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Abstract

This paper focuses on the study of genetic
algorithms for evolving controllers for Micro Air
Vehicles (small flying robots). Specifically, the
effects of team size on the evolution of the robots
are studied. The study of team sizes deals with
finding an ideal number of robots to collectively
perform the surveillance task of a given region.
In addition, controllers for evolved robot teams
are tested in teams of different sizes to determine
if the results can be generalized. In addition,
statistical analysis is performed to evaluate the
evolved results.

1 INTRODUCTION
Although a single ant can perform many amazing tasks
such as carrying a food morsel that weighs several times
more than the ant’s own body weight, it is often even
more interesting to look at the work of a colony of ants. A
team of hundreds of ants can efficiently work together on
tasks such as building anthills. This distributed approach
has been adopted in many aspects of the human world and
the robotics world. In general, a team of distributed robots
can perform various tasks more efficiently than a single
robot. Specifically, using a team of robots adds fault
tolerance to the system. If a single robot fails to function,
then the remaining robots can possibly take over the
duties of the failed robot, thus ensuring the team still
meets the goal. There are many applications for
distributed robotics such as surveillance, exploration of
space, or evacuation of land mines.
Another area that is being explored in robotics is the idea
of evolving control of the robots. In robotics, the robots
are given rule sets that guide the robot to perform certain
actions. The robot has a list of conditions that correspond

with different actions. Instead of explicitly writing the
rule sets for the robots, scientists have explored evolving
the rule sets using Genetic Algorithms (GAs). GAs are
search methods based on principles from natural selection
and genetic reproduction.
This paper deals with the problem of coordinating a team
of distributed Micro Air Vehicles (MAVs) to perform
surveillance on a given area. MAVs are lightweight,
autonomous air vehicles that can be equipped with
sensors and payloads for various missions. In this
research, we assume the vehicles can detect certain
features of the land below the vehicle, and can detect
other MAVs within a certain radius of itself. The MAVs’
task, as a group, is to fly over an area and perform
reconnaissance. They need to maximize the area covered,
concentrating on areas of more importance, and
minimizing duplication of effort. In previous work, we
successfully used GAs to evolve MAV control rule sets
that could accomplish the above surveillance task (Wu et
al., 1999).
An important issue in design of multi-robot systems is the
size and structure of the deployed team. Therefore, the
focus will be on the effects of evolution on team size, and
how controllers evolved for a certain team size would
perform when utilized in a different team size. It should
be noted that the team size refers to the number of MAVs
deployed in each simulation experiment, and is different
from the population size of Genetic Algorithms.

2 EVOLUTIONARY ROBOTICS
Evolutionary robotics is the result of applying the
concepts of genetic algorithms to the realm of robotics,
evolving brains (controllers) and possibly the body of the
robots. There are numerous studies on the use of GAs to
evolve the control of robots in many different
environments. One environment that has been used to test
the success of GAs is robot soccer (Agah and Tanie,



