A Genetic Segmentation Algorithm for Image Data Streams and Video
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Segmenting multimedia data streams is a fundamentgldeo cameras (Mann, 1996).
problem with many applications.
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Abstract

We describe a genetic segmentation algorithm
for image data streams and video. This
algorithm operates on segments of a string
representation. It is similar to both classical
genetic algorithms that operate on bits of a string
and genetic grouping algorithms that operate on
subsets of a set. It employs a segment fair
crossover  operation. For  evaluating
segmentations, we define similarity acdgncy
functions, which are extremely expensive to
optimize with traditional methods. The
evolutionary nature of genetic algorithms offers
a further advantage by enabling incremental
segmentation.  Applications include browsing
and summarizing video and collections of
visually rich documents, plus a way of adapting
to user access patterns.

INTRODUCTION

Bsegmentationwe

see Boreczky & Rowe, 1996; Girgensohn & Boreczky,
1999; Uchihashi & Foote, 1999; Yeung & Yeo, 1997;
Zhang, Low, Smoliar, & Wu, 1995).

There are several advantages of genetic algorithms over
current methods for segmentation such as clustering.
First, the genetic mechanism is independent of the
prescribed evaluation function and can be tailored to
support a variety of characterizations based on heuristics
depending on genre, domain, user type, etc. Second,
evolutionary algorithms are naturally suited for doing
incremental segmentation, which may be applied to
streaming media (e.g. video over the Web). Third, it can
support dynamically updated segmentation that adapt to
usage patterns, like adaptively increasing the likelihood
that frequently accessed pointdllvappear as segment
boundaries.

In this paper, we will focus on image data streams and
video. Byimage data streamave mean a sequence of

images. Of special interest is video, which can be
considered as a type of image data stream consisting of
frames. This may be produced video or raw video.
Examples of produced video are news, movies, and
training videos. Examples of raw video are video of

meetings, surveillance records, and wearable personal
At a coarser level of
granularity, slide shows are also image data streams.

mean breaking up a data stream into meaningful partanother familiar type of image data stream is a collection
Properly segmented streams can be better organized agflordered visual documents, such as presentation slides,
reused. They provide points of access thaflit@#®  powerPoint slides, and note pages with images such as

browsing and retrieval. As more and more multimedigyroduced by the NoteLook system (Chiu, Kapuskar,
data are created and made available, segmentati@eitmeier, Wilcox, 1999).

algorithms can serve the important function of helpin

summarize this mass of material. gThe method that we describe in this paper can be applied

_ ) _ to non-image data streams. The genetic segmentation
For video segmentation, the meaningful parts may bgigorithm remains the same; what is required are different

shots defined by camera changes, or scenes defined fhess functions that take into account the appropriate
semantically related shots. This is a difficult segmentatiotharacteristics of that medium and software for

problem for machines (even for humans), becausprocessing that medium.

extracting sematics is hard. A poor but sometimes usefL{_I . _ . . ,
method is simple uniform partitioning at fixed time !NiS paper is organized as follows. In Section 2 we define
intervals (Mills, Cohen, & Wong, 1992). ResonableSimilarity —adpcency  functions  for  evaluating
results have been obtained with algorithms that look agédmentations. Section 3 describes our Genetic
features such as color histograms. Standard methoc€dmentation Algorithm (GSA), along with a discussion

involve variations of feature clustering algorithms (e.g.07 the segment fair crossover operation. —Section 4



provides some useful variations including incrementahave in mind are video summarization and indexing for
segmentation. Section 5 shows two exampledrowsing. We will define some fairly general functions
demonstrating our technique for summarizing a video of ghat are based on considerations of image similarity,
seminar and a set of note pages with images from iaportance, and precedence.

presentation. ~ Section 6 discusses related work angajvely, one could take theimages with highesth(i) or
compares our GSA to the classical GA and GenetigH(j) and use these as the segment boundaries. For

