
A hybrid decision tree/genetic algorithm for coping with the problem
of small disjuncts in data mining

Deborah R. Carvalho

Pontificia Universidade Catoli ca do Parana (PUCPR)
Postgraduate program in applied computer science

R. Imaculada Conceicao, 1155. Curitiba – PR
80215-901. Brazil

Universidade Tuiuti do Parana (UTP)
Computer Science Dept.

Av. Comendador Franco, 186. Curitiba-PR
80215-090 Brazil
deborah@utp.br

Alex A. Freitas

Pontificia Universidade Catoli ca do Parana (PUCPR)
Postgraduate program in applied computer science

R. Imaculada Conceicao, 1155. Curitiba – PR
 80215-901. Brazil

alex@ppgia.pucpr.br
http://www.ppgia.pucpr.br/~alex

Tel./Fax: (55) (41) 330-1669

Abstract

The problem of small disjuncts is a serious
challenge for data mining algorithms. In essence,
small disjuncts are rules covering a small
number of examples. Due to their nature, small
disjuncts tend to be error prone and contribute to
a decrease in predictive accuracy. This paper
proposes a hybrid decision tree/genetic algorithm
method to cope with the problem of small
disjuncts. The basic idea is that examples
belonging to large disjuncts are classified by
rules produced by a decision-tree algorithm,
while examples belonging to small disjuncts
(whose classification is considerably more
diff icult) are classified by rules produced by a
genetic algorithm specificall y designed for this
task.

1 INTRODUCTION

In the context of the well -known classification task of
data mining, the discovered knowledge is often expressed
as a set of IF-THEN rules, since this kind of knowledge
representation is intuitive for the user. From a logical
viewpoint, typicall y the discovered rules are in disjunctive
normal form, where each rule represents a disjunct and
each rule condition represents a conjunct. A small
disjunct can be defined as a rule which covers a small
number of training examples (Holte et al. 1989).

In general rule induction algorithms have a bias that
favors the discovery of large disjuncts, rather than small
disjuncts. This preference is due to the belief that it is

better to capture generalizations rather than
speciali zations in the training set, since the latter are
unlikely to be valid in the test set (Danyluk & Provost
1993).

Hence, at first glance, small disjuncts are not important,
since they tend to be error prone. However, a deeper study
of the issue of small disjuncts reveals that in fact they are
quite interesting in the context of data mining, for the
following reasons:

(a) Although each disjunct covers a small number of
examples, the set of all small disjuncts can cover a large
number of examples. For instance (Danyluk & Provost
1993) report a real-world application where small
disjuncts cover roughly 50% of the training examples.
Therefore, if the rule induction algorithm ignores small
disjuncts and discovers only large disjuncts, classification
accuracy will be significantly degraded.

(b) Some small disjuncts cover examples that represent
rare cases in the application domain, which constitutes an
interesting concept to be discovered. Actuall y, bearing in
mind that one of the goals of data mining is to discover
previously-unknown rules, small -disjunct rules tend to be
more interesting than large-disjunct rules, since the latter
are more likely to be previously-known by the user
(Provost & Aronis 1996).

In this paper we propose a hybrid decision tree/genetic
algorithm method for rule discovery that copes with the
problem of small disjuncts. The basic idea is that
examples belonging to large disjuncts are classified by
rules produced by a decision-tree algorithm, while
examples belonging to small disjuncts (whose
classification is considerably more diff icult) are classified
by rules produced by a new genetic algorithm,
specificall y designed for discovering small -disjunct rules.

The rest of this paper is organized as follows. Section 2
discusses related work. Section 3 describes our hybrid
decision tree/genetic algorithm method for rule discovery.

This section assumes that the reader is famil iar with
decision-trees, which is a very well -known knowledge
discovery paradigm in data mining, and focus on a
detailed description of a new genetic algorithm proposed
in this paper. Section 4 reports the results of experiments
evaluating the performance of the proposed method on a
case study dataset. Finally, section 5 presents the
conclusions and some future research directions.

