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Abstract 
 

 

This paper presents an extension to genetic 
programming to allow the evolution of programs 
containing local variables with static scope 
which obey the invariant that all variables are 
bound at time of use. An algorithm is presented 
for generating trees which obey this invariant, 
and an extension to the crossover operator is 
presented which preserves it. New genetic 
operators are described which abstract sub-
expressions to variables and delete variables. 
Finally, extensions of this work to iteration and 
functional constructs are discussed. 

1 BACKGROUND 

The promise of genetic programming (Koza 1990, 
Banzhaf, et al. 1998) is the automatic discovery of 
computer programs that solve arbitrary problems. In 
practice, however, the ingredients of such programs are 
typically severely restricted. In the original formulation 
(Koza 1990, 1992) they were limited expressions formed 
by applying operators drawn from a fixed set to 
expressions, with each operator being required to be able 
to take as an argument the value returned by any available 
operator.  

Later extensions brought to the field more of the tools that 
human programmers rely on. These include strong typing 
(Montana 1995), user-defined functions (Koza 1994, 
1994b), data structures (Langdon 1996), and restricted 
forms of loops and iterations (Koza, et al. 1999). One 
very important tool used by human programmers is the 
notion of the “variable” both as means of naming 
semantically important values which may be used 
multiple times and also as a location for recording 
intermediate results. 

The first of these uses does not appear to have received 
much attention within the genetic programming 
community (with the exception of zero-argument 
automatically defined functions.) The second has been 
addressed largely by the provision of global variables or 
data structures. In early work (Koza 1992), global 
scratchpad registers could be written with dedicated 

storage operators (SET-X val). This was later extended 
to allow selection from an arbitrary set of registers, 
indexed memory (Teller 1994), and finally a generalized 
“automatically defined store” (Koza, et al. 1999).1  

These approaches suffer from three drawbacks. First, with 
the exception of automatically defined stores, the number 
of such storage locations is typically fixed as a parameter 
of the run. Second, the program must evolve to ensure 
that the storage is written to before it is read, and behavior 
must be defined for situations in which this is not the 
case. Third, since the only way to store a value is to 
compute it and write it to the storage location, it is 
possible for one part of a calculation to destroy a stored 
value needed by another part. While such cross-talk is at 
times beneficial (and may be seen as an advantage of 
evolved programs over designed programs), it can also 
get in the way. 

The canonical solution to this problem in programming 
languages is the local variable. This is a variable whose 
visibility is bounded to a given scope (e.g., block or 
expression), and which typically receives its (initial) value 
at the same time as it becomes available. Local variables 
are typically introduced by a construct such as Lisp’s 
LET: 

(LET ((R0 (+ X (* Y Y)))) 
  (* 4 (* R0 R0))) 

which computes the function 2 24( )x y+ . Using LET, the 
variables defined in the bindings are accessible only to the 
body form, and their definitions may be based on any 
(and only) variables visible to the LET expression itself. 

A more radical approach is the dataflow-like Cartesian 
Genetic Programming described in (Miller 1999). 
Representing the program as a directed acyclic feed-
forward graph (encoded by a linear genome), this 
formalism has many of the advantages of the statically 
scoped local variables described here (at arguably 
considerably less cost), but the choice of representation 
would appear to preclude taking advantage of types or 
performing other than constant-time computation. 

Another approach that introduces lexically scoped 
variables are the Automatically Defined Functions of 

                                                           
1 A different sort of “memory” is presented in (Brave 1996), in which a 
“mental model” in the form of a graph is built up during one phase of 
execution and used during a second phase.   



(Koza 1992, 1994). In these, the function parameters may 
only be used within the scope of the function itself. The 
invariant described in section 2 is maintained under this 
approach by restricting subtrees selected for crossover to 
coming from “the same” function or at least functions 
with identical signatures and therefore identically named 
and typed parameters. 

In this paper, we present a mechanism for evolving 
programs containing locally scoped, LET-bound 
variables. We discuss the generation of the initial 
population, evaluation of trees containing local variables, 
modifications to standard genetic operators to handle 
local variable bindings, and new genetic operators that 
introduce and delete such bindings. 

Other operators may also introduce local variables. These 
include iteration operators, which introduce variables for 
indices and elements, and function-defining operators 
such as LAMBDA, which introduce variables for para-
meters. Iteration operators will be discussed in section 9.1 
and function-defining operators will be touched on in 
section 9.2. 

The paper is organized as follows. In section 2, we 
introduce an invariant that needs to be maintained. In 
sections 3 through 8, we describe algorithms which 
generate trees which meet this invariant (section 3), 
evaluate expressions containing local variables 
(section 4), and preserve the invariant during crossover 
(section 5) and mutation (section 6), as well as during the 
application of variable-specific genetic operators 
(section 7), finishing up with a summary of run 
parameters introduced (section 8).  In section 9 we discuss 
the use of local variables in iteration and function 
abstraction, and we finish up with a discussion of our 
findings (section 10) and conclusions (section 11). 