1997). They used GAs to evolve the Tropism-Based
control structure, based on “likes” and “dislikes” of the
robots in terms of actions that they like to perform. The
fitness function that was used rewarded the robots for
scoring goals, assisting teammates in scoring goals, and
blocking opponent’s shots on goal. They showed that
after evolving the robots for many generations, the robots
produced a better team than the initial populations.
Evolutionary robotics experiments have been performed
using physical robots (Floreano and Mondada, 1994).
GAs have also been used to evolve neural networks for
robot control (Lund and Miglino, 1996). They developed
a system using a combination of the physical and
simulated world. They developed a physical world for the
Khepera robot, and allowed it to go through many
different motions. All the sensory data was read from the
robot into the computer during this phase. The simulator
could then take real sensory and motor data from the
physical world, and model those in the simulated world,
using them as inputs for the neural network. They argue
that this method significantly reduced the amount of time
for transition of a simulated system to a physical system.
Another common application for evolutionary robotics is
the area of biped locomotion. Researchers have developed
a Steady State Genetic Algorithm to search for the
necessary torques for moving each joint of the robot leg in
the appropriate path (Rodrigues et al., 1996). They
modeled the robot in software as a connection of five
rigid bodies and two revolutionary joints for each of the
legs. One revolutionary joint was for the knee and the
other was for the hip. Each simulation was allowed only
three seconds to carry out the desired action. They studied
the complexity of the problem in that it took 2000
iterations for the robot to learn how to stand. They
repeated the walking experiments with varying velocities,
showing the success and failures of the application of
genetic algorithms.
There are many other examples of related evolutionary
robotics research (Billard et al., 1999) (Bonabeau et al.,
1999) (Floreano and Mondada, 1998) (Floreano and
Mondada, 1994) (Harvey, 1996) (Nolfi and Parisi, 1995).
Utilization of GAs in evolving robot controllers has also
been investigated in: (Cliff et al., 1993) (Deneubourg et
al., 1991) (Grefenstette et al., 1990) (Shibata and Fukuda,
1993) (Ueyama et al., 1992).
The work in this paper extends previous work in a number
ways. First, this work is oriented towards control of
distributed unmanned air vehicles, not land-based
vehicles. In addition, this study will focus on the
dynamics of evolving rule sets for teams of varying size.

3 MICRO AIR VEHICLES

3.1 ROBOTS
The micro air vehicles used in these experiments are set to
realistic parameters based on prototypes, as described in
(Wu et. al, 1999). The robots in the experiment are

circular and have a radius of five units. The MAV is
equipped with eight sensors, giving it a sensing radius of
30 units. The sizes are parameters that can be changed for
each experiment. These sensors can be used to detect
other robots and the boundary of the survey area;
however, the sensors simply return one bit, 1 or 0,
depending on if something is present or not. In other
words, the MAVs detect other MAVs and the boundary
edges, but the MAVs will not be able to distinguish
between another MAV and a boundary edge of the
environment.
In addition to sensing other robots and the boundary, each
robot has eight sensors that can survey a circular area on
the ground below the robot, with a total radius of 15 units.
The ratio of the sensing radius compared to the survey
radius ensures that it is possible that no two robots will
overlap surveying the ground. In other words, a robot will
be able to detect another robot, preventing the same area
of ground being covered by both robots. However, this
depends on the control system of the MAVs and their
efficiency in generating the behavior of the MAVs.

3.2 CONTROL SYSTEM
The control of the MAV is governed by rule sets
consisting of the typical condition/action rules. The action
a robot takes is based on the robot’s sensory information.
As mentioned earlier, the robot has eight sensors for
sensing other robots, each returning a bit for whether an
entity is detected or not. Also, there are eight sensors for
surveying the land. The eight survey sensors return two
bits corresponding to the level of topology on the ground
that is detected. Bit values representing the topology
states are: 00 for level 0 (no topology), 01 for level 1
topology, 10 for level 2 topology, and 11 is not used.
These topologies represent the level of interest in the
location, i.e., places that are of more interest would have a
higher topology value.
The 8 bits from sensing and the 16 bits from the
surveying make up the condition component of the
condition-action pairing. The action portion of the rule is
made up of four bits. The first bit tells whether the robot
should move forward or hover in place. The other three
bits correspond to a turn direction. The directions the
robot can turn are the eight compass directions (N, NE, E,
SE, S, SW, W, and NW). Table 1 shows all the three bit
combinations that make up the degree change in direction.
The condition and action clauses are paired together to
make one MAV rule of 28 bits. Table 2 shows an example
of a MAV rule broken into the condition and action
components. The sensors are numbered from zero to
seven as the condition component in Table 2 is read from
right to left. The sensors 0, 2, and 4 have detected another
entity; thus, they each registered a one for the sensing
data and the other sensors return zero. The topology
sensors return varying values. Sensors zero through two
detect topology level two while the remaining sensors
detect topology level one. The bits in the action clause tell



the MAV to move forward and turn +45 degrees, for that
specific condition.