2 RELATED WORK

(Holte et al. 1989) investigated three possible solutions
for coping with small disjuncts, namely: (a) Eliminating
all rules whose number of covered training examples is
below a predefined threshold. In effect, this corresponds
to eliminating all small disjuncts, regardless of their
estimated performance. (b) Eliminating only the small
disjuncts whose estimated performance is poor. (c) Using
a specificity bias for small disjuncts (while using a
generality bias for large disjuncts). The third approach
turned out to be partly (but not entirely) successful.

(Ting 1994) proposed the use of a hybrid data mining
method to cope with small disjuncts. His method consists
of using a decision-tree algorithm to cope with large
disjuncts and an instance-based learning (IBL) algorithm
to cope with small disjuncts. The basic idea of this hybrid
method is that IBL algorithms have a specificity bias,
which should be more suitable for coping with small
disjuncts. In a high level of abstraction, the basic idea of
this method is similar to our hybrid decision-tree/genetic
algorithm method. However, Ting’s method has the
disadvantage that the IBL algorithm does not discover any
high-level, comprehensible rules. By contrast, we use a
genetic algorithm that does discover high-level,
comprehensible small-disjunct rules, which is important
in the context of data mining.

(Weiss 1995) investigated the interaction of noise with
rare cases (true exceptions) and showed that this
interaction led to degradation in classification accuracy
when small -disjunct rules are eliminated. However, these
results have a limited utility in practice, since the analysis
of this interaction was made possible by using artificiall y
generated data set. In real-world data sets the correct
concept to be discovered is not known a priori, so that it is
not possible to make a clear distinction between noise and
true rare cases. (Weiss 1998) did experiments showing
that, when noise is added to real-world data sets, small
disjuncts contribute disproportionaly and significantly for
the total number of classification errors made by the
discovered rules.

3 A HYBRID DECISION-TREE /
GENETIC-ALGORITHM METHOD
FOR RULE DISCOVERY

As mentioned in the introduction, we propose a hybrid
method for rule discovery that combines decision trees
and genetic algorithms. The basic idea is to use a well -

known decision-tree algorithm to classify examples
belonging to large disjuncts and use a new genetic
algorithm to discover rules classifying examples
belonging to small disjuncts. This approach tries to
combine the best of both worlds. Decision-tree algorithms
have a bias towards generalit y that is well suited for large
disjuncts, but not for small disjuncts. On the other hand,
genetic algorithms are robust, flexible algorithms which
tend to cope well with attribute interactions (Freitas
2000), (Noda et al. 1999), and can be more easil y tailored
for coping with small disjuncts.

The proposed method discovers rules in two training
phases. In the first phase we run C4.5, a well -known
decision tree induction algorithm (Quinlan 1993). The
induced, pruned tree is transformed into a set of rules in
the usual way - that is, each path from the root to a leaf
node corresponds to a rule predicting the class specified
in the corresponding leaf node. Hence, a decision tree
with d leaves is transformed into a rule set with d rules (or
disjuncts). Each of these rules is considered either as a
small disjunct or as a “large” (non-small) disjunct,
depending on whether or not its coverage (the number of
examples covered by the rule) is smaller than or equal to a
given threshold.

The second phase consists of using a genetic algorithm to
discover rules covering the examples belonging to small
disjuncts. We have developed a new genetic algorithm for
this phase, which will be described in detail below.

Once the second training phase is over, examples in the
test set are classified as follows. For each test example,
we first check whether the example is covered by some
large-disjunct rule. If so, the example is classified by the
corresponding rule, which is one of the rules induced by
the decision tree algorithm. Otherwise the example is
classified by some small-disjunct rule, which is one of the
rules discovered by our genetic algorithm.

It should be noted that the small-disjunct rules discovered
by our genetic algorithm can overlap each other.
Therefore, if a test example is to be classified by some
small disjunct rule, there might be one of the following
two kinds of rule confli ct.

First, there might be more than one small-disjunct rule
covering the test example. If this is the case, the example
is classified by the highest-quality rule among all small -
disjunct rules covering the examples. The quality of a rule
is measured by the value of the fitness function computed
by the genetic algorithm - described in section 3.3.
Second, there might be no small -disjunct rule covering
the test example. If this is the case, the example is
classified by a default rule. This is a rule which simply
predicts the majority class of the target dataset. A similar
procedure is also used in several rule induction
algorithms.

