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Abstract 

 

 

We describe a genetic segmentation algorithm 
for image data streams and video.  This 
algorithm operates on segments of a string 
representation.  It is similar to both classical 
genetic algorithms that operate on bits of a string 
and genetic grouping algorithms that operate on 
subsets of a set. It employs a segment fair 
crossover operation.  For evaluating 
segmentations, we define similarity adjacency 
functions, which are extremely expensive to 
optimize with traditional methods.  The 
evolutionary nature of genetic algorithms offers 
a further advantage by enabling incremental 
segmentation.  Applications include browsing 
and summarizing video and collections of 
visually rich documents, plus a way of adapting 
to user access patterns. 

1 INTRODUCTION 

Segmenting multimedia data streams is a fundamental 
problem with many applications.  By segmentation, we 
mean breaking up a data stream into meaningful parts. 
Properly segmented streams can be better organized and 
reused.  They provide points of access that facilitate 
browsing and retrieval.  As more and more multimedia 
data are created and made available, segmentation 
algorithms can serve the important function of helping 
summarize this mass of material. 

For video segmentation, the meaningful parts may be 
shots defined by camera changes, or scenes defined by 
semantically related shots. This is a difficult segmentation 
problem for machines (even for humans), because 
extracting sematics is hard.  A poor but sometimes useful 
method is simple uniform partitioning at fixed time 
intervals (Mills, Cohen, & Wong, 1992).  Resonable 
results have been obtained with algorithms that look at 
features such as color histograms.  Standard methods 
involve variations of feature clustering algorithms (e.g. 

see Boreczky & Rowe, 1996; Girgensohn & Boreczky, 
1999; Uchihashi & Foote, 1999; Yeung & Yeo, 1997; 
Zhang, Low, Smoliar, & Wu, 1995). 

There are several advantages of genetic algorithms over 
current methods for segmentation such as clustering. 
First, the genetic mechanism is independent of the 
prescribed evaluation function and can be tailored to 
support a variety of characterizations based on heuristics 
depending on genre, domain, user type, etc. Second, 
evolutionary algorithms are naturally suited for doing 
incremental segmentation, which may be applied to 
streaming media (e.g. video over the Web). Third, it can 
support dynamically updated segmentation that adapt to 
usage patterns, like adaptively increasing the likelihood 
that frequently accessed points will appear as segment 
boundaries. 

In this paper, we will focus on image data streams and 
video.  By image data streams, we mean a sequence of 
images. Of special interest is video, which can be 
considered as a type of image data stream consisting of 
frames.  This may be produced video or raw video.  
Examples of produced video are news, movies, and 
training videos.  Examples of raw video are video of 
meetings, surveillance records, and wearable personal 
video cameras (Mann, 1996).  At a coarser level of 
granularity, slide shows are also image data streams.  
Another familiar type of image data stream is a collection 
of ordered visual documents, such as presentation slides, 
PowerPoint slides, and note pages with images such as 
produced by the NoteLook system (Chiu, Kapuskar, 
Reitmeier, Wilcox, 1999). 

The method that we describe in this paper can be applied 
to non-image data streams.  The genetic segmentation 
algorithm remains the same; what is required are different 
fitness functions that take into account the appropriate 
characteristics of that medium and software for 
processing that medium. 

This paper is organized as follows. In Section 2 we define 
similarity adjacency functions for evaluating 
segmentations. Section 3 describes our Genetic 
Segmentation Algorithm (GSA), along with a discussion 
of the segment fair crossover operation.  Section 4 



provides some useful variations including incremental 
segmentation.  Section 5 shows two examples 
demonstrating our technique for summarizing a video of a 
seminar and a set of note pages with images from a 
presentation.  Section 6 discusses related work and 
compares our GSA to the classical GA and Genetic 
Grouping Algorithms (GGA).  

2 EVALUATING SEGMENTATIONS 

When characterizing and evaluating segmentations of 
video, the specific applications must be kept in mind.  For 
the purposes of browsing and summarization, we define 
similarity adjacency functions with varying degrees of 
sophistication. In the simplest form, these functions only 
take into account image differences.  In the more complex 
forms, information retrieval ideas are used. 