Grouping Algorithms (GGA). browsing and summarization applications in which these
k images are the access points to an image data stream,
2 EVALUATING SEGMENTATIONS this does not produce a very good segmentation because

the most salient images may be similaretach other
When characterizing and evaluating segmentations dfven if they are not similar to their immediate neighbors)
video, the specific applications must be kept in mind. Foand too much repetition will occur in the result.
the purposes of browsing and summarization, we defin

imilarity adj functi ith ing d f
Siml arty 2ciacenty funcionsith varying tegroes o y’:l” the selected images, we defigenilarity adjacency

sophistication. In the simplest form, these functions onl )
take into account image differences. In the more compleinctionsas follows. LetS be a subset ok selected
images inF', define

forms, information retrieval ideas are used. S
f(S) = ;G(I,J)h(l,J), (1)
i)

%0 take into consideration the relative differences among

2.1 PREPROCESSING
where a(i, j) is a function for weighting the histogram

For segmenting video, it is a good idea to begin byifferences.

reducing the number of frames. A video can have . _ . .

thousands of frames, and many adjacent ones are likely £ example, one simple way to specify this funcisoto

be similar. We reduce the size of the set of images b§eta(, j) = 1. A slightly more interesting definition is to

only looking at those that are not too similar. For a nonPUt |ess weight on images that are farther apart by setting

video image document stream, this reduction step may B&i 1) = 1 /i =] ffori #j and O else.

skipped. For a video recorded at 30 frames per seconfle to the large cardinality dtsubsets of a set, there is
we first subsample at a lower rate (one frame per halio efficient standard algorithm to optimize (1) even for
second is reasonable to capture the action in Moghodest sized sets. One reason for using genetic
domains), and call this set of images From this set, we  a|gorithms is to be able to search this space effectively.
pick out the least similar images by measuring their _ ] _ )
differences with the standard technique of colorWe can also apply information retrieval ideas by

histograms (e.g. see Boreczky & Rowe, 1996). For anyeighting each element by itsiportance One way to
two imaged andj we define define importance is to use a function that factors in the

o . ) . . length of an element with its commonality, as in
h(i, j) = histogram difference betweeniand |, (ychihashi & Foote, 1999), so that the longer and less
dh(i) = h(@i-1,i) with dh(0) = h(1, 0). common elements have greater importance. Unlike their
algorithm, we do this without relying on a clustering of
fhe images. First, we define a §kto be those elements
Similar toi,

The number of elements is reduced by taking only thos
with dh greater than one standard deviation from th
mean: . R

F'={jOF |dh(j)>dh+0o} . Ci ={iOF'[h(, j) <dh+a},

nd let W, = [Ci| / F'| , then we define themportance

The amount of reduction will vary depending on the genr ased on length and commonality by

of the video.

On this reduced sé&t, define the length of an elemeént Iog(5(|))log(1/Wi )-

Departing from (Uchihashi & Foote, 1999), we take the
log of the length becaus¥i) can have large variation. In
the videos we looked at, the lengths of the elemenis of

Ai) = number of frames in F from i
to the next element in F'.

OnF, definedH(i) as we diddh(i) can differ by a factor of a hundred.
dH(i) = histogram difference between Furthermore, we extend this notion of importance by
the (1)-th and i-th elements of F'. providing another factor related to tipeecedenceof a
frame, so that earlier appearing frames are more heavily
2.2  EVALUATION FUNCTIONS weighted than later ones in the same similarity class.

There are several reasons for using precedence as a
There are a multitude of possibilities for an evaluatiorcriterion. For video, it has been noticed in video playback
function. One can come up with a variety of usage studies (see He, Sanocki, Gupta, & Grudin) that the
characterizations based on heuristics depending on genesrlier appearances of an event are accessed more. For
domain, user type, and so forth. The applications that wienages of people or slides, the earlier ones may introduce



or define things that the later ones will refer to. For videatself to be divided into contiguous segments, so a string
from surveillance or wearable personal video cameras, this sufficient. In contrast, the Genetic Grouping Algorithm
frames can be processed backwards (or invert oUWGGA) from (Falkanauer, 1991, 1998) uses sets.
precedence definition) to spotlight the most recen

occurrences of interesting events. tI'he bit position of a chromosome string is an index for an

element of the image data stream, e.g. a video frae in
Let B ={j0OC; |i < j}, we define the precedence factor by read left to right. The length of the string is the number of
P =B/ . imagesH'|. We usel's to denote the segment boundaries;
) ) e.g. 00100010010 breaks up into the segmer®,
Putting together the factor; for length, commonality, a”C!LOOO, 100, 10. In terms of the frames, the
precedence, we obtain the importance corresponding segments Bt = { i, iy, ..., 110} are {io,

I, =Pilog(5(i))log(/W,). i}, {i2 i3 ia, ish { o, io, igh { lg, i1g}. The number of
segments ol's is set to be a fixed constant; this is given
by the input specification of how many boundary images
are desired.