Finally, note also that these kinds of rule confli ct cannot
occur if the test example is to be classified by a large-
disjunct rule, since these rules have mutually exclusive

and exhaustive coverage, due to that fact that they were
directly generated from the induced decision tree.

3.1 OVERVIEW OF A GA FOR DISCOVERING
SMALL-DISJUNCTS RULES

In this section we describe our genetic algorithm (GA)
developed for discovering small -disjunct rules - i.e. rules
covering the examples in leaf nodes of a decision tree
considered to be a small disjunct, as explained above.

The first step in the design of a GA for rule discovery is
to decide what an individual (candidate solution)
represents. In our case, each individual represents a small -
disjunct rule. The genome of an individual consists of the
conditions in the antecedent (IF part) of the rule. The goal
of the GA is to evolve rule conditions that maximize the
predictive accuracy of the rule, as evaluated by a fitness
measure - described below. The consequent (THEN part)
of the rule, which specifies the predicted class, is not
represented in the genome. Rather, it is fixed for a given
GA run, so that all individuals have the same rule
consequent during all that run.

Each run of our GA discovers a single rule (the best
individual of the last generation) predicting a given class
for examples belonging to a given small disjunct. Since
we need to discover several rules to cover examples of
several classes in several different small disjuncts, we run
our GA several times for a given dataset. More precisely,
we need to run our GA d * c times, where d is the number
of small disjuncts and c is the number of classes to be
predicted. For a given small disjunct, the k-th run of the
GA, k = 1,...,c, discovers a rule predicting the k-th class.

At first glance this is a computationally expensive
approach for rule discovery. However, note that in our
approach each GA run will use as its training set - for the
purpose of fitness computation - only the few (about 10)
examples belonging to a given small disjunct. Therefore,
we avoid the well -known bottleneck of most GAs for rule
discovery, which is the long time taken to evaluate an
individual’s fitness when mining large datasets. Indeed,
the computational results reported in section 4 confirm
that the total processing time associated with all the runs
of our GA is relatively short.

The next subsections describe in detail the individual
representation, the fitness function, and the genetic
operators used in our GA.

3.2 INDIVIDUAL REPRESENTATION

In our GA each individual represents the antecedent (IF
part) of a small-disjunct rule. More precisely, each
individual represents a conjunction of conditions
composing a given rule antecedent. Each condition is an
attribute-value pair - see below.

The rule antecedent contains a variable number of rule
conditions, since one does not know a priori how many
conditions wil l be necessary to compose a good rule. In
practice, for implementation purposes, one has to specify

both a lower limit and an upper limit in the number of
conditions of a rule antecedent. In our GA the minimum
number of rule conditions is 2. Although this number
could be set to 1, recall that our GA is searching for
small-disjunct rules. It is very unlikely that a rule with a
single condition can accurately predict the class of an
example belonging to a small disjunct, so a lower limit of
2 seems to make sense.

The maximum number of rule conditions is more diff icult
to determine. In principle, the maximum number of rule
conditions could be m, where m is the number of predictor
attributes in the dataset. However, this would have two
disadvantages. First, it could lead to the discovery of very
long rules, which goes against the desire to discover
comprehensible rules. Second, it would require a long
genome to represent individuals, which tends to increase
processing time. To avoid these problems, we use a
heuristics to select the subset of attributes that is used to
compose rule conditions.

Our heuristics is based on the fact that different small
disjuncts identified by the decision-tree algorithm can
have several rule conditions in common. For instance,
suppose that two sibling leaf nodes of the decision tree
were deemed small disjuncts and let k be the number of
ancestor nodes of these two leaf nodes. Then the two
corresponding rule antecedents have k - 1 conditions in
common. Therefore, it does not make much sense to use
these common conditions in the rules to be discovered by
the GA. Rather, for each small disjunct, the genome of a
GA individual contains only attributes that were not used
to label any ancestor of the leaf node defining that small
disjunct.

To represent a variable-length rule antecedent
(phenotype) we use a fixed-length genome, for the sake of
simplicity. Recall that each GA run discovers a rule
associated with a given small disjunct and that each small
disjunct is identified by a decision tree leaf node. For a
given run of the GA, the genome of an individual consists
of n genes, where n = m - k, where m is the total number
of predictor attributes in the dataset and k is the number of
ancestor nodes of the decision tree leaf node identifying
the small disjunct in question.