2 PROBLEM 

The main problem faced when adding local variables to 
genetic programming is that they introduce the following 
invariant that must be maintained: 

INVARIANT: any use of a local variable must be 
properly contained within a form that binds it. 

The example from the prior section satisfies the invariant, 
but the following do not:2 

(+ RO 3) 

(LET ((R0 (* R0 7))) 
 (+ R0 X)) 

(LET ((R0 5) 
     (R1 (* R0 0))) 
  (+ R0 R1)) 

In all of these, the bold-faced R0 is not properly contained 
within a form that binds it. Note in particular that the 

                                                           
2 In this paper, R0, I0, … represent local variables, while X, Y, … 
represent global quantities such as program parameters. 

variables introduced by the LET operator are only 
considered to be bound within the final, result-producing 
subexpression. 

The existence of the invariant has two implications for an 
implementation. First, all initially-generated trees must 
meet it, and second, it must be preserved by the 
application of genetic operators. Each of these will be 
covered in the following sections. 

3 GENERATING CORRECTLY 
SCOPED TREES 

When generating trees in strongly-typed genetic 
programming, one is given a target type T and a set of 
available operators O. The traditional algorithm is 
roughly3 

1. Select from O an operator Op whose return type 
is a subtype of T. 

2. For each argument of the operator, generate a 
tree of the appropriate type over the same set of 
operators O. 

3. Construct a tree from the selected operator and 
generated argument trees. 

To handle local variables, it helps to generalize the input 
from a set of operators to a set of operator schemata, 
where each schema can be thought of as a template 
capable of returning concrete operators when presented 
with a given context, which consists of a desired return 
type and a set of available schemata. So, for example, the 
LET schema represents any LET operator and can, for 
instance generate “the LET operator binding I25 and 
returning a Boolean”.  Similarly, a single IF schema can 
suffice to generate IF operators typed to return any 
particular type, and the so-called “ephemeral constants” 
can also be considered as schemata which simply choose 
a different constant each time they are invoked. All 
concrete operators, including terminals and local 
variables, are trivially operator schemata, which return 
themselves. 

For the new algorithm, we assume the following 
functions: 

For a set S of operator schemata, bound(S) is the 
subset of S consisting of local variables.  

For an operator Op, bindings(Op, i) is the set of 
local variables introduced by Op that are considered 
bound in the ith argument form. 

bound represents the set of local variables available to us 
at a given point, which, if the invariant is being 
maintained will be those which are statically bound at this 
point in the tree. When generating the topmost tree, there 

                                                           
3 Ignoring complications such as target depth or bushiness. 



should be no local variables in the set of available 
schemata, so bound will be empty.4 

The algorithm for generating a tree over a set S of 
operator schemata returning a type T then becomes 

1a. Select from S an operator schema capable of 
returning an operator whose return type is a 
subtype of T. 

1b. Use the schema to obtain an operator Op given S 
and T. 

2. For each argument i of Op, generate a tree of the 
appropriate type, given ( , )S bindings Op i∪ . 

3. Construct a tree from the selected operator and 
generated argument trees. 

If the local variables are the only schemata that can return 
local variables when invoked, it is clearly true that the 
only way a local variable v can be introduced as the 
operator of a node in the tree is if the node is a descendent 
of the jth child of a node with operator O, where 

( , )v bindings O j∈ . 

For the specific case of the LET-constructing schema, 
every time it is invoked with a context of  S and T, it  

1. Determines a number n of bindings to introduce, 

2. Creates an n-element set of types for which trees 
can be constructed over S, 

3. For each type, obtains a local variable over that 
type, and 

4. Constructs an 1n + -argument LET operator, for 
which bindings(i) is the set of introduced 
variables for i n=  and is empty for all other i. 
The operator’s first n arguments are of the sel-
ected types, and its last argument is of type T. 

The careful reader will have noticed that three of the four 
steps in the above algorithm contain rather vague phrases. 
This is because it is not yet apparent to us what the 
“correct” approach is. We now briefly discuss possible 
approaches to each. 

3.1 CHOOSING THE NUMBER OF VARIABLES 
TO INTRODUCE 

The first decision to make is the number of variables that 
the LET form will bind. The most straightforward answer 
is to say that each LET binds a single variable. Since the 
framework on which this was implemented generates 
depth-bounded trees, it was thought that doing so would 
prove too limiting in, on the one hand, the number of 
variables that could be introduced over a given scope and, 
on the other hand, the size of the resulting scope. 

Another option would be to choose uniformly between 
one and some maximum specified as a run parameter. 
Rather than use a hard maximum, we instead decided to 

                                                           
4 Alternatively, the program inputs can be treated as implicitly bound 
local variables. 

use an exponential fall-off, repeatedly adding variables to 
the set with a run-parameter-specified probability. 

