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Abstract

This paper extends recent results in the GP
schema theory by formulating a proper exact
schema theorem for GP with one-point crossover.
This gives an exact expression for the expected
number of instances of a schema at the next gen-
eration in terms of macroscopic quantities. This
result allows the exact formulation of the notion
of effective fitness in GP.

1 INTRODUCTION

Schemata are traditionally used to explain why GAs and
more recently GP work [1, 2, 3, 4, 5]. Schemata are sim-
ilarity templates representing sets of points in the search
space. Schema theorems are descriptions of how the num-
ber of members of the population belonging to a schema
vary over time [6].

The usefulness of schema theorems has been often criti-
cised on the basis that they give only a lower bound for the
expected value of the number of instances of a schema H
at the next generationE[m(H; t+1)]. The presence of the
expectation operator means that it is not easy to use the the-
orems to predict the behaviour of a genetic algorithm over
multiple generations. Also, since schema theorems provide
only lower bounds, some researchers argue that their pre-
dictions are not useful even for a single generation ahead.

In very recent work [7] I have presented new theoretical
results on GP and GA schemata which overcome some of
the weaknesses of the schema theorem. For example, I have
extended to GP recent work on GA theory [8, 9] and made
the effects and the mechanisms of schema creation explicit.
This has allowed an exact formulation (rather than a lower
bound) for the expected number of instances of a schema
at the next generation.

One of the problems with this exact account is that

E[m(H; t + 1)] is expressed as a function of microscopic
quantities (i.e. properties of the individuals in the popu-
lation, like their selection probability) rather than macro-
scopic quantities (i.e. properties of schemata, like their fit-
ness or number of instances). Nonetheless, this is a very
useful result. For example, I used it to to derive an im-
proved version of an earlier GP schema theorem [3, 4] in
which some schema creation events are accounted for [7].

This paper extends the work described above by reformu-
lating the exact expression for E[m(H; t + 1)] in terms of
macroscopic quantities only. This leads to a proper exact
schema theorem for GP with one-point crossover. This re-
sult allows the use of some of the theory developed for GAs
in [8, 9], including the notion of effective fitness (firstly ap-
plied to GP in [10, 11]).

The structure of the paper is as follows. Earlier rele-
vant work on GP and GA schemata is reviewed in Sec-
tion 2. Then, in Section 3 our recent exact formulation for
E[m(H; t+1)] is summarised. Section 4 presents the main
contributions of this paper: the macroscopic exact schema
theorem and the exact definition of effective fitness for GP
with one-point crossover. Section 5 gives a detailed exam-
ple on how to use the theory in practice. Some conclusions
are drawn in Section 6.

2 BACKGROUND

2.1 GP SCHEMA THEORIES

Several alternative definitions of GP schema have been pro-
posed in the literature (see [6, 4] for more details). All
of them define schemata as templates composed of one
or multiple trees or fragments of trees. In some defini-
tions [12, 13, 14] schema components are non-rooted and,
therefore, a schema can be present multiple times within
the same program. This leads to considerable mathemati-
cal difficulties. In more recent definitions [3, 5] schemata
are represented by rooted trees or tree fragments, which
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some instances of programs sampling it.
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Figure 2: GP one-point crossover. The thick lines are links
that can be selected as common crossover points.

make schema theorem calculations easier.

Rosca [5] proposed a definition of schema, called rooted
tree-schema, in which a schema is a rooted contiguous tree
fragment. For example, the rooted tree-schema (+ # x)
represents all the programs whose root node is a + the sec-
ond argument of which is x. The symbol # is “don’t care”
symbol which stands for any valid subtree. Rosca derived
a schema theorem for GP with standard crossover. One of
the problems of this result is that it provides only a lower
bound. Another problem is that such a bound is a function
of some microscopic quantities.