Each gene represents a rule condition (phenotype) of the
form Ai Opi Vi j, where the subscript i identifies the rule
condition, i = 1,...,n; Ai is the i-th attribute; Vi j is the j-th
value of the domain of Ai; and Op is a logical/relational
operator compatible with attribute Ai - see below. To
encode this phenotype the internal representation of a
gene consists of four elements, as follows:

(a) identification of a given predictor attribute, Ai, i =
1,...,n.

(b) identification of a logical/relational operator Opi. Two
cases are possible here. If attribute Ai is a categorical
(nominal) attribute, the operator Opi is “ in” , which will
produce rule conditions such as “Ai in {Vi1,...,Vi k}” , where
{Vi1,...,Vi k} is a subset of the values of the domain of Ai.
By contrast, if Ai is a continuous (real-valued) attribute,

the operator Opi is either “≤“ or “>“, which wil l produce
rule conditions such as “Ai ≤ Vi j” , where Vi j is a value
belonging to the domain of Ai.

(c) identification of a set of attribute values {Vi1,...,Vi k}, if
the attribute Ai is categorical, or a single attribute value
Vi j, if the attribute Ai is continuous, as explained in the
previous item.

(d) a flag, called the active bit Bi, which takes on the value
1 or 0 to indicate whether or not, respectively, the i-th
condition is present in the rule antecedent (phenotype).

The overall structure of the genome of an individual is
ill ustrated in Figure 1.

 A1 Op1{ V1j..} B1 . . . Ai Opi{ Vij..} Bi . . . An Opn{ Vnj..} Bn

Figure 1: Structure of the genome of an individual.

3.3 FITNESS FUNCTION

To clarify the definition of the fitness function used in our
GA, we show in Figure 2 a well -known 2x2 confusion
matrix for domains with two classes - arbitrarily called
“positi ve” (+) and “negative” (-) classes. This matrix
divides the classifications made by discovered rules
predicting the “+” class on the test set into four
categories, depending on whether or not a test example is
covered by a rule predicting the “+” class, corresponding
to the first and second rows, respectively; and on whether
or not the test example has the “+” class, corresponding to
the first and second columns, respectively (Hand 1997).
The labels of each of the four quadrants of the matrix
have the following meaning: TP = number of “+”
examples that were correctly classified as “+” examples;
FP = number of “-” examples that were wrongly classified
as “+” examples; FN = number of “+” examples that were
wrongly classified as “-” examples; TN = number of “-”
examples that were correctly classified as “-” examples.

True Class

“+” “ -“

“+” TP (true positive) FP (false positive)Predicted

Class “ -“ FN (false negative) TN (true negative)

Figure 2: A 2x2 confusion matrix for a domain with two
classes

To evaluate the quality of an individual (candidate rule),
our GA uses the following fitness function:

Fitness = (TP / (TP + FN)) * (TN / (FP + TN)) .

For a comprehensive discussion about this and related
rule-qualit y measures in general, independent of genetic
algorithms, the reader is referred to (Hand 1997). Here we
briefly mention that, in the above formula, the term
(TP / (TP + FN)) is often called sensitivity, whereas the
term (TN / (FP + TN)) is often called specificity. These
two terms are multiplied to force the GA to discover rules
that have both high sensitivity and high specificity, since
it would be relatively simple to maximize one of these
terms by reducing the other.

3.4 GENETIC OPERATORS

We use the well -known tournament method for
reproduction, with tournament size of 2. We also use
standard one-point crossover with crossover probabilit y of
80%, and mutation probabilit y of 1%. Furthermore, we
use eliti sm with an elitist factor of 1 - i.e. the best
individual of each generation is passed unaltered into the
next generation.

In addition to the above standard genetic operators, we
have also developed a new operator especiall y designed
for improving the comprehensibil ity of rules. The basic
idea of this operator, called rule-pruning operator, is to
remove several conditions from a rule to make it shorter.
In a high level of abstraction, removing conditions from a
rule is a common way of rendering a rule more
comprehensible, in the data mining literature. This
operator is applied to every individual of the population,
right after the individual is formed as a result of crossover
and mutation operators.