Table 1: Bit Values for Relative Turn Direction

BIT
VALUES

RELATIVE TURN
DIRECTION (DEGREES)

000 -135

001 -90

010 -45

100 0

110 +180/-180

101 +45

011 +90

111 +135

Table 2: An example MAV rule.

CONDITION ACTION

8 BITS
FOR

SENSING

16 BITS FOR
TOPOLOGY

MOVE ANGLE

101010000 1010100101010101 1 101

A robot’s rule set is made up of one or more of these
rules. The sensors are queried at each time step of the
simulation and the sensory information is compared with
the condition clauses of the rules. The condition clause
with the best degree of match to the sensory data is
selected. The degree of match is the difference between
the condition component of the rule and the current sensor
values. In the case that multiple rules qualify for the best
match, then one of the best matching rules is chosen at
random. If the degree of match is within a certain
threshold, then the action clause of the rule is fired. In the
simulation, every MAV is able to collect sensory
information, determine the action to take, and execute the
action. Although in the physical environment some moves
may take longer than others may, in the simulation all
moves are assumed to take one time step, thus simplifying
the simulation task.

3.3 ENVIRONMENT
As previously mentioned, there are three different levels
of topology (Wu et al., 1999). The levels of topology
correspond to how interesting is the section of land. In
other words, if the MAV is used for military surveillance
then a section of land that contains a military base or
airport is perhaps more interesting or more relevant than a
flat, dry plain with farms. Therefore, in this example, the
military base could be classified as a level one or level
two and the flat plain could be classified as a level zero or
no topology.

The topology is normally defined in the following
fashion. First, the boundaries of the survey area are
defined and everything within is given the level zero
topology value. The boundaries are defined so that if a
MAV tries to go outside the survey area then the MAV is
considered inoperable and can no longer function.
Rectangular level one topologies can be defined within
the survey boundaries. Smaller, rectangular level two
topologies can be defined within the rectangular, level
one topologies. Figure 1 describes a topology with three
level two topologies within a large level one topology.
The level two topologies have one larger topology to the
north of two smaller topologies.

3.4 SIMULATION
In the experiments, each MAV is configured with eight
sensors, has a radius of five, survey range of 30, and a
sensor range of 50 units. In the setup files, the rule set for
each MAV is defined. All of the MAVs have the same
rule set in the experiments, i.e., a homogenous team of
robots. This was done because it is more difficult to
evaluate the individual success of a robot in a
heterogeneous team of robots.
Using the simulator, each robot checks its sensory data
during each time step and compares the data to the list of
conditions in the rule set. When the sensory data matches
a certain condition, then the corresponding action is fired.
Since, there are 24 bits of sensory data then there are 224

or 16,777,216 possible conditions. In the experiments, a
maximum and a minimum rule set sizes have been set.
To evaluate the success of the team of MAVs, the
percentage of surveillance area (with the added weight
value for more significant topology) is calculated for all
the MAVs. The value is averaged over the entire
experiment time steps and is used as the final metric for

Figure 1: The Defined Topology



evaluating the success of the team, representing the
fitness function of the Genetic Algorithm. It should be
noted that the credit assignment problem is eliminated
using this approach, since the performance of the entire
team is considered instead of individual robots
(homogeneous members).
The simulator runs without animation to speed up the
testing cycle. However, configuring the input files to print
a trace can produce a trace file that holds information
about where the robots are located and what they are
surveying during each time step. If the option to print a
trace is enabled, then a file is generated from the
simulation program that shows the position of every robot
at each time step. This file can then be used to view the
animation through a Java applet.

3.5 ANIMATION
A Java applet was developed to view the simulation of the
MAVs. The applet displays data from trace file, as
generated by the simulation. The applet provides the
options of running, pausing, and stepping through the
animation. In addition, the animation may be reset at any
time or change the speed in which it executes. In the
animation, the MAVs are started on the west boundary of
the survey area. As mentioned earlier, a thin-lined box
denotes the boundary area and the areas of interest are the
rectangular shapes within the survey area. The screenshot
illustrating the animation using the Java appletviewer is
shown in Figure 2. The MAV is the inner of the three
circles. The second circle represents the area of the
ground that the MAV can survey and the third circle
represents the MAV sensor range for detecting the
boundaries and other MAVs. The thin line from the center
of the MAV to the edge of the MAV indicates the current
direction that the robot is heading.