In [3] we proposed a simpler definition of schema for GP
in which a schema is a tree composed of functions from the
set F [ f=g and terminals from the set T [ f=g, where F
and T are the function set and the terminal set used in a GP
run. The symbol = is a “don’t care” symbol which stands
for a single terminal or function. A schema H represents
programs having the same shape as H and the same labels
for the non-= nodes. In the following we will refer to our
schemata as fixed-size-and-shape schemata. An example
of schema with some of its instances is shown in Figure 1
assuming that F=f+, -g and T =fx, yg.1

1For symmetry, in this paper we use the convention that also
the root node of a program or a schema has an output link. This
leads to minor changes in the results obtained in our earlier work.
Whenever these are reported here we also modify them to take

To derive a GP schema theorem for these schemata a new
form of crossover, one-point crossover, was used. This
works by selecting a common crossover point in the parent
programs and then swapping the corresponding subtrees,
like standard crossover. To account for the possible struc-
tural diversity of the two parents, one-point crossover anal-
yses the two trees from the root nodes and considers for the
selection of the crossover point only the parts of the two
trees (common region) which have the same topology (i.e.
the same arity in the nodes encountered traversing the trees
from the root node) [3, 4] as illustrated in Figure 2.

In the absence of mutation, the resulting schema theorem
is:

E[m(H; t+ 1)] �Mp(H; t)n
1� pxo

h
pdi�(t) (1� p(G(H); t)) (1)

+
L(H)

N(H)
(p(G(H); t)� p(H; t))

io

where G(H) is the zero-th order schema with the same
structure of H where all the defining nodes in H have been
replaced with “don’t care” symbols,M is the number of in-
dividuals in the population, pdi�(t) is the conditional prob-
ability that H is disrupted by crossover when the second
parent has a different shape (i.e. does not sample G(H)),
pxo is the probability of crossover, E[m(H; t + 1)] is the
expected number of individuals matching the schema H
at generation t + 1, p(H; t) is the probability of selection
of the schema H , N(H) is the total number of nodes in
the schema, and L(H) is the number of links in the mini-
mum tree fragment including all the non-= symbols within
a schema H (see [3, 4] for more details and the proof).
In fitness proportionate selection, p(H; t) = m(H;t)f(H;t)

M �f(t)

where m(H; t) is the number of programs matching the
schema H at generation t, f(H; t) is the mean fitness of
the programs matching H , and �f(t) is the mean fitness of
the programs in the population. The probability pdi�(t) is
hard to model mathematically. In the absence of additional
information one should assume pdi�(t) = 1.

As we noted in [15] the selection/crossover/mutation pro-
cess can be seen as a Bernoulli trial (a newly created indi-
vidual either samples or does not sampleH) and, therefore,
m(H; t + 1) is a binomial stochastic variable. So, if we
denote with �(H; t) the success probability of each trial
(i.e. the probability that a newly created individual sam-
ples H), which we term the total transmission probabil-
ity of H , we have that an exact schema theorem is simply
E[m(H; t + 1)] = M�(H; t). Unfortunately, until very
recently nobody knew how to express �(H; t) exactly.

this extra link into account.



2.2 EXACT GA SCHEMA THEORY

Thanks to Stephens and Waelbroeck [8, 9] it is now possi-
ble to express exactly �(H; t) for GAs operating on fixed-
length bit strings. In a GA with one point crossover applied
with a probability pxo, �(H; t) is given by:2

�(H; t) = (1� pxo)p(H; t) (2)

+
pxo

N � 1

N�1X
i=1

p(L(H; i); t)p(R(H; i); t)

where L(H; i) is the schema obtained by replacing with
“don’t care” symbols (*) all the elements of H from po-
sition i + 1 to position N , R(H; i) is the schema ob-
tained by replacing with “don’t care” symbols all the el-
ements of H from position 1 to position i, and i varies over
the valid crossover points. The symbol L stands for “left
part of”, while R stands for “right part of”. For exam-
ple, if H =1*111, L(H; 1) =1****, R(H; 1) =**111,
L(H; 3) =1*1**, R(H; 3) =***11.

