
A Genetic Segmentation Algorithm for Image Data Streams and Video

Patrick Chiu Andreas Girgensohn Wolf Polak

Eleanor Rieffel Lynn Wilcox Forrest H Bennett III

FX Palo Atlo Laboratory, 3400 Hillview Avenue, Bldg. 4, Palo Alto, CA 94304, lastname@pal.xerox.com

Abstract

We describe a genetic segmentation algorithm
for image data streams and video. This
algorithm operates on segments of a string
representation. It is similar to both classical
genetic algorithms that operate on bits of a string
and genetic grouping algorithms that operate on
subsets of a set. It employs a segment fair
crossover operation. For evaluating
segmentations, we define similarity adjacency
functions, which are extremely expensive to
optimize with traditional methods. The
evolutionary nature of genetic algorithms offers
a further advantage by enabling incremental
segmentation. Applications include browsing
and summarizing video and collections of
visually rich documents, plus a way of adapting
to user access patterns.

1 INTRODUCTION

Segmenting multimedia data streams is a fundamental
problem with many applications. By segmentation, we
mean breaking up a data stream into meaningful parts.
Properly segmented streams can be better organized and
reused. They provide points of access that facilitate
browsing and retrieval. As more and more multimedia
data are created and made available, segmentation
algorithms can serve the important function of helping
summarize this mass of material.

For video segmentation, the meaningful parts may be
shots defined by camera changes, or scenes defined by
semantically related shots. This is a difficult segmentation
problem for machines (even for humans), because
extracting sematics is hard. A poor but sometimes useful
method is simple uniform partitioning at fixed time
intervals (Mills, Cohen, & Wong, 1992). Resonable
results have been obtained with algorithms that look at
features such as color histograms. Standard methods
involve variations of feature clustering algorithms (e.g.

see Boreczky & Rowe, 1996; Girgensohn & Boreczky,
1999; Uchihashi & Foote, 1999; Yeung & Yeo, 1997;
Zhang, Low, Smoliar, & Wu, 1995).

There are several advantages of genetic algorithms over
current methods for segmentation such as clustering.
First, the genetic mechanism is independent of the
prescribed evaluation function and can be tailored to
support a variety of characterizations based on heuristics
depending on genre, domain, user type, etc. Second,
evolutionary algorithms are naturally suited for doing
incremental segmentation, which may be applied to
streaming media (e.g. video over the Web). Third, it can
support dynamically updated segmentation that adapt to
usage patterns, like adaptively increasing the likelihood
that frequently accessed points will appear as segment
boundaries.

In this paper, we will focus on image data streams and
video. By image data streams, we mean a sequence of
images. Of special interest is video, which can be
considered as a type of image data stream consisting of
frames. This may be produced video or raw video.
Examples of produced video are news, movies, and
training videos. Examples of raw video are video of
meetings, surveillance records, and wearable personal
video cameras (Mann, 1996). At a coarser level of
granularity, slide shows are also image data streams.
Another familiar type of image data stream is a collection
of ordered visual documents, such as presentation slides,
PowerPoint slides, and note pages with images such as
produced by the NoteLook system (Chiu, Kapuskar,
Reitmeier, Wilcox, 1999).

The method that we describe in this paper can be applied
to non-image data streams. The genetic segmentation
algorithm remains the same; what is required are different
fitness functions that take into account the appropriate
characteristics of that medium and software for
processing that medium.

This paper is organized as follows. In Section 2 we define
similarity adjacency functions for evaluating
segmentations. Section 3 describes our Genetic
Segmentation Algorithm (GSA), along with a discussion
of the segment fair crossover operation. Section 4

provides some useful variations including incremental
segmentation. Section 5 shows two examples
demonstrating our technique for summarizing a video of a
seminar and a set of note pages with images from a
presentation. Section 6 discusses related work and
compares our GSA to the classical GA and Genetic
Grouping Algorithms (GGA).