3.6 EVOLUTION
A GA was used to evolve rule sets for controlling teams
of MAVs. Each individual in a GA population represents
a complete rule set. The fitness of a GA individual (a rule
set) is determined by the performance of a team of MAVs
using that rule set in the simulation described in section
3.4. As a result, the GA must execute one MAV
simulation for every individual in its population. Table 3
gives the parameter settings for the GA that we used to
learn the rule sets. We used a population size of 100
individuals and each run evolved for 150 generations. The
evolved rule sets could vary in length (i.e. the number of
rules varied); however, their size was limited by a
maximum and minimum length. For example, the
maximum length of an individual in our experiments is
2800 bits. Since each rule is 28 bits long, this translates to
100 rules. The minimum length allowed in these
experiments is 10 rules. Initial chromosome length refers
to the length of the individuals in the initial population.
One point random crossover was used; a single crossover
point was randomly and independently selected on each
parent, resulting in variable length individuals. Crossover

can only occur in between rules; crossover will never
occur within a rule. Mutation modifies individual bits and
is consequently able change the rules themselves. The
parsimony pressure refers to the amount of negative
weight in the fitness function that penalizes the MAVs
with the longer rule set. This value ranges from zero (no
parsimony pressure) up to the maximum chromosome
length.
The fitness of a particular rule set is determined by testing
its effectiveness in the MAV simulation. For any GA run,
the MAV parameters are held constant throughout the
entire run. Table 4 gives the parameter values used in our
MAV simulations. It is necessary to specify the number of
MAVs, the number of sensors, the number of bits for the
condition, the number of bits for the action, the size of the
MAVs, the sensor range, the survey range of the MAVs,
and the initial positions of the robots. An additional
specification that is needed is the topology that describes
the environment to test the MAVs.

Table 3: GA Parameters

PARAMETER VALUE

Population size 100

Max number of generations 150

Initial chromosome length 1680

Max chromosome length 2800

Min chromosome length 280

Parsimony pressure 0

Crossover type one point

Crossover rate 1.0

Mutation rate 0.005

Table 4: MAV Parameters

PARAMETER VALUE

MAV team size Variable

Survey range 15

Sensor range 30

Number of sensors 8

Radius 5

Condition length 24

Action length 4

Spacing 5



4 EXPERIMENTS

4.1 EXPERIMENT SETUP
The experiments were run on Sun Ultra 5/333 MHz
Workstations. Each experiment was run on different Sun
Solaris machines. On average, a Sun Ultra 5/333 can
evolve a population of 100 MAVs for 150 generations in
just over 24 hours. The experiments were typically
divided among six to seven different machines. Tables 3
and 4 show the GA parameters and MAV parameters,
respectively. In the experiments, the topology description
is fixed. The topology used has a 400x400 region with a
level one 300x300 topology centered in the middle of the
region. Three level two topologies were placed within the
level one area. A larger area is to the north of two smaller
areas. Figure 1 shows the topology.

In all the experiments, the data presented concerning the
evolution program is based on three runs, i.e., the average
of three repetitions of the experiments. Furthermore, all
data that is gathered solely from the simulation program
are based on 10 runs. The experiments were repeated to
increase the reliability of the results.

4.2 TEAM SIZE EXPERIMENTS
A series of experiments focused on investigating the
effect of the MAV team size on the on the GAs ability to
evolve effective and robust rule sets. The term team size
refers to the number of MAVs used in a particular MAV