2.1 PREPROCESSING 

For segmenting video, it is a good idea to begin by 
reducing the number of frames. A video can have 
thousands of frames, and many adjacent ones are likely to 
be similar. We reduce the size of the set of images by 
only looking at those that are not too similar.  For a non-
video image document stream, this reduction step may be 
skipped.  For a video recorded at 30 frames per second, 
we first subsample at a lower rate (one frame per half 
second is reasonable to capture the action in most 
domains), and call this set of images F.  From this set, we 
pick out the least similar images by measuring their 
differences with the standard technique of color 
histograms (e.g. see Boreczky & Rowe, 1996). For any 
two images i and j we define  

h(i, j)  =  histogram difference between i and j, 
dh(i)  =  h(i −1, i)  with  dh(0)  =  h(1, 0). 

The number of elements is reduced by taking only those 
with dh greater than one standard deviation from the 
mean: 

})(|{' σ+>∈= dhjdhFjF .  

The amount of reduction will vary depending on the genre 
of the video. 

On this reduced set F', define the length of an element i 

δ(i)  =  number of frames in F from i  
            to the next element in F'.  

On F', define dH(i) as we did dh(i) 

dH(i) = histogram difference between  
             the (i −1)-th and i-th elements of F'. 

2.2 EVALUATION FUNCTIONS 

There are a multitude of possibilities for an evaluation 
function. One can come up with a variety of 
characterizations based on heuristics depending on genre, 
domain, user type, and so forth.  The applications that we 

have in mind are video summarization and indexing for 
browsing.  We will define some fairly general functions 
that are based on considerations of image similarity, 
importance, and precedence. 

Naively, one could take the k images with highest dh(i) or 
dH(i) and use these as the segment boundaries.  For 
browsing and summarization applications in which these 
k images are the access points to an image data stream, 
this does not produce a very good segmentation because 
the most salient images may be similar to each other 
(even if they are not similar to their immediate neighbors) 
and too much repetition will occur in the result. 

To take into consideration the relative differences among 
all the selected images, we define similarity adjacency 
functions as follows. Let Sk be a subset of k selected 
images in F', define 
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where α(i, j) is a function for weighting the histogram 
differences. 

For example, one simple way to specify this function is to 
set α(i, j) = 1.  A slightly more interesting definition is to 
put less weight on images that are farther apart by setting 
α(i, j) = 1 / | i − j |2 for i ≠ j and 0 else. 

Due to the large cardinality of k-subsets of a set, there is 
no efficient standard algorithm to optimize (1) even for 
modest sized sets.  One reason for using genetic 
algorithms is to be able to search this space effectively. 

We can also apply information retrieval ideas by 
weighting each element by its importance.  One way to 
define importance is to use a function that factors in the 
length of an element with its commonality, as in 
(Uchihashi & Foote, 1999), so that the longer and less 
common elements have greater importance. Unlike their 
algorithm, we do this without relying on a clustering of 
the images.  First, we define a set Ci to be those elements 
similar to i, 

 }),(|'{ σ+<∈= dhjihFjCi , 

and let  Wi = |Ci| / |F'| , then we define the importance 
based on length and commonality by 

( ) )./1log()(log iWiδ  

Departing from (Uchihashi & Foote, 1999), we take the 
log of the length because δ(i) can have large variation.  In 
the videos we looked at, the lengths of the elements of F' 
can differ by a factor of a hundred. 

Furthermore, we extend this notion of importance by 
providing another factor related to the precedence of a 
frame, so that earlier appearing frames are more heavily 
weighted than later ones in the same similarity class.  
There are several reasons for using precedence as a 
criterion.  For video, it has been noticed in video playback 
usage studies (see He, Sanocki, Gupta, & Grudin) that the 
earlier appearances of an event are accessed more.  For 
images of people or slides, the earlier ones may introduce 



or define things that the later ones will refer to.  For video 
from surveillance or wearable personal video cameras, the 
frames can be processed backwards (or invert our 
precedence definition) to spotlight the most recent 
occurrences of interesting events. 

Let }|{ jiCjB ii ≤∈= , we define the precedence factor by 

 Pi = |Bi| / |Ci|.     

Putting together the factors for length, commonality, and 
precedence, we obtain the importance 

( ) )./1log()(log iii WiPI δ=  

We put this into the evaluation function (1) by weighting 
each term with the average importance, i.e. in (1) we set 

 α(i, j) = (Ii + I j) / | i − j |2 for i ≠ j and 0 else. 

The evaluation function now reads 
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Qualitatively, the effect of this similarity adjacency 
function is making more nearby images more dissimilar 
and permits a certain amount of repetition in the overall 
summary to capture the rhythm of the video.  