2 EVALUATING SEGMENTATIONS

When characterizing and evaluating segmentations of
video, the specific applications must be kept in mind. For
the purposes of browsing and summarization, we define
similarity adjacency functions with varying degrees of
sophistication. In the simplest form, these functions only
take into account image differences. In the more complex
forms, information retrieval ideas are used.

2.1 PREPROCESSING

For segmenting video, it is a good idea to begin by
reducing the number of frames. A video can have
thousands of frames, and many adjacent ones are likely to
be similar. We reduce the size of the set of images by
only looking at those that are not too similar. For a non-
video image document stream, this reduction step may be
skipped. For a video recorded at 30 frames per second,
we first subsample at a lower rate (one frame per half
second is reasonable to capture the action in most
domains), and call this set of images F. From this set, we
pick out the least similar images by measuring their
differences with the standard technique of color
histograms (e.g. see Boreczky & Rowe, 1996). For any
two images i and j we define

h(i, j) = histogram difference between i and j,
dh(i) = h(i −1, i) with dh(0) = h(1, 0).

The number of elements is reduced by taking only those
with dh greater than one standard deviation from the
mean:

})(|{' σ+>∈= dhjdhFjF .

The amount of reduction will vary depending on the genre
of the video.

On this reduced set F', define the length of an element i

δ(i) = number of frames in F from i
 to the next element in F'.

On F', define dH(i) as we did dh(i)

dH(i) = histogram difference between
 the (i −1)-th and i-th elements of F'.

2.2 EVALUATION FUNCTIONS

There are a multitude of possibilities for an evaluation
function. One can come up with a variety of
characterizations based on heuristics depending on genre,
domain, user type, and so forth. The applications that we

have in mind are video summarization and indexing for
browsing. We will define some fairly general functions
that are based on considerations of image similarity,
importance, and precedence.

Naively, one could take the k images with highest dh(i) or
dH(i) and use these as the segment boundaries. For
browsing and summarization applications in which these
k images are the access points to an image data stream,
this does not produce a very good segmentation because
the most salient images may be similar to each other
(even if they are not similar to their immediate neighbors)
and too much repetition will occur in the result.

To take into consideration the relative differences among
all the selected images, we define similarity adjacency
functions as follows. Let Sk be a subset of k selected
images in F', define

∑
∈

=
kSji

k jihjiSf
,

),(),()(α , (1)

where α(i, j) is a function for weighting the histogram
differences.

For example, one simple way to specify this function is to
set α(i, j) = 1. A slightly more interesting definition is to
put less weight on images that are farther apart by setting
α(i, j) = 1 / | i − j |2 for i ≠ j and 0 else.

Due to the large cardinality of k-subsets of a set, there is
no efficient standard algorithm to optimize (1) even for
modest sized sets. One reason for using genetic
algorithms is to be able to search this space effectively.

We can also apply information retrieval ideas by
weighting each element by its importance. One way to
define importance is to use a function that factors in the
length of an element with its commonality, as in
(Uchihashi & Foote, 1999), so that the longer and less
common elements have greater importance. Unlike their
algorithm, we do this without relying on a clustering of
the images. First, we define a set Ci to be those elements
similar to i,

 }),(|'{ σ+<∈= dhjihFjCi ,

and let Wi = |Ci| / |F'| , then we define the importance
based on length and commonality by

())./1log()(log iWiδ

Departing from (Uchihashi & Foote, 1999), we take the
log of the length because δ(i) can have large variation. In
the videos we looked at, the lengths of the elements of F'
can differ by a factor of a hundred.

Furthermore, we extend this notion of importance by
providing another factor related to the precedence of a
frame, so that earlier appearing frames are more heavily
weighted than later ones in the same similarity class.
There are several reasons for using precedence as a
criterion. For video, it has been noticed in video playback
usage studies (see He, Sanocki, Gupta, & Grudin) that the
earlier appearances of an event are accessed more. For
images of people or slides, the earlier ones may introduce

or define things that the later ones will refer to. For video
from surveillance or wearable personal video cameras, the
frames can be processed backwards (or invert our
precedence definition) to spotlight the most recent
occurrences of interesting events.