In early runs it became apparent that this approach 
resulted in most of the variables introduced being very 
near the leaves of the tree—since in any bushy tree most 
nodes are near the leaves—resulting in very narrow 
scope. In an attempt to push the variable bindings further 
up the tree, we introduced a discount factor of 1/ 2depth  on 
the probability, where the root of the tree is at 0depth = . 
To make it more likely that local variables would be 
created even when the set of available operators was 
large, the LET schema itself is chosen with this 
probability. (In retrospect, this may have been an 
unnecessary and perhaps even detrimental “optimization”, 
as the discount factor quickly makes it less likely to 
introduce local variables as one goes down the tree.) 

3.2 CHOOSING THE VARIABLE TYPES 

Once the number of variables has been chosen, the next 
question to be answered is how to choose the types of the 
variables. For simplicity, in our prototype, we made the 
set of allowed local variable types a run parameter, but it 
would be reasonable to automatically determine it based 
on the sets of types that can be returned by and accepted 
as arguments by the operators generable by the available 
schemata. 

3.3 OBTAINING THE VARIABLES 

Finally, given a set of types one must actually choose the 
variables. The first method we attempted for the prototype 
kept track of all variables created for each type, indexed 
by their order of creation, and allocated the lowest 
numbered variable not in bound(S) where S is the set of 
schemata passed in to the LET schema, subject to the 
restriction that no variable may be used more than once in 
a given LET. 

This resulted in the outermost real-valued variable(s) in 
every tree being R0, the next being R1, etc. After running 
this way for a while, we began to suspect that this resulted 
in competition among subpopulations over what the 
lowest numbered variables were supposed to mean. We 
therefore switched to a scheme in which variables are 
selected uniformly from a set whose size is specified as a 
run parameter, with the question of whether a variable 
may be rebound within a given scope (in the initial 
population) also controlled by a run parameter. More 
testing needs to be done to determine whether one method 
is better than the other. 

The variables themselves are operators of type 
MemCell<T>, which is a proper subtype of both T and 
Lvalue<T>.5 The assignment operator := takes an 
Lvalue<T> and modifier operators, such as ++ and *=, 
take MemCell<T>s, so these variables are available for 
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modification when such operators are thrown into the 
mix. It would be possible at this point to distinguish 
between normal variables, as described, and read-only 
variables of type T, perhaps controlled by a run parameter 
specifying the probability of each being chosen. 

4 EVALUATING EXPRESSIONS 

4.1 BASIC EXECUTION 

In the absence of locally defined functions (section 9.2), 
each local variable can be thought of as maintaining a 
stack of values of the appropriate type. When a LET form 
is entered, each variable definition argument is evaluated, 
and then each value is pushed onto the stack of the 
appropriate variable.6 Then the body form is evaluated, 
and all of the bound variables have their stacks popped. 
When a local variable is evaluated, the value at the top of 
its stack is returned.  

(Strictly speaking, this implements dynamic scoping 
rather than static scoping, and so when locally defined 
functions are added, a free variable within a function will 
get the value most recently associated with that named 
variable rather than the value of the lexically enclosing 
binding. The variable evaluation mechanism will have to 
be changed to support true static scoping.) 

4.2 OPTIMIZATIONS 

When running with local variables, it quickly becomes 
evident that the system spends a good deal of its time 
evaluating the definitions of variables that are never used 
in their scope. In the absence of operators which produce 
side-effects, a simple optimization can recover nearly all 
of this time. 

The first step is to compute, for each node n in a tree, 
vars-needed(n), which is the set of local variables whose 
bindings are actually needed in order to compute n’s 
value. To compute this set, we first assume the existence 
of two functions: 

 free-vars(Op) computes the set of local variables 
that the operator itself requires to be bound. For 
most operators, this is the empty set. For local 
variables, it is the singleton set containing the 
operator itself. 

bindings(Op, i) computes the bindings introduced 
by Op that cover its ith argument. For most 
operators, this is the empty set for all i. For LET, it 
is the empty set for all arguments but the last, for 
which it is the set of variables bound. 

vars-needed(n) can then be computed as follows: 

1. Start with free-vars(Op). 

                                                           
6 It is important to do this in two passes, or the definitions for the later-
bound variables will be incorrectly evaluated in the context of the earlier 
bindings, yielding, in Lisp terminology, LET* rather than LET. 

2. For each argument i, add to the set the set 
difference between vars-needed(argument(n, i)) 
and bindings(Op, i). 

For LET forms, each this is process is modified to only 
add vars-needed(argument(n, i)) if the ith variable is in 
vars-needed(body-arg). 

When evaluating a LET, a defining form is evaluated and 
a variable bound only if the corresponding variable is 
contained within vars-needed(body-arg).  

This scheme must be elaborated a bit when side-effect–
producing operations are present, as it may be necessary 
to evaluate a variable definition for its side-effects even 
though the value will be unused. The above algorithm can 
be straightforwardly extended to consider two sets 
associated with each node: the variables needed for 
evaluation and the variables needed for side-effect, along 
with a flag indicating whether the node should be 
evaluated for side-effect. In such a case, a definition is 
evaluated only for side-effects if its binding is unneeded 
by the body form, but the definition contains a side-effect.  