We have devised a rule pruning procedure based on
information theory. In essence, this procedure works as
follows. First of all, it computes the information gain of
each of the n rule conditions (genes) in the genome of the
individual – see below. Then the procedure iteratively
tries to remove one condition at a time from the rule. The
smaller the information gain of the condition, the earlier
its removal is considered and the higher the probabilit y
that it will be actually removed from the rule.

More precisely, in the first iteration the condition with the
smallest information gain is considered. This condition is
kept in the rule (i.e. its active bit is set to 1) with
probabilit y equal to its normalized information gain (in
the range 0..1), and is removed from the rule (i.e. its
active bit is set to 0) with the complement of that
probabilit y. Next the condition with the second smallest
information gain is considered. Again, this condition is
kept in the rule with probabilit y equal to its information
gain, and is removed from the rule with the complement
of that probabilit y. This iterative process is performed
while the number of conditions occurring in the rule is
greater than the minimum number of rule conditions - at
present set to 2, as explained earlier - and the iteration
number is smaller than or equal to the number of genes
(maximum number of rule conditions) n.

The information gain of each rule condition condi of the
form <Ai Opi Vi j> is computed as follows (Quinlan 1993),
(Cover & Thomas 1991):

InfoGain(condi) = Info(G) – Info(G|condi), where

 c

Info(G) = - Σ (|Gj|/|T| * log2(|Gj|/|T|))
 j=1

Info(G|condi) = c

 [- (|Vi|/|T|) Σ ((|V ij|/|V i|) * log2(|V ij|/|V i|))
 j=1

 c

 - (|¬V i|/|T|) Σ ((|¬V ij|/|¬V i|) * log2(|¬V ij|/|¬V i|))]
 j=1

where G is the goal (class) attribute, c is the number of
classes (values of G), |Gj| is the number of training
examples having the j-th value of G, |T| is the total
number of training examples, |V i| is the number of
training examples satisfying the condition <Ai Opi Vi j>,
|V ij| is the number of training examples that both satisfy
the condition <Ai Opi Vi j> and have the j-th value of G,
|¬V i| is the number of training examples that do not
satisfy the condition <Ai Opi Vi j>, and |¬V ij| is the
number of training examples that do not satisfy <Ai Opi

Vi j> and have the j-th value of G.

/* n = number of genes = number of attributes available to compose rule
antecedent */
/* The i-th position of vectors Info_Gain_Cond[] contains the
information gain of the i-th condition. This is used as the probabil ity that
the condition is active */
/* The i-th position of vector Sorted_Cond[] contains the id of the
 condition with the i-th smallest information gain */
BEGIN
 Min_N_Cond = 2; /* Minimum number of conditions */
 FOR i = 1 TO n
 compute Info_Gain_Cond[i]; /* see text * /
 END FOR
 sort the n conditions in increasing order of Info_Gain_Cond[i];
 FOR i = 1 TO n
 Sorted_Cond[i] = Id of condition with
 the i-th smallest information gain;
 END FOR
 Iteration_Id = 1;
 N_Act_Cond = number of active conditions (with active bit = 1) in
genome;
 WHILE (N_Act_Cond > Min_N_Cond) AND (Iteration_Id < n)
 Random_N = randomly-generated number in the range 0..1;
 IF Random_N < Info_Gain_Cond[Sorted_Cond[I teration_Id]]
 THEN condition whose Id is Sorted_Cond[I teration_Id]
 is active (i.e. it occurs in the rule)
 ELSE condition whose Id is Sorted_Cond[I teration_Id]
 is not active (i.e. does not occurs in the rule)
END WHILE
END

Figure 3: Rule-pruning procedure applied to GA
individuals

The use of the above rule-pruning procedure combines the
stochastic nature of GAs, which is partly responsible for
their robustness, with an information-theoretic heuristics
for deciding which conditions compose a rule antecedent,
which is one of the strengths of some well -known data
mining algorithms. As a result of the action of this
procedure, our GA tends to produce rules that have both a
relatively small number of attributes and high-
information-gain attributes, whose values are estimated to
be more relevant for predicting the class of an example.