2.3 EFFECTIVE FITNESS

The concept of effective fitness was introduced in GP
in [10, 11] to explain the reasons for bloat and active-code
compression. The effective fitness of program j is defined
as follows:

fej = fj

 
1� pc

Ce

j

Ca

j

pdj

!
; (3)

assuming fitness proportionate selection. In this equation
Ca

j
is the number of nodes in program j, Ce

j
is the number

of nodes in the active part (in contrast to the intron part) of
program j, pc is the crossover probability, pd

j
is the proba-

bility that crossover in an active block of program j leads
to worse fitness for the offspring of j and fj is the fitness
of individual j. If P t

j
is the proportion of programs j at

generation t, P t+1
j

is the average proportion of offspring
of j which behave like j at generation t + 1, and �f t is the
average population fitness at generation t, then

P t+1
j

� P t

j

fe
j

�f t
(4)

which describes “the proliferation of individuals from one
generation to the next” [11]. The “�” sign in the equa-
tion should really be “�” but it was used with the justifi-
cation that the reconstruction of individuals with the same
behaviour as j (due to crossover applied to individuals dif-
ferent from j) was a rare event. Equation 4 clearly indi-
cates that an alternative way of interpreting the effects of

2Since Equation 2 was developed using the simpler approach
described in [7], it is considerably different from the equivalent
results in [8, 9]. However, by performing some minor calculations
the GA schema theorem in [8, 9] can be obtained from it.

crossover is to imagine a GA in which selection only is
used, but in which each individual is given a fitness fe

j

rather than the original fitness fj .

Stephens and Waelbroeck [8, 9] independently rediscov-
ered the notion of effective fitness. Using our own nota-
tion, as in Section 2.2, the effective fitness of a schema is
implicitly defined through the equation

E

�
m(H; t+ 1)

M

�
=
m(H; t)

M
�
fe�(H; t)

�f(t)
;

assuming that fitness proportionate selection is used. This
has basically the same form as Equation 4. Indeed the
two equations represent nearly the same idea, although in

different domains. Since E
h
m(H;t+1)

M

i
= �(H; t) and

m(H;t)

M �f(t)
= p(H;t)

f(H;t)
, one obtains

fe�(H; t) =
�(H; t)

p(H; t)
f(H; t) (5)

= f(H; t)
h
1� pxo

�
1�

X
i

p(L(H; i); t)p(R(H; i); t)

(N � 1)p(H; t)

�i

where we used the value of �(H; t) in Equation 2.

Equation 5 is similar to Equation 3, but there are important
differences: fe

j
is an approximation (of unknown accuracy,

being in fact a lower bound) of the true effective fitness of
an individual in a standard GP system, while fe�(H; t) is
the true effective fitness for a schema in a standard binary
GA. In addition, the true effective fitness fe�(H; t) of a
schema can be bigger than f(H; t) if the building blocks for
H are abundant and relatively fit. On the contrary the esti-
mate/bound given by fe

j
is always smaller than fj (which

may be incorrect).

3 GP HYPERSCHEMA THEORY

In [16, 7] I extend our fixed-size-and-shape schema theory
for GP with one-point crossover obtaining results similar to
those in Section 2.2. This section summarises these results.

If one had a population of programs all having exactly
the same size and shape, it would be possible to express
the total transmission probability of a fixed-size-and-shape
schema, in the presence of one-point crossover, in exactly
the same way as in Equation 2, i.e.

�(H; t) = (1� pxo)p(H; t) (6)

+
pxo

N(H)

N(H)�1X
i=0

p(l(H; i); t)p(u(H; i); t)

where: N(H) is the number nodes in the schemaH (which
is assumed to have the same size and shape of the pro-
grams in the population); l(H; i) is the schema obtained
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Figure 3: Example of schema and some of its potential
fixed-size-and-shape building blocks.
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Figure 4: Example of schema and some of its potential hy-
perschema building blocks.

by replacing all the nodes above crossover point i with =
nodes; u(H; i) is the schema obtained by replacing with a
= nodes all the nodes below crossover point i; i varies over
the valid N(H) crossover points.3 The proof of this re-
sult is reported in [7]. The symbol l stands for “lower part
of”, while u stands for “upper part of”. For example, Fig-
ure 3 shows how l(H; 1), u(H; 1), l(H; 3), and u(H; 3)
are obtained assuming that H =(* = (+ x =)) and
the crossover points are numbered as in Figure 3 (top left).