It should be apparent that if these sets were computed at 
run-time the expense would swamp any savings, so they 
should be computed at tree-construction time and cached 
in the node itself. This may seem expensive, but the 
expense is mitigated by the fact that most of these sets are 
(1) empty, (2) singletons, which can be represented by the 
variables themselves, or (3) identical between parent and 
one or more children, so a considerable degree of sharing 
is possible. 

5 INVARIANT-PRESERVING 
CROSSOVER 

Once invariant-observing trees have been generated and 
evaluated, the next step is to reproduce them using genetic 
operators modified to preserve the invariant. The most 
important such operator is the crossover operator, which 
takes a subtree from one tree (the “father”) and uses it to 
replace a subtree from another tree (the “mother”). 

We assume extensions of the free-vars and bindings 
functions from operators to nodes, with free-vars being 
defined (without exception) as is the default definition of 
vars-needed above and bindings being the union of the 
parent node’s bindings for the argument index of the node 
in question and the node’s operator’s bindings for the 
argument index in question. 

The obvious invariant-preserving modification to cross-
over would simply be to declare two fragments to be 
incompatible if the free-vars of the father’s subtree was 
not a subset of the bindings of the argument slot covering 
the mother’s subtree. While this would work, it would 
also rule out a large number of crossover points and was 
felt to be too restrictive and unlikely to allow the merging 
of two “almost good” programs. 

What we do instead is to declare that any two otherwise-
compatible crossover points remain compatible, with the 



resulting tree taking definitional material from father’s 
tree as needed to produce a correctly scoped child. The 
basic notion is that if the mother does not have semantics 
for a particular local variable, those of the father are used 
as if they were part of the father’s fragment. Rather than 
simply extending the father’s fragment, however, the 
definitions are distributed along the spine of (the copy of) 
the mother’s tree from the root to the crossover point, 
resulting in a child whose bindings are a blend of those of 
the two parents. 

5.1 CROSSOVER EXAMPLE 

To illustrate the invariant-preserving crossover, we will 
consider the father to be 

(+ … 
   (LET ((R17 (* X Y)) 
          R2 X)) 
     (* 5 
        (LET ((R4 Z) 
              (R9 –2) 
              (R2 (* 3 R17))) 
          (- 5 
             (* X  
               (LET ((R1 R2)) 
                 (+ (- R2 R17) R9)) 
              )))))) 

with the fragment itself highlighted, and the mother to be 

(LET ((R2 …) 
      (R7 …)) 
  (* … (LET ((R6 …)) 
         (- Y 2)))) 

The free variables of the father’s subtree are R2, R9, and 
R17, and the bindings enclosing the mother’s subtree are 
R2, R6, and R7. 

5.2 FATHER’S BINDINGS 

The first step is to collect a list of the bindings that are in 
effect at the father’s subtree. This can be done by walking 
down the spine of the tree and storing in an array 
<variable, definition> pairs for each binding introduced, 
keeping track of where each level’s definition starts. For 
the example, this results in the following list: 

R17 (* X Y) 

R2 X 

R4 Z 

R9 -2 

R2 (* 3 R17) 

Note that R2 is in the list twice (once for each binding) 
and that R1 is not in the list at all, since its definition is 
properly contained within the fragment. 

5.3 COUNTING BINDINGS 

The next step is to start with the list of free variables in 
the father’s subtree and increment a counter associated 
with the lowest corresponding row of the table. Whenever 
a counter for a row is incremented, this step is repeated 
recursively with the list of free variables from that row’s 
definition, considering only the table above that row. 
When this step is completed, the table looks like 

 

R17 (* X Y) 2 

R2 X 0 

R4 Z 0 

R9 -2 1 

R2 (* 3 R17) 1 

R17 has two uses (one from the fragment and one from 
the second definition of R2), R9 and the second definition 
of R2 each have one (from the fragment), and the other 
two definitions have none. Only those rows of the table 
with non-zero counts will be considered for incorporation. 

The table also contains a variable identifying the last 
unprocessed row. 

5.4 MERGING 

Five functions are then used to effect the merge: 

copy-patched walks down the mother’s spine 
copying nodes until it reaches the crossover point, 
at which point it inserts the father’s fragment. 

capture-vars looks to see whether variables in the 
father’s tree are (or should be made to be) 
available in the mother’s scope. 

replace replaces all free occurrences of one 
variable by another in a tree. 

remove-binding recursively decrements the 
counter associated with variables free in unneeded 
definitions. 

wrap-node probabilistically wraps a form in a LET 
form with bindings taken from the binding list. 

5.4.1 copy-patched 

copy-patched is called initially with the mother’s tree, the 
father’s subtree (as the fragment to be inserted), the list of 
bindings, a depth of zero, and information needed to 
determine the path from the root of the mother’s tree to 
the insertion point (or “hole”). 