A more detailed description of our rule-pruning procedure
is shown in Figure 3. As can be seen in this Figure, the
above-described iterative mechanism for removing
conditions from a rule is implemented by sorting the
conditions in increasing order of information gain. From
the viewpoint of the GA, this is a logical sort, rather than
a physical one. In other words, the sorted conditions are
stored in a data structure completely separated from the
individual’s data structure, so that there is no modification
in the actual order of the conditions in the genome of the
individual.

4 COMPUTATIONAL RESULTS
As a case study for evaluating the proposed GA, we have
used the adult dataset, which is one of the largest public
domain datasets in the well -known data repository of the
UCI (University of Cali fornia at Irvine), available at
http://www.ics.uci.edu/~mlearn/MLRepository.html.

This dataset contains information about the USA census.
The goal (class) attribute indicates whether or not the
average annual salary of a person exceeds 50K dollars.
This dataset contains 48842 examples and 14 attributes,
out of which 6 are continuous and 8 are categorical.

In our experiments we have used the predefined division
of the dataset into a training and a test set, with the former
having 32561 examples and the latter having 16281
examples. The examples that had some missing value
were removed from the data set. As a result, the number
of examples was slightly reduced to 30162 and 15060
examples in the training and test set, respectively.

In each run of the GA, the population size is 200
individuals, and the GA is run for 50 generations. We
used these parameter values because they are relatively
common in the literature. We made no attempt to
optimize these parameter values.

As described in section 3, our hybrid decision-tree/GA
rule discovery method consists of using a GA to discover
rules for classifying small-disjunct examples only - recall
that large-disjunct examples are classified by the decision
tree. Intuitively, the performance of our method will be
significantly dependent on the definition of small disjunct.

In our experiments we have used a commonplace
definition of small disjunct, based on a fixed threshold of
the number of examples covered by the disjunct. The
general definition is: “A decision-tree leaf is considered a
small disjunct if and only if the number of examples

belonging to that leaf is smaller than or equal to a fixed
size S.” We have done experiments with four different
values for the parameter S, namely S = 3, S = 5, S = 10
and S = 15.

For each of these four S values, we have done five
different experiments, varying the random seed used to
generate the initial population of individuals. The results
reported below, for each value of S, is an arithmetic
average of the results over these five different
experiments. Therefore, the total number of experiments
is 20 (4 values of S * 5 different random seeds).

This methodology makes the results somewhat more
reliable, since in GAs, as in other stochastic methods, the
quality of the results may be somewhat influenced by the
random seed.

Note that the actual number of GA runs is much more
than 20. Indeed, in each of these 20 experiments we run
the GA twice for each small disjunct, since the target
dataset has two classes. In any case, each run of the GA is
relatively fast, as argued in section 3. In reality, each of
these 20 experiments took a processing time on the order
of one hour on a Pentium II of 266 MHz with 64Mb of
RAM.

We now report results comparing the performance of the
proposed GA against C4.5, a well -known decision-tree
induction algorithm (Quinlan 1993). We have used the
default parameters of C4.5. To make the comparison fair,
we have made no attempt to optimize GA parameters
such as population size, number of generations, and
probabiliti es of crossover and mutation. We used
relatively common parameter values suggested in the
literature, as described above.

Table 1: Results comparing our hybrid C4.5/GA against
C4.5

accuracy rate of C4.5 only Accuracy rate of C4.5 / GA

disjunct
size (S)

large
disjuncts

small
disjuncts

over-
all

large
disjuncts

small
disjuncts

over-
all

3 0.80 0.51 0.786 0.80 0.49 0.784

5 0.81 0.52 0.786 0.81 0.49 0.783

10 0.84 0.52 0.786 0.84 0.77 0.826

15 0.84 0.53 0.786 0.84 0.86 0.844

The results are shown in Table 1. The first column of this
Table indicates the size threshold S used to define small
disjuncts. The next three columns report results produced
by C4.5 alone, without using the GA. More precisely, the
second and third columns of the Table report the accuracy
rate on the test set achieved by C4.5 separately for
examples classified by large-disjunct rules and small-
disjunct rules. The fourth column reports the overall
accuracy rate on the test achieved by C4.5, classifying
both large- and small -disjunct examples. Note that the

figures in this column are of course constant across all the
rows, since its results refer to the case where all test
examples are classified by C4.5 rules, regardless of the
definition of small disjunct.