Let }|{ jiCjB ii ≤∈= , we define the precedence factor by

 Pi = |Bi| / |Ci|.

Putting together the factors for length, commonality, and
precedence, we obtain the importance

())./1log()(log iii WiPI δ=

We put this into the evaluation function (1) by weighting
each term with the average importance, i.e. in (1) we set

 α(i, j) = (Ii + I j) / | i − j |2 for i ≠ j and 0 else.

The evaluation function now reads

2
, ||

)(
),()(

ji

II
jihSf

ji

ji
Sji

k

k
−

+
= ∑

≠
∈

 (2)

Qualitatively, the effect of this similarity adjacency
function is making more nearby images more dissimilar
and permits a certain amount of repetition in the overall
summary to capture the rhythm of the video.

Again, we emphasize that any well-defined evaluation
function may be used to characterize the desirable
properties of segmentations and will work with the
genetic mechanism of the algorithm.

3 GENETIC SEGMENTATION
ALGORITHM

First, we describe the input and output of our algorithm.
The input is a video and an integer k for the desired
number of segment boundaries. We used these boundary
images as access points for indexing and summarization.
The output is a sequence of k boundary images, plus their
importance scores. A variation with varying k is
described below. The importance scores may be used for
layout purposes (e.g. see Uchihashi & Foote, 1999).
Our Genetic Segmentation Algorithm (GSA) can be
described by specifying the encoding, fitness function,
crossover and mutation operations. For more details on
the basics of genetic algorithms, refer to (Goldberg,
1989). To run the algorithm, a population of individuals is
randomly generated, and the evolution process is
performed iteratively one generation at a time. In the end,
the individual with the highest fitness is decoded to obtain
a sequence of images for the segmentation.

3.1 ENCODING

For the encoding, we take a string of 0's and 1's like a
classical GA as in (Goldberg, 1989). This string is called
a chromosome. The video data stream structure lends

itself to be divided into contiguous segments, so a string
is sufficient. In contrast, the Genetic Grouping Algorithm
(GGA) from (Falkanauer, 1991, 1998) uses sets.

The bit position of a chromosome string is an index for an
element of the image data stream, e.g. a video frame in F',
read left to right. The length of the string is the number of
images |F'|. We use 1's to denote the segment boundaries;
e.g. 00100010010 breaks up into the segments 00 ,
1000 , 100 , 10 . In terms of the frames, the
corresponding segments for F' = { i0, i1, ..., i10} are {i0,
i1}, { i2, i3, i4, i5}, { i0, i0, i8}, { i9, i10}. The number of
segments or 1's is set to be a fixed constant; this is given
by the input specification of how many boundary images
are desired.1

3.2 FITNESS FUNCTION

For the fitness function, we take the similarity adjacency
function (2). Any well-defined evaluation function may
also be used.

3.3 CROSSOVER AND MUTATION

The genetic mechanism works by randomly selecting
pairs of individual chromosomes to reproduce for the next
generation. The probability of a chromosome being
selected is proportional to its fitness function value
relative to the other chromosomes in the same generation.
To reproduce, a crossover procedure is defined. In the
classical GA, two chromosome strings reproduce by
selecting a random bit for the crossing site, and the strings
are sliced at the site and the two tail pieces are swapped
and rejoined with the head pieces to produce two
progenies. On the other hand, with GGA the
chromosomes are not strings but subsets, and randomly
selected subsets are recombined.

The stream structure allows our GSA to use a string
structure like the classical GA, but instead of crossing at
any bit, we cross only at segment boundaries; this is not
unlike how groups are crossed in the GGA. What we do
is to randomly select a segment, i.e. an index i∈ Sk , with
equal probability for each index. This index is used as the
crossing site. The chromosome strings are crossed like
the classical GA, plus an additional step to alter the
resulting strings so that they have exactly k 1's in order to
maintain the fixed number of segments.

Reducing the number of segments in a string is easy. We
merge the partial piece sliced by the crossover procedure
with an adjacent segment; this way, the segment
boundaries coming from the earlier generation are
preserved. Adjacent segments are then merged together
until k 1's remain.