When at the insertion point itself, copy-patched calls 
capture-vars on the fragment, and passes the result to 
wrap-node, whose value it returns. 

When above the insertion point, copy-patched duplicates 
the current node, calls itself recursively on the next child 
down in the path (with a depth one greater), patches the 



result in as the appropriate argument to the constructed 
node, and passes the resulting node to wrap-node, whose 
value it returns. 

5.4.2 capture-vars 

capture-vars walks through the list of free variables 
associated with a node. For each variable, it checks to see 
whether the variable is already bound at the current point 
on the mother’s spine. If not, it probabilistically checks to 
see whether it should replace the variable with some 
variable that is bound at the current point on the mother’s 
spine. If either condition is met, remove-binding is called 
to update the table to reflect that a binding is no longer 
needed. If a replacement is mandated, replace is called 
with a randomly selected variable in scope. 

The probability of replacement is a run parameter. 

In the example R2 from the father’s fragment is already 
bound by the mother, but R9 and R17 are not. They 
could, however, be replaced by the mother’s R2, R6 or 
R7. 

5.4.3 replace 

replace simply recursively walks a tree, diving into any 
subtree which has its target variable free and replacing all 
occurrences of the target by the replacement. 

5.4.4 remove-binding 

remove-binding is passed in a variable and a row in the 
binding list. It searches for the row of the list at or above 
its parameter row which matches its parameter variable 
and decrements the count for that variable. If the count 
becomes zero (signifying that there is no further need to 
consider copying this binding), remove-binding calls itself 
recursively on all free variables in that row’s definition, 
with a row parameter pointing just above the next highest 
level boundary. 

After calling remove-binding for R2, the table now looks 
like 

R17 (* X Y) 1 

R2 X 0 

R4 Z 0 

R9 -2 1 

R2 (* 3 R17) 0 

The count for R17 has been decreased by one, but there is 
still one reference from the father’s fragment itself. 

5.4.5 wrap-node 

wrap-node collects zero or more bindings from the end of 
the binding list and creates a LET form wrapping its tree 
parameter with the collected bindings. (If zero bindings 
are collected, the tree parameter is simply returned.) 

To decide whether to collect a binding, the binding list is 
walked in reverse order, starting from the list’s (current) 
last row. If the row under consideration has a count of 
zero, the binding is unneeded, and the row is skipped. If 
the count is non-zero, it is chosen for inclusion with a 
probability 1/( 1)depth + , where depth is the current depth 
in the tree being constructed. This probability was chosen 
for two reasons. First, when there is a single binding, it 
makes the probability of the binding being inserted at any 
level equal, and second, it makes the probability one at 
top level, ensuring that all needed bindings eventually get 
copied. 

The algorithm as described needs a minor modification to 
ensure that a let form is not constructed which tries to 
combine two variables, the definition of the second of 
which contains the first as a free variable. To prevent that 
from happening, the set of free variables in all collected 
definitions is kept. Whenever the decision is made to 
collect a variable which is in that set, the LET form is 
constructed with the current collected set, and the result is 
passed recursively to wrap-node, with the same depth. 
This results in two LET expressions, one wrapping the 
other. 

5.5 EXAMPLE RESULTS 

Given the example father and mother trees shown above, 
the following are all valid results of crossover, with the 
father’s contribution highlighted: 

(LET ((R2 …)(R7…)) 
  (LET ((R17 (* X Y))) 
    (* … (LET ((R9 –2)) 
           (LET ((R6 …)) 
              (LET ((R1 R2)) 
                (+ (- R2 R17) R9)) 
            ))))) 

(LET ((R2 …) (R7 …)) 
  (LET ((R17 (* X Y)) 
        (R9 –2)) 
    (* … (LET ((R6 …)) 
           (LET ((R1 R2)) 
             (+ (- R2 R17) R9)) 
          )))) 

(LET ((R9 –2)) 
  (LET ((R2 …) (R7 …)) 
    (* … (LET ((R6 …)) 
           (LET ((R1 R2)) 
             (+ (- R2 R2) R9)) 
         )))) 

Note that in each of these the free variable R2 has been 
captured by the binding on the mother’s side. In the 
second example, the bindings for R17 and R9 have been 
lumped together into a single LET form, even though they 
were widely spaced in the father. And in the final 
example, the binding for R17 has disappeared, with the 
free instance of that variable replaced by a variable bound 
on the mother’s side (in this case, R2). 



6 INVARIANT-PRESERVING 
MUTATION 

Since mutation in genetic programming is typically 
implemented by choosing a node within a tree and 
growing a new tree to replace it, the algorithm for 
growing the initial trees will suffice to preserve the 
invariant. To allow local variables to occur in the new 
portion, it is simply necessary to ensure that all variables 
bound at the chosen point are included in the set of 
available operator schemata. 

For “point mutation”, in which a random node is chosen 
and its operator alone is replaced by a randomly chosen 
operator having a compatible signature, there is again no 
problem, with the caveat that local variables (of the 
appropriate type) bound above the chosen node should be 
considered when the node is a leaf. 