We put this into the evaluation function (1) by weighting
each term with the average importance, i.e. in (1) we set

ofi, )=+ 1) /-] ffori#jand 0 else.

The evaluation function now reads 3.2 FITNESS FUNCTION
o+ For the fitness function, we take the similarityzagjncy
f(S,) = h( j)( i +1) ) function (2). Any well-defined evaluation function may

4 li-jP also be used.
izj
Qualitatively, the effect of this similarity aajency 3-3 ~CROSSOVER AND MUTATION

function is making more nearby images more dissimilalzhe genetic mechanism works by randomly selecting

airs of individual chromosomes to reproduce for the next
generation. The probability of a chromosome being
Again, we emphasize thany well-defined evaluation selected is proportional to its fithess function value
function may be used to characterize the desirableelative to the other chromosomes in the same generation.
properties of segmentations and will work with theTo reproduce, a crossover procedure is defined. In the
genetic mechanism of the algorithm. classical GA, two chromosome strings reproduce by
selecting a random bit for the crossing site, and the strings
are sliced at the site and the two tail pieces are swapped
3 GENETIC SEGMENTATION and rejoined with the head pieces to produce two
ALGORITHM progenies.  On the other hand, with GGA the
chromosomes are not strings but subsets, and randomly
First, we describe the input and output of our algorithmselected subsets are recombined.
The input is a video and an integerfor the desired .
number of segment boundaries. We used these boundar{)€¢ Stréam structure allows our GSA to use a string
images as access points for indexing and summarizatioftructure like the classical GA, but instead of crossing at
The output is a sequenceloboundary images, plus their &Y bit, we cross only at segment boundaries; this is not
importance scores. A variation with varyirg is _unllke how groups are crossed m_the GGA. What_ we do
described below. The importance scores may be used & {0 randomly select a segment, i.e. an indes; , with
layout purposes (e.g. see Uchihashi & Foote, 1999). equal probability foeach index. This index is used as the

. . . crossing site. The chromosome strings are crossed like
Our Genetic Segmentation Algorithm (GSA) can be g g

) g ; . .““the classical GA, plus an additional step to alter the
described by specifying the encoding, fitness function ggting strings so that they have exaktlys in order to
crossover and mutation operations. For more details

i : , Ofhaintain the fixed number of segments.
the basics of genetic algorithms, refer to (Goldberg, intai IX u seg S

1989). To run the algorithm, a population of individuals isReducing the number of segments in a string is easy. We

randomly generated, and the evolution process imerge the partial piece sliced by the crossover procedure

performed iteratively one generation at a time. In the endyith an adjacent segment; this way, the segment

the individual with the highest fithess is decoded to obtaifpoundaries coming from the earlier generation are

a sequence of images for the segmentation. preserved. Adjacent segments are then merged together
until k 1's remain.

and permits a certain amount of repetition in the overa
summary to capture the rhythm of the video.

3.1 ENCODING Increasing the number of segments in a string requires

. . . introducing new boundaries not inherited from earlier
For the encoding, we take a string@$ andl1's like a ¢

classical GA as in (Goldberg, 1989). This string is called
a chromosome The video data stream structure lendst an atternative encoding is to set the leftmost bitLtdor all
segments.




generations. One way to do this is to pick a segment nearossover results. The classical GA deviates from this

the crossing site and split it at its weakest point, say thaniform sampling of possible crossover results, because it
point with smallestdH. Alternatively, to reduce the is less and less likely to select a crossover site the shorter
amount of computation, we can use a mutation process the intersecting substring 6fs.

split the segments, which means randomly selecting
place to split. We use the latter for the work described i
this paper.