simulation. For instance, a MAV team size of eight means
that eight MAVs will be used to survey the land in that
simulation. It should be noted that, during a simulation,
the MAVs could collide or leave the surveillance area,
rendering them inoperable, reducing the number of MAVs
operating for the rest of the simulation. Since a single GA
run uses the same MAV simulation parameters
throughout its entire run, the MAV team size is fixed for
individual GA runs.
Using the GA and MAV parameters given in tables 3 and
4, we evolved rule sets for MAV team sizes ranging from
2 to 20 MAVs per team. Each experiment used a different
MAV team size. Each experiment averaged the
performance of three GA runs. The goal of these
experiments was to see if these tests would yield an ideal
team size for the simulated task. Figure 3 shows the
resulting fitnesses of the rule sets evolved in our
experiments. The fitness of the evolved rule sets
decreases as the number of MAVs reached 20. The
descent in the fitness values appears to start when the GA
is evolving rule sets for teams of 10 or more MAVs. We
hypothesize that this decrease may be due to the
environment becoming too crowded. The optimal number
of MAVs for the environment size that we tested appears
to be around six. With a small number of MAVs (e.g.
two) the fitness value seemed relatively high; however,
the deviation between the best fitness and the worst
fitness is significantly larger.

4.3 SCALABILITY OF EVOVLED RULE SETS
The previous set of experiments looked at evolving rule
sets for a fixed, known team size. A more interesting
problem involves evolving rule sets that will work well
for unknown or a range of team sizes. That is, we would
like to evolve an effective rule set for controlling a team
of MAVs in a particular task; however, the actual number
of MAVs that will be available may not be known at the
time that we are learning the rule set. Is it possible to
evolve rule sets that will work well for team sizes other
than the one used during its evolution?
In this second set of experiments, rule sets were evolved
using team sizes of 2, 5, 10, 15, and 20 MAVs. The best
rule set from generation 150 of these runs was then
selected to be tested in simulations using teams of 2, 5,
10, 15, and 20 MAVs. Each selected rule set was tested10
times with each team size. Figure 4 shows the fitness of
robots using the various rule sets and the various testing
population sizes. These results suggest that it is better to
evolve rule sets using larger MAV team sizes if the actual
deployed team is unknown in advance. For each rule set
selected from a GA with a fixed team size, Table 5 shows
the fitness or performance of that rule set in simulations
using other team sizes.
In addition, the average fitness/performance of each rule
set over all team sizes is calculated, excluding the
diagonal elements, where the number of MAVs were the
same for evolved and simulated cases. As shown in Table
5, the average performance of a rule set that was evolved

Figure 2: The MAV Animation



using a team size of 20 is much better than the average
performance of a rule set evolved using a team size of
two. Performance gradually increases as the evolving
team size increases. We speculate that lack of interaction
between MAVs in small team sizes may play a large role
in these results. The statistical analysis in the next will be
used to support this hypothesis.

4.4 STATISTICAL ANALYSIS
Statistical analysis was performed to help support or deny
the hypothesis that it is better to evolve larger population
of MAVs. The Student’s t test is an acceptable method for
comparing the two groups of data (Caprette, 1998). The t
test determines if the two populations are the same based
on the variable data that is collected.
The t test was applied to the values from the evolved rule
sets of two MAVs and five MAVs. Table 6 shows the
fitness data points collected and the mean and standard
deviation of the two samples. Calculating the A value for
the two samples yields 8/16 or 0.5. Calculating the B
value for the two samples yields 88.35. Therefore, the
value of t is 3.37. With six degrees of freedom, the critical
value is 2.45 for a probability of 0.05. The t value 3.37 is
greater than 2.45 so we can confidently reject the null
hypothesis. In other words, we can confidently say that
the two groups are different. Applying the t test to the
other comparisons yields similar results. The t values
from comparing the various samples are listed in the
Table 7. Looking up the confidence probability on a table
of critical values yields Table 8. From Table 8 it is
important to realize that the t tests that allow the rejection
of the null hypothesis concern the rules evolved for two
MAVs and any other rule set. The cells with the star
indicate the null hypothesis cannot be rejected. The
preliminary result is that t tests determined there is a
significant probability that the rule sets for 10 MAVs and
20 MAVs are different. The remainder of the evolved rule
sets for 5, 10, 15, and 20 MAVs provide too similar
results to reject the null hypothesis. It can be argued that
the rule sets evolved for five MAVs and up include
similar interactions with other robots when compared
with the larger rule sets.