The next three columns report results produced by our
hybrid C4.5/GA method. More precisely, the fifth column
reports the accuracy rate on the test set for large-disjunct
rules. The figures in this column are, of course, exactly
the same as the figures in the second column, since our
hybrid method also uses the C4.5 rules for classifying
examples belonging to large disjuncts. In any case, we
included this redundant column in the Table for the sakes
of comprehensibil ity and completeness. The sixth column
reports the accuracy rate on the test set for the small-
disjunct rules discovered by the GA. Finally, the seventh
column reports the overall accuracy rate on the test
achieved by our hybrid C4.5/GA method, classifying both
large- and small-disjunct examples.

Comparing the third column against the sixth column we
can note two distinct patterns of results. Consider first the
case where a disjunct is considered as small if it covers ≤
3 or ≤ 5 examples. This case corresponds to the first and
second rows of Table 1. In this case the performance of
the rules produced by the GA is slightly inferior to the
performance of the rules produced by C4.5. In any case,
this small reduction of performance referring to small-
disjunct rules has an even smaller, virtually-negligible
impact on the overall accuracy rate, as can be seen by
comparing the fourth and seventh columns of Table 1. For
instance, in the second row the overall accuracy rate of
C4.5 is 78.6%, while the overall accuracy of our hybrid
C4.5/GA is 78.3%.

A different picture emerges when we consider the case
where a disjunct is considered as small if it covers ≤ 10 or
≤ 15 examples. This case corresponds to the third and
fourth rows of Table 1. Now the performance of the
small-disjunct rules produced by the GA is much better
than the performance of the small -disjunct rules produced
by C4.5. For instance, in the fourth row the C4.5 rules
have an accuracy rate of 53% whereas the GA rules have
an accuracy rate of 86%. This improved accuracy has a
considerable impact on the overall accuracy rate. For
instance, in the fourth row the overall accuracy of C4.5 is
78.6%, while the overall accuracy of our hybrid C4.5/GA
is 84.4%.

A possible explanation for these results is as follows. In
the first case, where a disjunct is considered as small i f it
covers ≤ 3 or ≤ 5 examples, there are very few training
examples available for each GA run. With so few
examples the estimate of rule quality computed by the
fitness function is far from perfect, and the GA does not
manage to do better than C4.5. On the other hand, in the
second case, where a disjunct is considered as small i f it
covers ≤ 10 or ≤ 15 examples, the number of training
examples available for the GA is considerable higher -
although still relatively low. Now the estimate of rule
quality computed by the fitness function is significantly
better. As a result, the characteristics of GA which make

them suitable for discovering good small-disjunct rules -
such as robustness, flexibil ity, and ability to cope well
with attribute interaction - lead to the discovery of small-
disjunct rules much better than the corresponding rules
discovered by C4.5.

Despite the good results reported above, the current
version of our method has a limitation. It implicitly
assumes that each small disjunct contains examples of
both positi ve and negative classes. This is necessary in
order to discover rules from small disjuncts. This
condition is satisfied by adult dataset. However, in some
datasets some small disjuncts can contain only positi ve
examples, with no negative example to support rule
discovery. In these cases the current version of our
method should not be directly applied to the small
disjuncts in question. We are currently working on a new
version of our system that solves this problem.

5 CONCLUSIONS AND FUTURE
RESEARCH

The problem of how to discover good small -disjunct rules
is very difficult, since these rules are error-prone due to
the very nature of small disjuncts. Ideally, a data mining
system should discover good small-disjunct rules without
sacrificing the goodness of discovered large-disjunct
rules.

Our proposed solution to this problem was a hybrid
decision-tree/GA method, where examples belonging to
large disjuncts are classified by rules produced by a
decision-tree algorithm and examples belonging to small
disjuncts are classified by rules produced by a genetic
algorithm. In order to reali ze this hybrid method we have
used the well -known C4.5 decision-tree algorithm
algorithm and developed a new genetic algorithm tailored
for the discovery of small -disjunct rules.