r$imilarly, Faulkanauer's GGA could be described as a
group fair crossover

Generally, mutation by random flipping of bits in the
string is not a good idea for doing segmentation because41 VARIATIONS

makes the segments rather unstable. Hence, for the bagig, . describe several variations of the basic GSA and
version of GSA we do not do additional mutation beyond; iia ity adacency functions for handing incremental
its use for increasing the number of segments in thgegmentation, and varying the numberof selected
crossover procedure. boundary images in the segmentation. When these
We provide an example to illustrate. The followingimages are used for browsing and summarization, we
strings have 4 segments with segment boundaries on tsBow a way to adapt segmentations dynamically to user

left of thel's: access patterns.
00010010010
01000100100 4.1 INCREMENTAL SEGMENTATION
Crossing at the point after the second segment of the fir&ecause the algorithm is evolutionary, it is highly suitable
string, at site 6, we obtain for incremental segmentation. Streaming video and
000100 | 00100 databases of accumulating image collections are examples
010001 | 10010 where incremental segmentation and summarization can
be useful. Basically, the system maintains a population of
In the first string, a random bit € 2) is mutated td, segmentations and lets it evolve as new video images are

increase the number of segments to 4. In the secor@fided. The good image segment boundaries that have
string, the thirdl is flipped to decrease the number ofbeen found are more likely to survive. For each

segments to 4. The final results are: generation, the individual w_ith the highest fitness is used
00110000100 to determine the ;egmentau_on. |
01000100010 Between generations, new images are added. First, they

) . . ] ~are preprocessed as in Section 2.1 by keeping a running
Having described the encoding, fitness function.average ofiH. To keep the chromosome length bounded
crossover and mutation (as part of crossover) operationghen new images are added, old ones can be removed by

the genetic segmentation algorithm is specified. throwing out the ones with low importance or |aii.
This works because in equation (@pistasighow the bit
3.4 SEGMENT FAIR CROSSOVER positions combine to affect the fithess function) is well

) . ) behaved. It is clear by looking at the equation that
The key difference between crossover in the classical G8ropping lowly rated images has little effect on the

and crossover in our GSA is that in the classical GA théitness. To keek fixed, if a chromosome loses a bit
crossover site is chosen with equal probability dach osition marked by 4, one of the new bit positions is
bit, whereas in our GSA the crossover site is chosen witfandomly set td. Most of the new bit positions are set to
equal probability foreach segment. We call tréegment 0, but occasionally (say with prokifity one over the
fair crossover length of the chromosome) a bit position is set tand a

When we line up two parent chromosomes to perform 52ndom segment is merged to kéefpxed.
crossover, there will be short and long substrings where
the alleles at contiguous loci in both parents are zero, likéd.2  VARYING K

this:
) We now describe a way to vakythe number of segment
loci number: ab c d boundary images. We do this by normalizing the
parent 1: ...10000000000000001000... evaluation function (2) to a prescribed tariget

parent 2: ...00001000000000000001...

=f 11+ |k =k, ),
No matter which crossover site is selectedant]] and ) g'(Sf) S o
[c, d], the resulting progenies will be the same. |nanq simplifying the crossover so as not to Keepnstant.
general, when there akenon-overlappingdl's in the two ~ This way, the number of images will not be exakglyout
parent chromosomes, then there are okly 4 different ~SOme number arourk that provides a potentially better
crossover results possible. By choosing the crossover sig&gmentation.
with equal probability foeach segment, our segment fair
crossover uniformly samples from th& 2 1 possible



4.3 ADAPTING TO USER ACCESS PATTERNS The three topics of the seminar talk were "Active

] ) Messenger," "comMotion," and "Nomadic Radio," and
The segmentation can be dynamically updated to refle¢ghe video images of the three slides introducing these
user access patterns. The most frequently accessgshics were selected along with two pictures of the
images by users are weighted more heavily in th@peaker and a picture of the room. The result is
importance term of equation (2), and the segmentation iemarkably good and it would be difficult for a person to

incrementally updated. The update schedule may bgelect a much better set of representative images for a
daily, weekly, or longer. summary.

Let & be the number of times an imagehas been Fork = 5 GSA found the global maximum, which we
accessed or viewed by users, then we defineatitess  checked by brute force computation. For moderately
frequencyfactor by A =1 + log (1 +a). The |arger values ofk, the combinatorial explosion in (2)
following is then used for the importance in equation (2): makes brute force infeasible. While it may be possible
I, =AP Iog(6(i))|og(1/Wi). come up with a tractable algorithm to optimize this
specific function, the advantage with genetic algorithms is
that the evaluation function can be tailored to focus on
5 EXAMPLES whatever features are desirable.