7 VARIABLE-SPECIFIC GENETIC 
OPERATORS 

In addition to the normal genetic operators, there are 
several that deal directly with local variables. 

7.1 LET ABSTRACTION 

In LET abstraction, a node is selected randomly from a 
tree and that node is replaced by a local variable, with the 
tree rooted at the original node serving as the definition 
for the binding of the variable, this definition being 
distributed somewhere up the tree. 

As an example, if the original tree is 

(LET ((R0 5)) 
  (* … (LET ((R7 …)) 
         (+ Y (- X R0))))) 

with the chosen subtree highlighted, possible results of 
LET abstraction include 

(LET ((R0 5)) 
  (LET ((R42 (- X R0))) 
    (* … (LET ((R7 …)) 
           (+ Y R42))))) 

(LET ((R0 5)) 
  (* … (LET ((R15 (- X R0))) 
         (LET ((R7 …)) 
           (+ Y R15))))) 

(LET ((R0 5)) 
  (* … (LET ((R7 …)) 
         (+ Y (LET ((R1 (- X R0))) 
                R1))))) 

A straightforward way to implement LET abstraction is as 
a “self crossover” with the chosen subtree Foo replaced 
by (LET ((var Foo)) var), as in the last enumerated 
possible result.  With the crossover algorithm described in 
section 5, the “replacement” may be merely conceptual, 
as it suffices to simply add a new row to the binding list 
and treat the variable itself as the inserted fragment. 

One consequence of treating LET abstraction as crossover 
is that the variable introduced may safely migrate up the 
tree past free variables contained in its definition, pulling 
anything it needs up with it. Thus 

(LET ((R0 5)) 
  (LET ((R19 (- X R0))) 
    (LET ((R0 5)) 
      (* (LET ((R7 …))  
           (+ Y R19)))))) 

is also a valid LET abstraction. 

Note that the results of LET abstraction are almost 
always, but not always, value preserving. The value can 
be different if there are operators that produce side 
effects, because the order of evaluation is changed, and it 
is also possible to abstract expressions out of never-
evaluated or conditionally-evaluated branches. It is also 
possible that if the introduced binding is raised above a 
free variable used in the definition, the variable may be 
bound in the outer scope to a different value. 

7.2 VARIABLE DELETION 

The flip side of LET abstraction is variable deletion. This 
operator chooses a random node in the tree and replaces 
within it a randomly chosen free variable with the 
variable’s definition. An alternative form of this operator 
limits itself to LET expressions and completely removes 
one of the variables bound at the chosen one. 

7.3 VARIABLE CAPTURE 

One of the drawbacks with the LET abstraction operator 
is that the introduced variable is only used a single time. 
The variable capture operator introduces (potentially) 
extra uses of variables. It chooses a random node and 
replaces it by a variable bound at the node. This is, 
needless to say, not value-preserving. 

7.4 UNUSED VARIABLE DELETION 

As discussed previously, one of the consequences of 
introducing local variables is that many variables are 
defined but never used. While the performance lost due to 
evaluating unneeded definitions can be mostly recovered 
by the optimization outlined above, another consequence 
is that a great deal of the crossovers take place between 
subtrees that are never evaluated and do not contribute to 
the program’s fitness. 

The presence of such code, roughly analogous to the 
unexpressed introns or junk DNA of animal biology, has 
its good points and its bad points. On the plus side, it can 
be a storehouse of genetic variability, lessening or 
removing the need for mutation. Also, when the fitness 
landscape is subject to change, it can increase the gene 
pool’s adaptability by keeping around solutions that “used 
to be needed”. When its organism is relatively good, its 
sheer size can make it less likely that the organism will be 
harmed by a mutation or crossover. On the minus side, 
however, it also has the effect of slowing the evolutionary 



rate by making many genetic operations non-functional. 
This is precisely what is needed (in nature, at least) when 
a population is very close to the local optimum, but it can 
impose a large performance penalty when searching for a 
solution from an initially-random population. The benefit 
or penalty of such code is a topic currently under much 
debate and investigation. (Soule, et al. 1996, Nordin and 
Banzhaf 1995) 

The unused variable deletion genetic operator attempts to 
work against this trend by selecting a LET form from 
within a tree and snipping out one or more variables 
which are unused in the body (as asserted by the vars-
needed function). If all of the variables are removed the 
LET form itself may be replaced by its body. 

8 SUMMARY OF PARAMETERS 

As described above, a run of a genetic programming 
experiment in the presence of statically scoped local 
variables is parameterized by several factors: 

• the probability that a local variable is added to 
the tree during generation, 

• the permitted types of local variables for 
generated trees, 

• the initial number of local variables per type, 

• whether “shadowing” bindings should be 
allowed in generated programs, 

• the probability that a free variable in the father’s 
contribution is replaced by a bound variable from 
the mother’s contribution, and 

• the probabilities of applying the genetic 
operators LET abstraction, variable deletion, 
variable capture, and unused variable deletion. 