Again, we emphasize that any well-defined evaluation 
function may be used to characterize the desirable 
properties of segmentations and will work with the 
genetic mechanism of the algorithm. 

3 GENETIC SEGMENTATION 
ALGORITHM 

First, we describe the input and output of our algorithm.  
The input is a video and an integer k for the desired 
number of segment boundaries.  We used these boundary 
images as access points for indexing and summarization. 
The output is a sequence of k boundary images, plus their 
importance scores.  A variation with varying k is 
described below. The importance scores may be used for 
layout purposes (e.g. see Uchihashi & Foote, 1999). 
Our Genetic Segmentation Algorithm (GSA) can be 
described by specifying the encoding, fitness function, 
crossover and mutation operations. For more details on 
the basics of genetic algorithms, refer to (Goldberg, 
1989). To run the algorithm, a population of individuals is 
randomly generated, and the evolution process is 
performed iteratively one generation at a time.  In the end, 
the individual with the highest fitness is decoded to obtain 
a sequence of images for the segmentation. 

3.1 ENCODING 

For the encoding, we take a string of 0's and 1's like a 
classical GA as in (Goldberg, 1989).  This string is called 
a chromosome.  The video data stream structure lends 

itself to be divided into contiguous segments, so a string 
is sufficient.  In contrast, the Genetic Grouping Algorithm 
(GGA) from (Falkanauer, 1991, 1998) uses sets.   

The bit position of a chromosome string is an index for an 
element of the image data stream, e.g. a video frame in F', 
read left to right. The length of the string is the number of 
images |F'|. We use 1's to denote the segment boundaries; 
e.g. 00100010010  breaks up into the segments 00 , 
1000 , 100 , 10 .  In terms of the frames, the 
corresponding segments for F' = { i0, i1, ..., i10} are {i0, 
i1},  { i2, i3, i4, i5}, {  i0, i0, i8}, {  i9, i10}.  The number of 
segments or 1's is set to be a fixed constant; this is given 
by the input specification of how many boundary images 
are desired.1 

3.2 FITNESS FUNCTION 

For the fitness function, we take the similarity adjacency 
function (2). Any well-defined evaluation function may 
also be used.  

3.3 CROSSOVER AND MUTATION 

The genetic mechanism works by randomly selecting 
pairs of individual chromosomes to reproduce for the next 
generation.  The probability of a chromosome being 
selected is proportional to its fitness function value 
relative to the other chromosomes in the same generation.  
To reproduce, a crossover procedure is defined. In the 
classical GA, two chromosome strings reproduce by 
selecting a random bit for the crossing site, and the strings 
are sliced at the site and the two tail pieces are swapped 
and rejoined with the head pieces to produce two 
progenies.  On the other hand, with GGA the 
chromosomes are not strings but subsets, and randomly 
selected subsets are recombined. 

The stream structure allows our GSA to use a string 
structure like the classical GA, but instead of crossing at 
any bit, we cross only at segment boundaries; this is not 
unlike how groups are crossed in the GGA.  What we do 
is to randomly select a segment, i.e. an index i∈ Sk , with 
equal probability for each index.  This index is used as the 
crossing site.  The chromosome strings are crossed like 
the classical GA, plus an additional step to alter the 
resulting strings so that they have exactly k 1's in order to 
maintain the fixed number of segments.   

Reducing the number of segments in a string is easy.  We 
merge the partial piece sliced by the crossover procedure 
with an adjacent segment; this way, the segment 
boundaries coming from the earlier generation are 
preserved.  Adjacent segments are then merged together 
until k 1's remain.   

Increasing the number of segments in a string requires 
introducing new boundaries not inherited from earlier 

                                                           
1 An alternative encoding is to set the leftmost bit to 1 for all 
segments. 



generations.  One way to do this is to pick a segment near 
the crossing site and split it at its weakest point, say the 
point with smallest dH.  Alternatively, to reduce the 
amount of computation, we can use a mutation process to 
split the segments, which means randomly selecting a 
place to split.  We use the latter for the work described in 
this paper. 

Generally, mutation by random flipping of bits in the 
string is not a good idea for doing segmentation because it 
makes the segments rather unstable. Hence, for the basic 
version of GSA we do not do additional mutation beyond 
its use for increasing the number of segments in the 
crossover procedure. 