Increasing the number of segments in a string requires
introducing new boundaries not inherited from earlier

1 An alternative encoding is to set the leftmost bit to 1 for all
segments.

generations. One way to do this is to pick a segment near
the crossing site and split it at its weakest point, say the
point with smallest dH. Alternatively, to reduce the
amount of computation, we can use a mutation process to
split the segments, which means randomly selecting a
place to split. We use the latter for the work described in
this paper.

Generally, mutation by random flipping of bits in the
string is not a good idea for doing segmentation because it
makes the segments rather unstable. Hence, for the basic
version of GSA we do not do additional mutation beyond
its use for increasing the number of segments in the
crossover procedure.

We provide an example to illustrate. The following
strings have 4 segments with segment boundaries on the
left of the 1's:

00010010010
01000100100

Crossing at the point after the second segment of the first
string, at site 6, we obtain

 000100 | 00100
 010001 | 10010

In the first string, a random bit (i = 2) is mutated to 1,
increase the number of segments to 4. In the second
string, the third 1 is flipped to decrease the number of
segments to 4. The final results are:
 00110000100
 01000100010

Having described the encoding, fitness function,
crossover and mutation (as part of crossover) operations,
the genetic segmentation algorithm is specified.

3.4 SEGMENT FAIR CROSSOVER

The key difference between crossover in the classical GA
and crossover in our GSA is that in the classical GA the
crossover site is chosen with equal probability for each
bit, whereas in our GSA the crossover site is chosen with
equal probability for each segment. We call this segment
fair crossover.

When we line up two parent chromosomes to perform a
crossover, there will be short and long substrings where
the alleles at contiguous loci in both parents are zero, like
this:

 loci number: a b c d
 parent 1: ...10000000000000001000...
 parent 2: ...00001000000000000001...

No matter which crossover site is selected in [a, b] and
[c , d], the resulting progenies will be the same. In
general, when there are k non-overlapping 1's in the two
parent chromosomes, then there are only 2k + 1 different
crossover results possible. By choosing the crossover site
with equal probability for each segment, our segment fair
crossover uniformly samples from the 2k + 1 possible

crossover results. The classical GA deviates from this
uniform sampling of possible crossover results, because it
is less and less likely to select a crossover site the shorter
the intersecting substring of 0's.

Similarly, Faulkanauer's GGA could be described as a
group fair crossover.

4 VARIATIONS

We now describe several variations of the basic GSA and
similarity adjacency functions for handing incremental
segmentation, and varying the number k of selected
boundary images in the segmentation. When these
images are used for browsing and summarization, we
show a way to adapt segmentations dynamically to user
access patterns.

4.1 INCREMENTAL SEGMENTATION

Because the algorithm is evolutionary, it is highly suitable
for incremental segmentation. Streaming video and
databases of accumulating image collections are examples
where incremental segmentation and summarization can
be useful. Basically, the system maintains a population of
segmentations and lets it evolve as new video images are
added. The good image segment boundaries that have
been found are more likely to survive. For each
generation, the individual with the highest fitness is used
to determine the segmentation.

Between generations, new images are added. First, they
are preprocessed as in Section 2.1 by keeping a running
average of dH. To keep the chromosome length bounded
when new images are added, old ones can be removed by
throwing out the ones with low importance or low dH.
This works because in equation (2), epistasis (how the bit
positions combine to affect the fitness function) is well
behaved. It is clear by looking at the equation that
dropping lowly rated images has little effect on the
fitness. To keep k fixed, if a chromosome loses a bit
position marked by a 1, one of the new bit positions is
randomly set to 1. Most of the new bit positions are set to
0, but occasionally (say with probability one over the
length of the chromosome) a bit position is set to 1, and a
random segment is merged to keep k fixed.

4.2 VARYING K

We now describe a way to vary k, the number of segment
boundary images. We do this by normalizing the
evaluation function (2) to a prescribed target k0:

|),|1/()()(0kkSfSg kk −+=

and simplifying the crossover so as not to keep k constant.
This way, the number of images will not be exactly k0, but
some number around k0 that provides a potentially better
segmentation.