We illustrate with two examples by applying the GSA to 3 NOTE PAGES WITH IMAGES

summarize an hour-long seminar video and a set of noté

pages containing annotated slide images and pictureg this example, we demonstrate the GSA on a stream of
These examples were compuiaftier the algorithm had visual documents. Our data are note pages from the
been developed the algorithm was not tuned to them.  EXPAL NoteLook system (Chiu, Kapuskar, Reitmeier,
We have used a fairly simple implementation of the'VilcoX, 1999), which contains a variety of visual images:
algorithm and fitness function in these examples tPresentation slide images, pictures, and ink annotations.
demonstrate that it works on real data and that it is ¥N€ can also apply the GSA to simpler image data
promising technique. More extensive testing on a larg treams such as collections of presentations slides (e.g.
corpus of data would be required to establish the efficacly ©WerPoint slides).

of the GSA. As in the above example, we chodse 5 and 11. The
GSA is applied to the note pages with a population of
5.1 PARAMETERS 1000 run over 100 generations. The results are shown in

) _ ) Figures 45, with the full set of note pages shown in
This algorithm works with a small number of parametersgigyre 6.

both in the fitness function definition and in the genetic
mechanism. We ran the GSA as a generational fithess
proportional GA. Crossover is used for 100% of thed RELATED WORK

genetic operations. Mutation was introduced only durin

crossover segment splits, as defined in section 38’.\/‘3 have done some experiments with a classical GA (as
Elitism was not used. Fitness function (2) was employedZ€scribed in Goldberg, 1989), with crossover at random

The algorithm was implemented in C++. Hardware was ®it_Positions as opposed to segment boundaries, to
normal single processor Pentium 350. optimize similarity adjcency functions and they failed to
converge. We have not tried using Falkanauer's Genetic

Grouping Algorithm, but since it operates on sets rather
52  VIDEO OF A SEMINAR than string segments, it is less natural than the GSA for

The GSA is applied to the video wikh= 5 and 11, with the structure of data streams.

population size of 2000 run over 100 generations. Theyther work using genetic algorithms/programming for
length of the video is about an hour, and subsampling arthage analysis has been done (e.g. Poli, 1996; Tackett,
reduction gaveH] = 7765 andH| = 149. Our hardware 1993) but these mainly analyze the features of a fixed

and software were by no means optimal, but to give SoMage and are not aimed at segmentation of an image data
indication of performance, the preprocessing (described i§ream or video.

section 2.1) took about 2 minutes and the GSA took about
3 minutes.

. . 7 CONCLUSION

For images used in the summary, we take the boundary

images plus the first frame of the first segment. Wewe described a genetic segmentation algorithm for image
choose 6 and 12 images because these numbers hajga streams and video that employs a segment fair
several divisors and can produce different layouts (e.g. rossover operation. We performed experiments to
gives 1x6, 2x3, 3x2, 6x1). The results are shown irjemonstrate that it works on real data. As video analysis
Figures ¥2. Figure 3 illustrates the whole video sampledis a relatively new field without an established corpus for
at every 5 seconds. testing, more experience with the GSA and standard

algorithms like clustering will be required to gauge their



respective strengths and weaknesses. There are sohle, L., Sanocki, E., Gupta, A., Grudin, J. (1999) Auto-
notable advantages with the GSA: it offers moresummarization of audio-video presentatiofmceedings
tailorability in the evaluation function and enablesof ACM Multimedia '99ACM Press, pp. 489-498.

incremental segmentation. Mann, S. (1996) 'Smart Clothing': Wearable multimedia
computing and 'personal imaging' to restore the
technological balance between people and their
We thank John Boreczky and John Doherty for help omnvironments. Proceedings of ACM Multimedia '96.
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Figure 1. Video segmented by GSA with 5



Figure 2. Video segmented by GSA witk 11

Figure 3. Video of an hour-long seminar sampled every 5 seconds. In our computation with GSA, the
video was sampled every 0.5 second—these are too numerous to be shown here. The 6 highlighted images
correspond to the result in Figure 1 (within 10 frames).
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Figure 4. Note pages with images segmented by GSAkwith.
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Figure 6. Full set of note pages with images from an hour-long presentation.