We provide an example to illustrate. The following 
strings have 4 segments with segment boundaries on the 
left of the 1's: 

00010010010 
01000100100 

Crossing at the point after the second segment of the first 
string, at site 6, we obtain 

 000100 | 00100 
 010001 | 10010 

In the first string, a random bit (i = 2) is mutated to 1,  
increase the number of segments to 4. In the second 
string, the third 1 is flipped to decrease the number of 
segments to 4.  The final results are: 
 00110000100 
 01000100010 

Having described the encoding, fitness function, 
crossover and mutation (as part of crossover) operations, 
the genetic segmentation algorithm is specified. 

3.4 SEGMENT FAIR CROSSOVER 

The key difference between crossover in the classical GA 
and crossover in our GSA is that in the classical GA the 
crossover site is chosen with equal probability for each 
bit, whereas in our GSA the crossover site is chosen with 
equal probability for each segment. We call this segment 
fair crossover. 

When we line up two parent chromosomes to perform a 
crossover, there will be short and long substrings where 
the alleles at contiguous loci in both parents are zero, like 
this: 

  loci number:  a b c         d 
  parent 1: ...10000000000000001000... 
  parent 2: ...00001000000000000001... 

No matter which crossover site is selected in [a, b] and 
[c , d], the resulting progenies will be the same. In 
general, when there are k non-overlapping 1's in the two 
parent chromosomes, then there are only 2k + 1 different 
crossover results possible. By choosing the crossover site 
with equal probability for each segment, our segment fair 
crossover uniformly samples from the 2k + 1 possible 

crossover results. The classical GA deviates from this 
uniform sampling of possible crossover results, because it 
is less and less likely to select a crossover site the shorter 
the intersecting substring of 0's. 

Similarly, Faulkanauer's GGA could be described as a 
group fair crossover. 

4 VARIATIONS 

We now describe several variations of the basic GSA and 
similarity adjacency functions for handing incremental 
segmentation, and varying the number k of selected 
boundary images in the segmentation.  When these 
images are used for browsing and summarization, we 
show a way to adapt segmentations dynamically to user 
access patterns. 

4.1 INCREMENTAL SEGMENTATION 

Because the algorithm is evolutionary, it is highly suitable 
for incremental segmentation.  Streaming video and 
databases of accumulating image collections are examples 
where incremental segmentation and summarization can 
be useful. Basically, the system maintains a population of 
segmentations and lets it evolve as new video images are 
added.  The good image segment boundaries that have 
been found are more likely to survive. For each 
generation, the individual with the highest fitness is used 
to determine the segmentation. 

Between generations, new images are added.  First, they 
are preprocessed as in Section 2.1 by keeping a running 
average of dH. To keep the chromosome length bounded 
when new images are added, old ones can be removed by 
throwing out the ones with low importance or low dH.  
This works because in equation (2), epistasis (how the bit 
positions combine to affect the fitness function) is well 
behaved.  It is clear by looking at the equation that 
dropping lowly rated images has little effect on the 
fitness.  To keep k fixed, if a chromosome loses a bit 
position marked by a 1, one of the new bit positions is 
randomly set to 1.  Most of the new bit positions are set to 
0, but occasionally (say with probability one over the 
length of the chromosome) a bit position is set to 1, and a 
random segment is merged to keep k fixed. 

4.2 VARYING K 

We now describe a way to vary k, the number of segment 
boundary images.  We do this by normalizing the 
evaluation function (2) to a prescribed target k0: 

|),|1/()()( 0kkSfSg kk −+=  

and simplifying the crossover so as not to keep k constant.  
This way, the number of images will not be exactly k0, but 
some number around k0 that provides a potentially better 
segmentation. 



4.3 ADAPTING TO USER ACCESS PATTERNS 

The segmentation can be dynamically updated to reflect 
user access patterns.  The most frequently accessed 
images by users are weighted more heavily in the 
importance term of equation (2), and the segmentation is 
incrementally updated.  The update schedule may be 
daily, weekly, or longer. 

Let ai be the number of times an image i has been 
accessed or viewed by users, then we define the access 
frequency factor by   Ai = 1 +  log (1 + ai).   The 
following is then used for the importance in equation (2): 

( ) )./1log()(log iiii WiPAI δ=  

5 EXAMPLES 

We illustrate with two examples by applying the GSA to 
summarize an hour-long seminar video and a set of note 
pages containing annotated slide images and pictures. 
These examples were computed after the algorithm had 
been developedthe algorithm was not tuned to them. 

We have used a fairly simple implementation of the 
algorithm and fitness function in these examples to 
demonstrate that it works on real data and that it is a 
promising technique. More extensive testing on a large 
corpus of data would be required to establish the efficacy 
of the GSA. 