To extend this result to populations including programs of
different sizes and shapes, in [7] I introduced a more gen-
eral definition of schema:

Definition 1 GP hyperschema. A GP hyperschema is a
rooted tree composed of functions from the set F [ f=g
and terminals from the set T [ f=;#g. F and T are the
function set and the terminal set used in a GP run. The op-
erator = is a “don’t care” symbols which stands for exactly

3A simpler version of this equation, valid when pxo = 1, was
presented in [16] where I failed to state that the equation is only
applicable to populations of programs of fixed size and shape.

one node, while the operator # stands for any valid subtree.

For example the hyperschema is (* # (+ x =)) repre-
sents all the programs with the following characteristics: a)
the root node is a product, b) the first argument of the root
node is any valid subtree, c) the second argument of the
root node is +, d) the first argument of the + is the variable
x, e) the second argument of the + is any valid node in the
terminal set. Hyperschemata are a generalisation of both
Rosca’s and our fixed-shape-and-size schemata.

Using hyperschemata, I obtained the following general re-
sult which is valid for populations of programs of any size
and shape (see [7] for the proof):

Theorem 2 Individual-centred Exact GP Schema Thm.
The total transmission probability for a fixed-size-and-
shape GP schema H under one-point crossover and no
mutation is

�(H; t) = (1� pxo)p(H; t) + pxo
X
h1

X
h2

p(h1; t)p(h2; t)

NC(h1; h2)

�
X

i2C(h1;h2)

�(h1 2 L(H; i))�(h2 2 U(H; i)) (7)

where: the first two summations are over all the individu-
als in the population; NC(h1; h2) is the number of nodes
in the tree fragment representing the common region be-
tween program h1 and program h2; C(h1; h2) is the set of
indices of the crossover points in such a common region;
�(x) is a function which returns 1 if x is true, 0 otherwise;
L(H; i) is the hyperschema obtained by replacing with =
nodes all the nodes on the path between crossover point i
and the root node, and with # nodes all the subtrees con-
nected to the nodes replaced with =; U(H; i) is the hyper-
schema obtained by replacing with a # node the subtree
below crossover point i. If a crossover point i in the com-
mon region between two programs is outside the schema
H , then L(H; i) and U(H; i) are empty sets.

The hyperschemata L(H; i) and U(H; i) are generalisa-
tions of the schemata l(H; i) and u(H; i) used in Equa-
tion 6 (compare Figures 3 and 4). They are very im-
portant: if one crosses over at point i any individual in
L(H; i) and with any individual in U(H; i), the resulting
offspring is always an instance of H . Let us try to under-
stand how L(H; i) and U(H; i) are built with an example.
If H =(* = (+ x =)), as indicated in the second col-
umn of Figure 4, L(H; 1) is obtained by first replacing the
root node with a = symbol and then replacing the subtree
connected to the right of root node with a # symbol obtain-
ing (= = #). The schema U(H; 1) is instead obtained
by replacing the subtree below the crossover point with a #
symbol obtaining (* # (+ x =)), as illustrated in the
third column of Figure 4. The fourth and fifth columns



of Figure 4 show how L(H; 3) = (= # (= x #)) and
U(H; 3) = (* = (+ # =)) are obtained.

If one restricts the first two summations in Equation 7 to
include only the individuals which belong to G(H), one
obtains [7]:

Theorem 3 GP S.T. with Schema Creation Correction.
For a fixed-size-and-shape GP schema H under one-point
crossover and no mutation

�(H; t) � (1� pxo)p(H; t) +
pxo

N(H)
(8)

�

N(H)�1X
i=0

p(L(H; i) \G(H); t)p(U(H; i) \G(H); t);

the equality applying when all the programs in the popula-
tion sample G(H).

A comparison between the r.h.s. of Equation 1 (divided
by M ) and the r.h.s. of Equation 8 when pm = 0 and
pdi�(t) = 1 revealed that Theorem 3 provides a better es-
timate of the true transmission probability of a schema [7].
This is because, unlike the older version, the theorem ac-
counts for some schema creation events.