4.3 ADAPTING TO USER ACCESS PATTERNS

The segmentation can be dynamically updated to reflect
user access patterns. The most frequently accessed
images by users are weighted more heavily in the
importance term of equation (2), and the segmentation is
incrementally updated. The update schedule may be
daily, weekly, or longer.

Let ai be the number of times an image i has been
accessed or viewed by users, then we define the access
frequency factor by Ai = 1 + log (1 + ai). The
following is then used for the importance in equation (2):

())./1log()(log iiii WiPAI δ=

5 EXAMPLES

We illustrate with two examples by applying the GSA to
summarize an hour-long seminar video and a set of note
pages containing annotated slide images and pictures.
These examples were computed after the algorithm had
been developedthe algorithm was not tuned to them.

We have used a fairly simple implementation of the
algorithm and fitness function in these examples to
demonstrate that it works on real data and that it is a
promising technique. More extensive testing on a large
corpus of data would be required to establish the efficacy
of the GSA.

5.1 PARAMETERS

This algorithm works with a small number of parameters,
both in the fitness function definition and in the genetic
mechanism. We ran the GSA as a generational fitness
proportional GA. Crossover is used for 100% of the
genetic operations. Mutation was introduced only during
crossover segment splits, as defined in section 3.3.
Elitism was not used. Fitness function (2) was employed.
The algorithm was implemented in C++. Hardware was a
normal single processor Pentium 350.

5.2 VIDEO OF A SEMINAR

The GSA is applied to the video with k = 5 and 11, with
population size of 2000 run over 100 generations. The
length of the video is about an hour, and subsampling and
reduction gave |F| = 7765 and |F'| = 149. Our hardware
and software were by no means optimal, but to give some
indication of performance, the preprocessing (described in
section 2.1) took about 2 minutes and the GSA took about
3 minutes.

For images used in the summary, we take the boundary
images plus the first frame of the first segment. We
choose 6 and 12 images because these numbers have
several divisors and can produce different layouts (e.g. 6
gives 1x6, 2x3, 3x2, 6x1). The results are shown in
Figures 1−2. Figure 3 illustrates the whole video sampled
at every 5 seconds.

The three topics of the seminar talk were "Active
Messenger," "comMotion," and "Nomadic Radio," and
the video images of the three slides introducing these
topics were selected along with two pictures of the
speaker and a picture of the room. The result is
remarkably good and it would be difficult for a person to
select a much better set of representative images for a
summary.

For k = 5, GSA found the global maximum, which we
checked by brute force computation. For moderately
larger values of k, the combinatorial explosion in (2)
makes brute force infeasible. While it may be possible
come up with a tractable algorithm to optimize this
specific function, the advantage with genetic algorithms is
that the evaluation function can be tailored to focus on
whatever features are desirable.

5.3 NOTE PAGES WITH IMAGES

In this example, we demonstrate the GSA on a stream of
visual documents. Our data are note pages from the
FXPAL NoteLook system (Chiu, Kapuskar, Reitmeier,
Wilcox, 1999), which contains a variety of visual images:
presentation slide images, pictures, and ink annotations.
One can also apply the GSA to simpler image data
streams such as collections of presentations slides (e.g.
PowerPoint slides).

As in the above example, we choose k = 5 and 11. The
GSA is applied to the note pages with a population of
1000 run over 100 generations. The results are shown in
Figures 4−5, with the full set of note pages shown in
Figure 6.

6 RELATED WORK

We have done some experiments with a classical GA (as
described in Goldberg, 1989), with crossover at random
bit positions as opposed to segment boundaries, to
optimize similarity adjacency functions and they failed to
converge. We have not tried using Falkanauer's Genetic
Grouping Algorithm, but since it operates on sets rather
than string segments, it is less natural than the GSA for
the structure of data streams.

Other work using genetic algorithms/programming for
image analysis has been done (e.g. Poli, 1996; Tackett,
1993), but these mainly analyze the features of a fixed
image and are not aimed at segmentation of an image data
stream or video.