The proposed hybrid method was evaluated in a case
study using the adult dataset. The performance of our new
GA and corresponding hybrid C4.5/GA method depends
significantly on the definition of small disjunct. In a
nutshell, the results shows that: (a) there is no significant
difference in the quality of the rules discovered by C4.5
alone and the rules discovered by our C4.5/GA method
when a disjunct is considered as small i f it covers ≤ 3 or ≤
5 examples; (b) the quality of the rules discovered by our
C4.5/GA method is considerably better than the quality of
the rules discovered by C4.5 alone when a disjunct is
considered as small i f it covers ≤ 10 or ≤ 15 examples.

A disadvantage of our hybrid C4.5/GA method is that it is
much more computationally expensive than the use of
C4.5 alone. More precisely, in a training set with about
30000 examples our hybrid method takes on the order of
one hour, while C4.5 alone takes on the order of a few
seconds. However the extra processing is not too
excessive, and it seems a small price to pay for the
considerable increase in the predictive accuracy of the
discovered rules.

In addition, scalability to larger datasets does not seem a
problem so serious as one might think at first glance.
Most of the processing time of our hybrid method is taken
by the GA. However, the length of time taken by each GA
run depends essentiall y on the definition of disjunct size,
rather than on the size of the entire dataset. It is true that
larger datasets tend to have a larger number of small
disjuncts, which in turn would increase the processing
time of our C4.5/GA method - due to an increase in the
number of GA runs. However, this is a problem for any
algorithm specificall y designed for coping with small
disjuncts. The point is that the processing time taken per
small disjunct is relatively short even when using a
genetic algorithm, since there are just a few examples in
the training set of a small disjunct.

There are several possible directions for future research.
An important one is to evaluate the performance of the
proposed hybrid C4.5/GA method for different kinds of
definition of small disjunct, e.g. relative size of the
disjunct (rather than absolute size, as considered in this
paper). It would also be useful to evaluate the
performance of the proposed method in other datasets, to
further validate the results presented in this paper.
Another interesting research direction would be to
compare the results of the proposed C4.5/GA method
against rules discovered by the GA only, although in this
case the design of the GA would have to be somewhat
modified - e.g. the heuristics of attribute selection
described in section 3.2 could not be used.

BIBLIOGRAPHY

K. Ali (1995). Learning Probabilistic Relational Concept
Descriptions, PhD thesis, chapter 5. University of
California, Irvine. USA.

T.M. Cover and J. A. Thomas (1991), Elements of
Information Theory, John Wiley & Sons.

A. Danyluk and F. Provost (1993). Small Disjuncts in
Action: Learning to Diagnose Errors in the Local Loop of
the Telephone Network, Proc. 10th International
Conference Machine Learning, 81-88.

A.A. Freitas (2000) Evolutionary Algorithms. Chapter of
forthcoming Handbook of Data Mining and Knowledge
Discovery. Oxford University Press, 2000.

D. Hand (1997). Construction and Assessment of
Classification Rules, John Wiley & Sons.

R. Holte; L. Acker and B. Porter (1989). Concept
Learning and the Problem of Small Disjuncts, Proc.
IJCAI – 89, 813-818.

E. Noda; H.S. Lopes and A.A FREITAS (1999)
Discovering interesting prediction rules with a genetic
algorithm. Proc. CEC-99, 1322-1329.

F. Provost and J.M. ARONIS (1996). Scaling up
inductive learning with massive paralleli sm. Machine
Learning 23(1), Apr. 1996, 33-46.

J. R Quinlan (1993). C4.5: Programs for Machine
Learning, Morgan Kaufmann Publisher.

K.M. Ting (1994). The Problem of Small Disjuncts: its
remedy in Decision Trees, Proc. 10th Canadian
Conference on AI, 91-97.

G.M. Weiss (1995). Learning with Rare Cases and Small
Disjuncts, Proc. 12th International Conference on
Machine Learning, 558-565.

G.M. Weiss (1998). The Problem with Noise and Small
Disjuncts, Proc. Int. Conf. Machine Learning (ICML –
98), 1998, 574-578.