4 MACROSCOPIC EXACT GP SCHEMA
THEOREM AND EFFECTIVE FITNESS

In order to transform Equation 7 into a macroscopic de-
scription of schema propagation, let us start by numbering
all the possible program shapes, i.e. all the possible fixed-
size-and-shape schemata of order 0. Let us denote such
schemata as G1, G2, � � �. These schemata represent dis-
joint sets of programs. Their union represents the whole
search space. For these reasons, we can rewrite

�(h1 2 L(H; i)) =
X
j

�(h1 2 L(H; i) \Gj)

=
X
j

�(h1 2 L(H; i))�(h1 2 Gj):

We substitute this expression and an analogous expression
for �(h2 2 U(H; i)) into the triple summation in Equa-
tion 7 and reorder the terms obtaining:

X
h1

X
h2

p(h1; t)p(h2; t)

NC(h1; h2)

X
i2C(h1;h2)

�
X
j

�(h1 2 L(H; i))�(h1 2 Gj)

�
X
k

�(h2 2 U(H; i))�(h2 2 Gk)

=
X
j

X
k

X
h1

X
h2

p(h1; t)p(h2; t)

NC(h1; h2)

�
X

i2C(h1;h2)

�(h1 2 L(H; i))�(h1 2 Gj)

��(h2 2 U(H; i))�(h2 2 Gk)

=
X
j

X
k

X
h12Gj

X
h22Gk

p(h1; t)p(h2; t)

NC(h1; h2)

�
X

i2C(h1;h2)

�(h1 2 L(H; i))�(h2 2 U(H; i))

=
X
j

X
k

X
h12Gj

X
h22Gk

p(h1; t)p(h2; t)

NC(Gj ; Gk)

�
X

i2C(Gj;Gk)

�(h1 2 L(H; i))�(h2 2 U(H; i))

=
X
j

X
k

1

NC(Gj ; Gk)

�
X

i2C(Gj;Gk)

X
h12Gj

p(h1; t)�(h1 2 L(H; i))

�
X

h22Gk

p(h2; t)�(h2 2 U(H; i)):

From this one obtains the following

Theorem 4 Exact GP Schema Theorem. The total trans-
mission probability for a fixed-size-and-shape GP schema
H under one-point crossover and no mutation is

�(H; t) = (1� pxo)p(H; t) + pxo
X
j

X
k

1

NC(Gj ; Gk)

�
X

i2C(Gj ;Gk)

p(L(H; i) \Gj ; t)p(U(H; i) \Gk; t) (9)

The sets L(H; i) \ Gj and U(H; i) \ Gk either are (or
can be represented by) fixed-size-and-shape schemata or
are the empty set ;. So, the theorem indeed expresses the
total transmission probability of H only using the selection
probabilities of a set of lower order schemata.

This theorem is a generalisation of Equation 8 which can be
obtained from Equation 9 by considering only one term in
the summations in j and k (the term for whichGj = Gk =
G(H)). The theorem is also a generalisation of Equation 6.

Once the value of �(H; t) is available, it is easy to extend to
GP with one-point crossover the notion of effective fitness
provided in [8, 9]. By using the definition in Section 2.3
and the value of �(H; t) in Equation 9, we obtain:

fe�(H; t) =
�(H; t)

p(H; t)
f(H; t) (10)

= f(H; t)
h
1� pxo

�
1�

X
j

X
k

X
i2C(Gj;Gk)

p(L(H; i) \Gj ; t)p(U(H; i) \Gk; t)

NC(Gj ; Gk)p(H; t)

�i
:



This equation gives the true effective fitness for a GP
schema under one-point crossover: it is not an approxima-
tion or a lower bound. Thanks to this definition it is easy
to see that the effective fitness of a GP schema can be big-
ger than its actual fitness if its building blocks are abundant
and relatively fit. This shows that crossover does not al-
ways have the destructive connotation often attributed to it
in the GP literature (e.g. [13, 11]).

5 EXAMPLE

Since the calculations involved in applying the exact GP
schema theorems may become quite lengthy, we will con-
sider one of the simplest non-trivial examples possible.