9 OTHER OPERATORS 

Perhaps the most important benefit of the addition of 
statically scoped local variables is that it makes it 
straightforward to add a raft of new operators 
corresponding to more sophisticated control structures 
and higher-level functions. In this section we will briefly 
discuss bounded iteration constructs, which we have 
prototyped, and locally defined functions, which we have 
not. 

9.1 BOUNDED ITERATION 

One of the primary limitations of genetic programming, 
as typically implemented, is that the evolved programs 
can only implement constant-time algorithms. This is due 
to the fact that the operators implemented do not allow 
either recursion or iteration. For problems that require 
iteration for their solutions, the experimenter must set up 
the experiment harness to repeatedly invoke the program 
and combine the results in some ad hoc manner. 

Human programmers, by contrast, have access to a wide 
array of iteration constructs, which can be invoked at any 
time and which can nest arbitrarily. It would be nice to be 
able to take advantage of them in evolved programs. 

Unbounded iteration constructs, such as C++’s while 
are problematic because poor programs which use them 
can easily fail to terminate. Much of the use of iteration 
by humans, however, involves iterating over data 
structures such as a strings, vectors, or lists or iterating 
over numbers between a minimum and a maximum. Such 
bounded iteration constructs are more well-defined. 
Unfortunately, other than a simple “repeat n times” 
operator, they are difficult to implement in standard 
genetic programming, as each iteration requires access to 
the current element of the data structure or the current 
value of the index. 

With local variables, such operators are simple to define, 
from a general (for (I17 min max) body), in 
which I17 is available within body, to forms that iterate 
over specific data structures. Useful examples of the latter 
include 

(foreach (v vector) body) 

which sets v to successive elements of the value returned 
by (the vector-returning expression) vector while 
executing body, 

(sum (v vector) body) 
(product (v vector) body) 
(map (v vector) body) 
(select (v vector) pred) 

which do the same thing, but return as values the sum or 
product of the values returned by body, combine the 
values into a new vector, or select those elements 
satisfying a predicate, and the general 

(accumulate ((v1 vector) body) 
      (((v2 init) v3) comb)) 

which binds v1 within body for each element and 
combines the result (as v3) and the previous result (as 
v2) by evaluating comb(inator).  

The self-contained nature of such forms allows for their 
easy reuse, and early results of experiments indicate that 
they make the use of variable-sized data structures quite 
tractable. 

As an example, a symbolic regression from a vector of 
real numbers to the mean of the squares of the values 
turned out to be trivial given (in addition to the vector 
itself, the canonical arithmetic operations and integer 
constants between –10 and 10), a sum operator that 
mapped each element of a vector to a real number and 
summed the result. Running on a population of 5,000 for 
a maximum of 50 generations over only ten training 
cases, validated solutions were found on 21 of 30 runs. 
Surprisingly, half (11) of the solutions were found within 
the first 4 generations, including three in the initial 
random generation. The expected effort for this problem 
to reach 99% confidence is 210,000 evaluations (21 runs 



to generation 1). An example of a correct solution to this 
problem guessed in the initial generation is 

(/ (+ (sum (R6 v)(- R6 R6)) 
      (sum (R5 v)(* R5 R5))) 
   (sum (R9 v)(+ (- R9 R9)  
                 (/ R9 R9)))) 

This program walks the input vector three times. In the 
numerator, it is walked twice, once to compute a constant 
zero and again to compute the sum of squares. In the 
denominator, it is walked once, its body form returning a 
constant one, which when summed yields the length of 
the vector. 

There are two implementation considerations when 
adding support for such iteration constructs. The first 
relates to the handling of such forms during crossover 
(section 5), since some of the variables have no overt 
definition. When an expession is abstracted out of the 
body of an iterator, these variables may be free. In our 
prototype implementation, when a LET binding is 
introduced for such a variable, we simply grow a new 
definition (in the scope of the prevailing bindings) by 
mutation. 

The second consideration is that even though bounded 
iterations are guaranteed to terminate, since they may nest 
arbitrarily, they may take an unacceptably long time to do 
so. To get around this, we implemented a computation 
budget, specifying the maximum number of operations a 
program could execute on a given case before being 
declared to have infinitely bad fitness.7 Clearly, such a 
decision is an indication of little more than human 
impatience, although it may well be worthwhile when 
using loops to consider the number of operations 
evaluated in the fitness measure. One obvious 
optimization is to note that, in the absence of side-effects, 
any body form in which none of the loop variables are 
free must return the same value for the length of the loop 
and so need only be evaluated once. 

Aside from repeatedly calling a candidate program from 
within an experiment harness, Koza, et al. (1999) 
introduced the notions of automatically defined loops and 
automatically defined iterations, as named constructs by 
analogy with automatically defined functions. To get 
around the complexity issues discussed above, these are 
each evaluated a single time, before the main, result-
producing form is evaluated. In the case of iterations, the 
iteration is over a fixed, experiment-specific data 
structure. Any result computed must be stashed away in a 
global store. Because of the way these are defined, it 
appears to be impossible to evolve programs that require 
nested loops. 