5 CONCLUSION
In this paper, we investigate the use of a GA to evolve
rule sets for controlling teams of distributed micro air
vehicles (MAVs). We looked at two main aspects of this
topic: (1) does the size of the team affect the effectiveness
of the rule sets that can be evolved, and (2) can we evolve
rule sets that will work in simulations using team sizes
different from the team size that was used during the
evolution of the rule set. Our results suggest that it is
more difficult to evolve effective rule sets for larger team
sizes than smaller team sizes. We speculate that this
difficulty arises from the fact that rule sets for larger team

sizes must be able to deal with more interactions than rule
sets for smaller team sizes. When the actual size of the
team is unknown in advance, however, it appears to be
better to evolve rule sets using larger team sizes. The
larger sized teams appear to provide the learning process
with more instances of interactions, allowing the GA to
evolve a more complete rule set.

Table 5: Fitness of Evolved Rule Sets in Different
Population Sizes

# MAVS EVOLVED IN GA# MAVS
TESTED

IN
SIMUL.

2
MAVs

5
MAVs

10
MAVs

15
MAVs

20
MAVs

2 51.899 49.242 33.493 49.481 46.835

5 27.294 56.871 48.835 57.608 56.268

10 17.724 52.456 55.056 52.901 55.074

15 19.143 36.032 44.694 43.008 47.906

20 11.489 27.587 32.795 33.120 37.314

AVERAGE 18.91 41.32 39.95 48.278 51.521

Since the experiments were carried out in a simulated
world, many limitations were not accounted for in these
tests. Many of the variables of the physical world did not
come into play in the simulated world. For instance, the
robots were limited to two-dimensional motion. In the
physical world, the robot would need to be able to ascend
and descend vertically in the environment along with
moving horizontally. In addition, other constraints on the
robot were not taken into consideration such as battery
levels. In the real world, the robots would base their
control system not only on the sensing and survey data,
but also on the internal sensors such as battery usage.
Finally, the surveying of the robot was greatly simplified
in the simulation. In the real world, the robots would have
to perform image recognition or be given satellite maps
and corresponding topology levels.
There are many new directions that this project’s future
work can take. First, the dynamics of the physical world
and the constraints of the robots can be added to the
current software package. Three-dimensional maps can be
added to the environment along with additional sensors
for the robots to handle the three-dimensional world. A
new environment can be developed, complete with
buildings and recharging stations for the robots.
Additionally, the information from these experiments can
be tested in the physical world. Many other areas would
need to be explored and implemented such as image
recognition. Implementing these experiments in the real
world would convincingly show the feasibility of using
the genetic algorithm to evolve the rule sets for teams of
flying robots.



References
Agah, A., and Tanie, K. (1997). Robots Playing to Win:
Evolutionary Soccer Strategies. In Proceedings of the
IEEE International Conference on Robotics and
Automation, 632-637.

Billard, A., Ijspeert, A.J., and Martinoli, A. (1999).
Adaptive exploration of a dynamic environment by a
group of communicating robots. In Proceedings of the 7th
European Conference on Artificial Life, Lausanne.
Bonabeau, E., Dorigo, M. and Theraulaz, G. (1999).
Swarm Intelligence: From Natural to Artificial Systems.
Oxford University Press, New York.

Best, Average and Worst Fitness For Varying Number of MAVs

0

10

20

30

40

50

60

70

80

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

# of MAVs

Fi
tn

es
s Average

Best
Worst

Figure 3: Fitness Function for Varying Number of MAVs

Testing the Fitness of Evolved Rule Set for 2,5,10,15, and 20 MAVs in Varying Population 
Sizes

