denominator, it is walked once, its body form returning a
constant one, which when summed yields the length of
the vector.

There are two implementation considerations when
adding support for such iteration constructs. The first
relates to the handling of such forms during crossover
(section 5), since some of the variables have no overt
definition. When an expession is abstracted out of the
body of an iterator, these variables may be free. In our
prototype implementation, when a LET binding is
introduced for such a variable, we simply grow a new
definition (in the scope of the prevailing bindings) by
mutation.

The second consideration is that even though bounded
iterations are guaranteed to terminate, since they may nest
arbitrarily, they may take an unacceptably long time to do
so. To get around this, we implemented a computation
budget, specifying the maximum number of operations a
program could execute on a given case before being
declared to have infinitely bad fitness.7 Clearly, such a
decision is an indication of little more than human
impatience, although it may well be worthwhile when
using loops to consider the number of operations
evaluated in the fitness measure. One obvious
optimization is to note that, in the absence of side-effects,
any body form in which none of the loop variables are
free must return the same value for the length of the loop
and so need only be evaluated once.

Aside from repeatedly calling a candidate program from
within an experiment harness, Koza, et al. (1999)
introduced the notions of automatically defined loops and
automatically defined iterations, as named constructs by
analogy with automatically defined functions. To get
around the complexity issues discussed above, these are
each evaluated a single time, before the main, result-
producing form is evaluated. In the case of iterations, the
iteration is over a fixed, experiment-specific data
structure. Any result computed must be stashed away in a
global store. Because of the way these are defined, it
appears to be impossible to evolve programs that require
nested loops.

7 The experiment described used a computation budget of 500 operations
for vectors containing between five and twenty elements.

9.2 LOCALLY DEFINED FUNCTIONS

Another intriguing idea, which we have not yet explored,
is to use a process similar to that described in (Koza
1994b) to extract a LAMBDA expression, which can be
named by a LET binding and replaced by a call to the
named variable. The variables within the LAMBDA form
become local variables whose scope extends over the
body of the form. Since function calls would be on named
functions,8 the mechanism described in the paper would
serve to prevent (or explicitly allow) recursion, as a
function could only name those other functions bound in
the scope of its definition. Another benefit is that it will
be straightforward for functions to share variables simply
by the functions’ being bound within the scope of the
shared variables. A final advantage is that such named
functions can easily be passed in as parameters to other
functions, allowing the evolution of higher-order
functions and operators such as REDUCE.

Of course, the addition of functional values (which has
some support in GPLab already) raises the issue of what
happens if a functional value is returned to a scope in
which the variables it references are not bound. While this
can easily be prevented, the solution—full closures—may
be worth investigating but will necessitate changes in the
way local variables are implemented.

10 DISCUSSION

The mechanisms described to support local variables have
been added to GPLab, a flexible framework for genetic
programming developed and used for data mining
research at Hewlett-Packard Laboratories. We are
currently in the process of identifying and evaluating
classes of problems in which such a capability makes a
significant improvement in the likelihood of finding a
solution.

The expectation is that the addition of local variables will,
like the addition of automatically defined functions,
greatly simplify the discovery of solutions to problems in
which it is profitable to make use of common
subexpressions as well as those for which solutions can
profit from the presence of scratchpad variables.

The added power will, however, be pitted against several
factors which may serve to increase the effort required to
find a solution. As discussed in section 7.4, the presence
of unused bindings acts as a brake on the rate of evolution
by encouraging crossover in sections of the program
which do not affect fitness. Also, the addition of genetic
operators such as LET abstraction and variable deletion,
which are meaning preserving, can also be expected to
retard the pace of evolution by creating fewer completely
new children in each generation. Finally, of course, the
mere addition of operators into the tableau increases the
search space.

8 Or statically nested LAMBDA expressions.

Very early runs of simple symbolic regression problems
indicate that for problems that can tractably be solved
without local variables, the mere addition of LET-bound
local variables does not help and can indeed increase the
required effort. (For problems which cannot tractably be
solved either with or without local variables, it is difficult
to say whether they help or hurt.)

On the other hand, as discussed in section 9.1, the use of
local variables within iteration operators appears to be
quite powerful.