                                                           
7 The experiment described used a computation budget of 500 operations 
for vectors containing between five and twenty elements. 

9.2 LOCALLY DEFINED FUNCTIONS 

Another intriguing idea, which we have not yet explored, 
is to use a process similar to that described in (Koza 
1994b) to extract a LAMBDA expression, which can be 
named by a LET binding and replaced by a call to the 
named variable. The variables within the LAMBDA form 
become local variables whose scope extends over the 
body of the form. Since function calls would be on named 
functions,8 the mechanism described in the paper would 
serve to prevent (or explicitly allow) recursion, as a 
function could only name those other functions bound in 
the scope of its definition. Another benefit is that it will 
be straightforward for functions to share variables simply 
by the functions’ being bound within the scope of the 
shared variables. A final advantage is that such named 
functions can easily be passed in as parameters to other 
functions, allowing the evolution of higher-order 
functions and operators such as REDUCE. 

Of course, the addition of functional values (which has 
some support in GPLab already) raises the issue of what 
happens if a functional value is returned to a scope in 
which the variables it references are not bound. While this 
can easily be prevented, the solution—full closures—may 
be worth investigating but will necessitate changes in the 
way local variables are implemented. 

10 DISCUSSION 

The mechanisms described to support local variables have 
been added to GPLab, a flexible framework for genetic 
programming developed and used for data mining 
research at Hewlett-Packard Laboratories. We are 
currently in the process of identifying and evaluating 
classes of problems in which such a capability makes a 
significant improvement in the likelihood of finding a 
solution. 

The expectation is that the addition of local variables will, 
like the addition of automatically defined functions, 
greatly simplify the discovery of solutions to problems in 
which it is profitable to make use of common 
subexpressions as well as those for which solutions can 
profit from the presence of scratchpad variables. 

The added power will, however, be pitted against several 
factors which may serve to increase the effort required to 
find a solution. As discussed in section 7.4, the presence 
of unused bindings acts as a brake on the rate of evolution 
by encouraging crossover in sections of the program 
which do not affect fitness. Also, the addition of genetic 
operators such as LET abstraction and variable deletion, 
which are meaning preserving, can also be expected to 
retard the pace of evolution by creating fewer completely 
new children in each generation. Finally, of course, the 
mere addition of operators into the tableau increases the 
search space. 

                                                           
8 Or statically nested LAMBDA expressions. 



Very early runs of simple symbolic regression problems 
indicate that for problems that can tractably be solved 
without local variables, the mere addition of LET-bound 
local variables does not help and can indeed increase the 
required effort. (For problems which cannot tractably be 
solved either with or without local variables, it is difficult 
to say whether they help or hurt.) 

On the other hand, as discussed in section 9.1, the use of 
local variables within iteration operators appears to be 
quite powerful. 

One thing that has become apparent during this early 
testing phase—although we have not yet quantified it—is 
that there does not appear to be sufficient pressure to 
encourage bound variables to be used multiple times 
within their scope. With the exception of variables 
introduced by operators such as iterators, a local variable 
is truly useful only if it is used more than once. Further 
experimentation will be necessary to determine whether 
this is a property of the parameters so far explored or 
whether some new genetic operator will need to be added 
to further encourage variable reuse. 

Finally, further work needs to be done to compare the use 
of local variables and (a sufficient number of) global 
variables. Each would seem to have advantages and 
disadvantages. The main advantage of global variables is 
that the state may be preserved between evaluations, 
allowing them to form a persistent memory. The apparent 
advantages of local variables over global variables 
include 

• The fact that one definition can shadow another 
means that a local computation can usurp a 
variable without destroying its value, 

• Unlike global variables, they can be profitably 
used even in the absence of side-effecting 
operators, and 

• The number and types of variables needed can be 
determined by the evolutionary process. 

The magnitude of the benefit (or penalty) still needs to be 
quantified. Note that data-structure–specific operators, 
such as those discussed in section 9.1, could make use of 
global, rather than local variables. 

11 CONCLUSIONS 

In this paper, we have shown that it is possible to evolve 
programs which use correctly scoped local variants. We 
have enunciated an invariant which needs to be 
maintained and outlined mechanisms for generating 
invariant-satisfying programs, evaluating programs, and 
maintaining the invariant over genetic operators. We have 
also presented several new genetic operators which add 
and remove local variables and discussed the use of local 
variables for purposes of iteration and functional 
abstraction. 

While it appears intuitively obvious that such a facility, 
ubiquitous as it is in programming languages, should be 

part of any evolutionary arsenal, we have unfortunately 
not yet been able to demonstrate quantitatively the 
usefulness of this facility over any particular class of 
problem, although the ability to use them with bounded 
iteration operators appears to be extremely promising. 
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