0

10

20

30

40

50

60

70

2 5 10 15 20

# of MAVs Tested

Fi
tn

es
s 

Va
lu

e 2 MAVs
5 MAVs
10 MAVs
15 MAVs
20 MAVs

Figure 4: Fitness of Evolved Rule Sets in Different Population Sizes



Caprette, D.R. (1998). Student's t test for independent
samples.
http://www.ruf.rice.edu/~bioslabs/tools/stats/ttest.html.
Cliff, D., Harvey, I., and Husbands, P. (1993).
Explorations in evolutionary robotics. Adaptive Behavior,
Vol. 2, 73-110.
Deneubourg, J.-L., Goss, S., Franks, N., Sendova-Franks,
A., Detrain, C., and Chretien, L. (1991). The dynamics of
collective sorting: robot-like ants and ant-like robots. In
Meyer, J.-A. and Wilson, S.W. (Eds.) From Animals to
Animats. MIT Press, Cambridge, Massachusetts, 356-363.
Floreano, D., and Mondada, F. (1998). Evolutionary
Neurocontrollers for Autonomous Mobile Robots. Neural
Networks, Vol. 11, 1461-1478.
Floreano, D. and Mondada, F. (1994). Automatic creation
of an autonomous agent: genetic evolution of a neural
network driven robot. In Cliff, D., Husbands, P., Meyer,
J.-A., and Wilson S.W. (Eds.) From Animals to Animats
III, MIT Press, Cambridge, MA.
Grefenstette, J.J., Ramsey, C.L., and Schultz, A.C.
(1990). Learning sequential decision rules using
simulation models and competition. Machine Learning,
Vol. 5, 355-381.
Harvey, I. (1996) Artificial evolution and real robots. In
Proceedings of International Symposium on Artificial Life
and Robotics, Beppu, Japan, 138-141.
Lund, H.H., and Miglino, O. (1996). From simulated to
real robots. In Proceedings of the IEEE Conference on
Evolutionary Computing, 362-365.
Nolfi, S., Parisi, D. (1995). Evolving non-trivial behaviors
on real robots: An autonomous robot that picks up
objects. In Gori, M. and Soda, G. (Eds.) Topics in
Artificial Intelligence, Proceedings of the 4th Congress of
the Italian Association of Artificial Intelligence, Springer-
Verlag, Berlin, 243-254.
Rodrigues, L., Prado, M., Tavares, P., da Silva, K., and
Rosa, A. (1996). Simulation and control of biped
locomotion-GA optimization. In Proceedings of the IEEE
Conference on Evolutionary Computing, 390-395.
Schultz, A.C. (1994). Learning robot behaviors using
genetic algorithms. In Proceedings of the First World
Automation Congress, 607-612.
Shibata, T. and Fukuda, T. (1993). Coordinative behavior
in evolutionary multi-agent robot system. In Proceedings
of the IEEE/RSJ International Conference on Intelligent
Robots and Systems, 448-453.
Ueyama, T., Fukuda, T., and Arai, F. (1992). Structure
configuration using genetic algorithm for cellular robotic
system. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, 1542-
1549.
Wu, A.S., Schultz, A., and Agah, A. (1999). Evolving
control for distributed micro air vehicles. In Proceedings
of the 1999 IEEE International Symposium on

Computational Intelligence in Robotics and Automation
(CIRA '99), Monterey, California, November 1999.

Table 7: Fitness Data for Two MAVs and Five MAVs

# OF MAVS TESTED 2 MAVS 5 MAVS

2 ----- 49.242

5 27.294 -----

10 17.724 52.456

15 19.143 36.032

20 11.489 27.587

Mean 18.91 41.32

Standard Deviation 6.5 11.59

Table 8: T Values for Varying Numbers of MAVs

# OF
MAVs

2 5 10 15 20

2 ----- 3.373 4.067 4.710 8.048

5 3.373 ----- 0.195 0.883 1.622

10 4.067 0.195 ----- 1.248 2.463

15 4.710 0.883 1.248 ----- 0.555

20 8.048 1.622 2.463 0.555 -----

Table 9: Probabilities of Two Similar Rule Sets

# OF
MAVs

2 5 10 15 20

2 ----- 0.025 0.010 0.005 0.005

5 0.025 ----- * * *

10 0.010 * ----- * 0.050

15 0.005 * * ----- *

20 0.005 * 0.050 * -----
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