Let us imagine that we have a function set
fAf ; Bf ; Cf ; Df ; Efg including only 1-arity func-
tions, and the terminal set fAt; Bt; Ct; Dt; Etg. So, for
example, a program in this search space might look like
(Af (BfBt)). Since, the arity of all functions is 1, we
can remove the parentheses from the expression obtaining
AfBfBt. In addition, since the only terminal in each
tree is the rightmost node, we can remove the subscripts
without generating any ambiguity, obtaining ABB. This
can be done for every member of the search space, which
can be seen as the space of variable-length strings over the
alphabet fA;B;C;D;Eg. So, in this example GP with
one-point crossover is really a non-binary variable-length
GA.

Let us now consider the schema AB=. We want to measure
its total transmission probability under fitness proportion-
ate selection and one-point crossover (with pxo = 1) in two
slightly different populations:

Population 1 Fitness Population 2 Fitness
AB 2 AB 2
BCD 2 BCD 2
ABC 4 ABC 4
ABCD 6 BCDE 6

In order to do that we need first to compute the “lower part”
and “upper part” building blocks of AB=. These are:

i L(AB=; i) U(AB=; i)
0 AB= #
1 =B= A #
2 === AB#
3 ; ;
...

...
...

Let us start by calculating �(AB=; t) for Population 1, us-
ing Equation 7:

�(AB=; t) =
X
h1;h2

p(h1; t)p(h2; t)

NC(h1; h2)
�

�
X
i

�(h1 2 L(AB=; i))�(h2 2 U(AB=; i))

=

p(h1;t)z}|{
2

14
�

p(h2;t)z}|{
2

14
�

1=NC(h1;h2)z}|{
1

2
�(0� 1 + 0� 1)| {z }

h1=AB;h2=AB;i=0;1

+
2

14
�

2

14
�

1

2
� (0� 1 + 0� 0)| {z }

h1=AB;h2=BCD;i=0;1

+ � � �

(13 terms
are omitted)

+
6

14
�

6

14
�

1

4
� (1� 1 + 1� 1 + 1� 1 + 1� 1)| {z }

h1=ABCD;h2=ABCD;i=0;1;2;3

=
43

147
� 0:2925

So, clearly this is a lengthy calculation, which can only
produce a numerical result. It cannot really be used to un-
derstand how instances of AB= are created in different pop-
ulations.

Let us now use Equation 9 to do the same calculation. First
we need to number all the possible program shapesG1, G2,
etc.. Let G1 be =, G2 be ==, G3 be === and G4 be ====.
We do not need to consider other, bigger shapes because
the population does not contain any larger programs (i.e.
Gl = ; for l > 4). Then we need to identify the schemata
resulting from calculating L(AB=; i)\Gj for all meaning-
ful values of i and j:

L(AB=; i) \Gj

j

i 1 2 3 4
0 ; ; AB= ;

1 ; ; =B= ;

2 ; ; === ;

3 ; ; ; ;

We do the same for U(AB=; i) \Gk, obtaining:

U(AB=; i) \Gk

k

i 1 2 3 4
0 = == === ====
1 ; A= A== A===
2 ; ; AB= AB==
3 ; ; ; ;

Finally we need to evaluate the shape of the com-
mon regions to determine NC(Gj ; Gk) and the links in
C(Gj ; Gk) for all valid values of j and k. In general this



can be naturally represented using the program shapes G1,
G2, etc.. For the example under consideration:

Shape of Common Region
k

j 1 2 3 4
1 G1 G1 G1 G1

2 G1 G2 G2 G2

3 G1 G2 G3 G3

4 G1 G2 G3 G4

By using this and the previous tables we can simplify Equa-
tion 9 removing all the null terms as follows:

�(AB=; t) =
X
j;k

1

NC(Gj ; Gk)
�

�
X
i

p(L(AB=; i) \Gj ; t)p(U(AB=; i) \Gk; t)

=

1=NC(Gj;Gk)z}|{
1

1
�

P
i
p(L(AB=;i)\Gj;t)p(U(AB=;i)\Gk;t)z }| {

[ 0� P (=) ]| {z }
j=1;k=1;i=0

+
1

1
� [0� P (==)]| {z }
j=1;k=2;i=0

+ � � � (6 more terms)