One thing that has become apparent during this early
testing phase—although we have not yet quantified it—is
that there does not appear to be sufficient pressure to
encourage bound variables to be used multiple times
within their scope. With the exception of variables
introduced by operators such as iterators, a local variable
is truly useful only if it is used more than once. Further
experimentation will be necessary to determine whether
this is a property of the parameters so far explored or
whether some new genetic operator will need to be added
to further encourage variable reuse.

Finally, further work needs to be done to compare the use
of local variables and (a sufficient number of) global
variables. Each would seem to have advantages and
disadvantages. The main advantage of global variables is
that the state may be preserved between evaluations,
allowing them to form a persistent memory. The apparent
advantages of local variables over global variables
include

• The fact that one definition can shadow another
means that a local computation can usurp a
variable without destroying its value,

• Unlike global variables, they can be profitably
used even in the absence of side-effecting
operators, and

• The number and types of variables needed can be
determined by the evolutionary process.

The magnitude of the benefit (or penalty) still needs to be
quantified. Note that data-structure–specific operators,
such as those discussed in section 9.1, could make use of
global, rather than local variables.

11 CONCLUSIONS

In this paper, we have shown that it is possible to evolve
programs which use correctly scoped local variants. We
have enunciated an invariant which needs to be
maintained and outlined mechanisms for generating
invariant-satisfying programs, evaluating programs, and
maintaining the invariant over genetic operators. We have
also presented several new genetic operators which add
and remove local variables and discussed the use of local
variables for purposes of iteration and functional
abstraction.

While it appears intuitively obvious that such a facility,
ubiquitous as it is in programming languages, should be

part of any evolutionary arsenal, we have unfortunately
not yet been able to demonstrate quantitatively the
usefulness of this facility over any particular class of
problem, although the ability to use them with bounded
iteration operators appears to be extremely promising.

References

Banzhaf, Wolfgang; Nordin, Peter; Keller, Robert E.; and
Francone, Frank D. 1998. Genetic Programming: An
Introduction. San Francisco, CA: Morgan Kaufmann.

Brave, Scott 1996. The evolution of memory and mental
models using genetic programming. In John R. Koza,
et al., (eds.) Genetic Programming 1996: Pro-
ceedings of the First Annual Conference, July 28–31,
1996, Stanford University. Cambridge, MA: MIT
Press, pp. 261–266.

Koza, John R. 1990. Genetic Programming: A Paradigm
for Genetically Breeding Populations of Computer
Programs to Solve Problems. Stanford University
Computer Science Department Technical Report
STAN-CS-90-1314. June, 1990.

Koza, John R. 1992. Genetic Programming: On the
Programming of Computers by Means of Natural
Selection. Cambridge, MA, MIT Press.

Koza, John R. 1994. Genetic Programming II: Automatic
Discovery of Reusable Programs. Cambridge, MA:
MIT Press.

Koza, John R. 1994b. Architecture-Altering Operations
for Evolving the Architecture of a Multi-Part
Program in Genetic Programming. Stanford Uni-
versity Computer Science Department technical
report STAN-TR-CS-94-1528. October 21, 1994

Koza, John R. ; Bennett, Forrest H, III; Andre, David; and
Keane, Martin A. 1999. Genetic Programming III:
Darwinian Invention and Problem Solving. San
Francisco, CA: Morgan Kaufmann.

Langdon, W. B. 1996, Using data structures within
genetic programming. In John R. Koza, et al., (eds.)
Genetic Programming 1996: Proc. of the First
Annual Conference, July 28–31, 1996, Stanford Uni-
versity. Cambridge, MA: MIT Press, pp. 141–149.

Montana, David J. 1995. Strongly typed genetic
programming. Evolutionary Computation 3(2):199–
230.

Nordin, Peter and Banzhaf, Wolfgang 1995. Complexity
compression and evolution. In Eshelman, L.J. (ed.)
Proceedings of the Sixth International Conference on
Genetic Algorithms. San Francisco, CA: Morgan
Kaufmann, pp. 310–317.

Soule, Terence; Foster, James A.; and Dickinson, John
1996. Code growth in genetic programming. In John
R. Koza, et al., (eds.) Genetic Programming 1996:
Proceedings of the First Annual Conference, July
28–31, 1996, Stanford University. Cambridge, MA:
MIT Press, pp. 215–223.

Teller, Astro 1994. The evolution of mental models. In
Kinnear, Kenneth E., Jr. (ed.), Advances in Genetic
Programming, Cambridge, MA: MIT Press, pp. 199–
220.