5.1 PARAMETERS 

This algorithm works with a small number of parameters, 
both in the fitness function definition and in the genetic 
mechanism.  We ran the GSA as a generational fitness 
proportional GA.  Crossover is used for 100% of the 
genetic operations.  Mutation was introduced only during 
crossover segment splits, as defined in section 3.3.  
Elitism was not used. Fitness function (2) was employed. 
The algorithm was implemented in C++.  Hardware was a 
normal single processor Pentium 350.   

5.2 VIDEO OF A SEMINAR 

The GSA is applied to the video with k = 5 and 11, with 
population size of 2000 run over 100 generations. The 
length of the video is about an hour, and subsampling and 
reduction gave |F| = 7765 and |F'| = 149.  Our hardware 
and software were by no means optimal, but to give some 
indication of performance, the preprocessing (described in 
section 2.1) took about 2 minutes and the GSA took about 
3 minutes. 

For images used in the summary, we take the boundary 
images plus the first frame of the first segment.  We 
choose 6 and 12 images because these numbers have 
several divisors and can produce different layouts (e.g. 6 
gives 1x6, 2x3, 3x2, 6x1). The results are shown in 
Figures 1−2.  Figure 3 illustrates the whole video sampled 
at every 5 seconds. 

The three topics of the seminar talk were "Active 
Messenger," "comMotion," and "Nomadic Radio," and 
the video images of the three slides introducing these 
topics were selected along with two pictures of the 
speaker and a picture of the room.  The result is 
remarkably good and it would be difficult for a person to 
select a much better set of representative images for a 
summary. 

For k = 5, GSA found the global maximum, which we 
checked by brute force computation.  For moderately 
larger values of k, the combinatorial explosion in (2) 
makes brute force infeasible.  While it may be possible 
come up with a tractable algorithm to optimize this 
specific function, the advantage with genetic algorithms is 
that the evaluation function can be tailored to focus on 
whatever features are desirable. 

5.3 NOTE PAGES WITH IMAGES 

In this example, we demonstrate the GSA on a stream of 
visual documents.  Our data are note pages from the 
FXPAL NoteLook system (Chiu, Kapuskar, Reitmeier, 
Wilcox, 1999), which contains a variety of visual images: 
presentation slide images, pictures, and ink annotations.  
One can also apply the GSA to simpler image data 
streams such as collections of presentations slides (e.g. 
PowerPoint slides). 

As in the above example, we choose k = 5 and 11.  The 
GSA is applied to the note pages with a population of 
1000 run over 100 generations.  The results are shown in 
Figures 4−5, with the full set of note pages shown in 
Figure 6. 

6 RELATED WORK 

We have done some experiments with a classical GA (as 
described in Goldberg, 1989), with crossover at random 
bit positions as opposed to segment boundaries, to 
optimize similarity adjacency functions and they failed to 
converge.  We have not tried using Falkanauer's Genetic 
Grouping Algorithm, but since it operates on sets rather 
than string segments, it is less natural than the GSA for 
the structure of data streams. 

Other work using genetic algorithms/programming for 
image analysis has been done (e.g. Poli, 1996; Tackett, 
1993), but these mainly analyze the features of a fixed 
image and are not aimed at segmentation of an image data 
stream or video. 

7 CONCLUSION 

We described a genetic segmentation algorithm for image 
data streams and video that employs a segment fair 
crossover operation.  We performed experiments to 
demonstrate that it works on real data.  As video analysis 
is a relatively new field without an established corpus for 
testing, more experience with the GSA and standard 
algorithms like clustering will be required to gauge their 



respective strengths and weaknesses.  There are some 
notable advantages with the GSA: it offers more 
tailorability in the evaluation function and enables 
incremental segmentation. 
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Figure 1. Video segmented by GSA with k = 5 



 
Figure 2.  Video segmented by GSA with k = 11 

  

  

  
Figure 3.  Video of an hour-long seminar sampled every 5 seconds.  In our computation with GSA, the 
video was sampled every 0.5 second—these are too numerous to be shown here.  The 6 highlighted images 
correspond to the result in Figure 1 (within 10 frames). 



 

Figure 4.  Note pages with images segmented by GSA with k = 5. 

 
Figure 5.  Note pages with images segmented by GSA with k = 11. 

 
Figure 6.  Full set of note pages with images from an hour-long presentation. 