+
1

1
� [P (AB =)P (==)]| {z }

j=3;k=1;i=0

+
1

2
� [P (AB =)P (==) + P (= B =)P (A =)]| {z }

j=3;k=2;i=0;1

+ � � � (6 more terms)

where for brevity we have used the notation P (:) to repre-
sent p(:; t). Simplifying yields

�(AB=; t) = P (AB =)P (=) +
1

2
P (AB =)P (==)

+
1

2
P (= B =)P (A =) +

1

3
P (AB =)P (===)

+
1

3
P (= B =)P (A ==) +

1

3
P (===)P (AB =)

+
1

3
P (AB =)P (====) +

1

3
P (= B =)P (A ===)

+
1

3
P (===)P (AB ==)

The complexity of this equation can be reduced by using
hyperschemata to represent groups of schemata, obtaining:

�(AB=; t) = P (AB =)P (=) +
1

2
P (AB =)P (==)

+
1

2
P (= B =)P (A =) +

1

3
P (AB =)P (== #)

+
1

3
P (= B =)P (A = #) +

1

3
P (===)P (AB#)

This is equivalent to reordering the terms by size and shape
of common region and then by crossover point.

This equation is quite different from the one obtained with
the earlier exact schema theorem. It is general, i.e. indepen-
dent from a particular population. Also, it clearly indicates
how individuals sampling AB= can be assembled from in-
dividuals having different shapes and nodes. The schemata
in this equation are the real building blocks for AB=.

If we calculate the probabilities of selection of the schemata
in the previous equation using Population 1, we obtain:

�(AB=; t) =
4

14
� 0 +

1

2
�

4

14
�

2

14
+

1

2
�

4

14
�

2

14

+
1

3
�

4

14
�

12

14
+

1

3
�

4

14
�

10

14
+

1

3
�

6

14
�

10

14

=
43

147
� 0:2925

The result is the same in the two calculations as expected.
However, once the exact macroscopic formulation of the
transmission probability of a schema is available, this is
much easier to use in calculations than the corresponding
microscopic description. Indeed, we can use it to calculate
�(AB=; t) for Population 2 with a simple pocket calculator
obtaining �(AB=; t) � 0:1905. For comparison, for either
population, the schema theorem with schema creation cor-
rection would have provided the lower bound:

�(AB=; t) �
1

3
P (AB =)P (===)

+
1

3
P (= B =)P (A ==) +

1

3
P (===)P (AB =)

� 0:1088

which is nearly one third of the correct value for Population
1 and a half of the correct value for Population 2. This is be-
cause the theorem accounts only for schema creation events
in G(AB=). Since there are no creation events of this type
in this example, the old GP schema theorem (Equation 1)
gives exactly the same bound.

With these results we can now compute the effective fitness
for the schema AB= for both populations. For Population 1

fe�(AB=; t) =
�(AB=; t)

p(AB=; t)
f(AB=; t) �� 4:1;

i.e. thanks to the collaboration of other schemata the
schema AB= propagates faster with 100% crossover than
with no crossover at all! On the contrary for Population 2

fe�(AB=; t) =
�(AB=; t)

p(AB=; t)
f(AB=; t) � 2:7:

So, in Population 2 the schema is effectively a below-
average schema (fe�(AB=; t) = 2:7 < �f(t) = 3:5) despite
the fact that its fitness (f(AB=; t) = 4) is above average.



6 CONCLUSIONS

In this paper, a macroscopic exact schema theorem for ge-
netic programming with one-point crossover is provided.
This theorem extends to GP (and also to a form of variable
length GAs) recent GA theory, using a more general notion
of GP schema: the hyperschema.

Thanks to this theorem it is now possible to express exactly
the notion of effective fitness. This was originally intro-
duced in GP in approximate form in [10, 11] to explain the
reasons for bloat and active-code compression, and later re-
defined more formally for GAs in [8, 9] to describe the ef-
fects of the search operators on the reproductive efficiency
of a schema. So, this paper establishes a formal link be-
tween the two main areas of theoretical research in GP: the
study of bloat and the theory of schemata. In future re-
search I hope to be able to use this rigorous formulation
of the effective fitness to model mathematically and under-
stand better the reasons for bloat, intron proliferation and
code compression.
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