7 CONCLUSION

We described a genetic segmentation algorithm for image
data streams and video that employs a segment fair
crossover operation. We performed experiments to
demonstrate that it works on real data. As video analysis
is a relatively new field without an established corpus for
testing, more experience with the GSA and standard
algorithms like clustering will be required to gauge their

respective strengths and weaknesses. There are some
notable advantages with the GSA: it offers more
tailorability in the evaluation function and enables
incremental segmentation.

Acknowledgments

We thank John Boreczky and John Doherty for help on
video processing and support.

References

Boreczky, J.S. and Rowe, L.A. (1996) Comparison of
video shot boundary detection techniques. Storage and
Retrieval for Still Images and Video Databases IV,
Proceedings of SPIE 2670, pp. 170-179.

Chiu, P., Kapuskar, A., Reitmeier, S., and Wilcox, L.
NoteLook: Taking notes in meetings with digital video
and ink. Proceedings of ACM Multimedia ’99. ACM,
New York, pp. 149-158.

Falkanauer, E. (1998) Genetic Algorithms and Grouping
Problems. Wiley.

Falkanauer, E. (1991) A genetic algorithm for grouping.
Proceedings of the Fifth International Symposium on
Applied Stochastic Models and Data Analysis, Gutierrez,
R. and Valderrama, M.M. (eds.), 1991. World Scientific
Publishing Co., Singapore, pp. 198-206.

Girgensohn, A., and Boreczky, J. (1999) Time-
constrained keyframe selection technique. Proceedings of
the 1999 IEEE International Conference on Multimedia
Computing and Systems. IEEE Computer Society, vol. 1,
pp. 756-761.

Goldberg, D.E. (1989) Genetic Algorithms in Search,
Optimization, and Machine Learning. Addison-Wesley.

He, L., Sanocki, E., Gupta, A., Grudin, J. (1999) Auto-
summarization of audio-video presentations. Proceedings
of ACM Multimedia ’99. ACM Press, pp. 489-498.

Mann, S. (1996) 'Smart Clothing': Wearable multimedia
computing and 'personal imaging' to restore the
technological balance between people and their
environments. Proceedings of ACM Multimedia ’96.
ACM Press, pp. 163-174.

Mills, M., Cohen, J., and Wong, Y.Y. (1992) A
magnifier tool for video data. Proceedings of CHI ’92.
ACM Press, pp. 93-98.

Poli, R. (1996) Genetic programming for image analysis.
Proceedings of Genetic Programming 1996. MIT Press,
pp. 363-368.

Tackett, W.A. (1993) Genetic programming for feature
discovery and image discrimination. Proceedings of the
5th International Conference on Genetic Algorithms, pp.
303-309.

Uchihashi, S. and Foote, J. (1999) Summarizing video
using a shot importance measure and frame-packing
algorithm. Proceedings of ICASSP ’99, vol. 6, pp. 3041-
3044.

Yeung, M.M. and Yeo, B-L. (1997) Video visualization
for compact presentation and fast browsing of pictorial
content. IEEE Transactions on Circuits and Systems for
Video Technology, vol. 7, no. 5, pp. 771-785.

Zhang, H.J., Low, C.Y., Smoliar, S.W., and Wu, J.H.
(1995) Video parsing, retrieval and browsing: An
integrated and content-based solution. Proceedings of
ACM Multimedia ’95. ACM Press, pp. 15-24.

Figure 1. Video segmented by GSA with k = 5

Figure 2. Video segmented by GSA with k = 11

Figure 3. Video of an hour-long seminar sampled every 5 seconds. In our computation with GSA, the
video was sampled every 0.5 second—these are too numerous to be shown here. The 6 highlighted images
correspond to the result in Figure 1 (within 10 frames).

Figure 4. Note pages with images segmented by GSA with k = 5.

Figure 5. Note pages with images segmented by GSA with k = 11.

Figure 6. Full set of note pages with images from an hour-long presentation.

