Domain Knowledge and Representation in Genetic Algorithms for Real World
Scheduling Problems

Ioannis T. Christou
Delta Technology
1001 International Blvd., Dept. 709
Atlanta, GA 30354

Abstract

This paper discusses the issues that arise in
the design and implementation of an industrial-
strength evolutionary-based system for the opti-
mization of the monthly work schedules for the
pilots of Delta Air Lines. We detail the system’s
multiple and often conflicting goals and rules,
providing the background for understanding the
problem. Then, we describe the algorithm that
we use to solve it. One important difference of
our approach from other commonly used GA im-
plementations is our use of the GA as a feasibil-
ity procedure: the first phase of our approach is
responsible for building a very high quality par-
tial solution based on the domain knowledge of
the problem. The GA is responsible for com-
pleting this solution, finding a feasible solution
to the remaining problem. We illustrate the im-
pact that the representation can have on over-
all performance by comparing two implementa-
tions of the same algorithm based on two “or-
thogonal” encodings of the problem at hand. The
computational results show how with the help of
hill climbing techniques in the evaluation func-
tion (either as repair procedures or as part of a
decoder function) we were able to successfully
put the system into production. We also make
computational comparisons with exact methods
which show a clear, though unexpected, superi-
ority of the GA against them.

1 Introduction

Genetic Algorithm research has matured a lot during the
past decade, both in theory as well as in practice. From
the theoretical standpoint, many aspects of the statistical
mechanisms responsible for the power of GAs have been

Armand Zakarian
Delta Technology
1001 International Blvd., Dept. 709
Atlanta, GA 30354

well investigated, providing bounds on the effectiveness of
the algorithms under various assumptions [13]. From the
practical point of view however, researchers had mixed ex-
periences with different implementations and different do-
mains, which may be partly explained by the “No Free
Lunch” theorems [14] stating that when averaged over all
problem domains the effectiveness of GAs is as good as
that of exhaustive search. In the following pages, we pro-
vide a detailed description of the issues arising in the design
and implementation of an industrial-strength system for
solving the BidLine Generation Problem (BLP), the prob-
lem of generating monthly work schedules for the pilots of
an airline. We show how by exploiting the domain knowl-
edge of the problem, and with the help of appropriate rep-
resentations and local search heuristics, we were success-
ful in putting the system in production at Delta Air Lines.
This system provides the planners with very high quality
solutions together with response times that are much more
efficient than the previous semi-automatic modes used at
Delta.

1.1 The BidLine Generation Problem

Each month, an airline must construct a set of #rips (also
known as pairings) to be flown by the airline crew mem-
bers. These trips are sequences of flights (also known in
the industry as legs) beginning and ending in a base city.

This problem is the Crew Scheduling problem, which in
the airline industry is often called Crew Pairing (CP) prob-
lem, and because of its substantial economic impact, it has
received wide consideration; it can be formulated as a set
covering problem, and approaches for solving it include ex-
act optimization procedures [2] as well as heuristic meth-
ods based on genetic algorithms [10] and other techniques.

Once CP is solved, the BLP is defined as the problem
of putting together these trips to form month-long work
schedules for the pilots of the airline. These schedules are
called bidlines, or lines of time, or simply lines. Once the
lines of time are finalized, the pilots bid for them, and are

awarded their preferences according to their seniority.

1.2 The Rules and Objectives of BidLine Generation

As is the case with the CP problem, several rules determine
the validity of the placement of a trip in a line. These rules
are defined in terms of certain properties of the trips to be
placed on a line. The defining properties are the number of
days a trip lasts, the number of flying hours in each day of
the trip, and the credit of a trip, which roughly corresponds
to the total flying time of the trip. The most important of
these rules are the Credit Rule stating that the total credit of
a line must be within a certain window [C}, C,,], the Flying
Time Window Rule stating that for any sliding window of
W calendar days there must be no more than f hours of
flying, and the Coverage Rule stating that the lines must
cover all the trips except for a small number of trips whose
total credit will be less than Cj.

The objectives are two-fold: on one hand we want to min-
imize the total number of lines built so as to minimize the
staffing needs of the airline. On the other hand, since the
airline is bound by contract to build high quality lines we
want to build lines with as high quality as possible. Quality
is a multi-term concept that attempts to capture the needs
and desires of the pilots for quality of life issues. A contract
between the Delta Air Lines Pilots Association (ALPA) and
Delta Air Lines defines the notion of “purity” of a line, and
this notion can be further divided in “day-purity” and “trip-
purity”. A line is “day-pure” when every trip in it departs
on the same day of the week; similarly, a line is “trip-pure”
when it consists of pairings that are essentially the same.
The quality of an overall solution is further complicated by
other desiderata.

Overall, the quality of the solution is a rather complicated
function of properties of the lines built but with no given
closed form expression. Nevertheless, in [8] the authors
propose a cost function to compute the cost of a (legal) line
that uses adjustable parameters to influence the quality of a
line. Then, they use column generation techniques to solve
the BLP. One main disadvantage of this approach is that
it is not a fully automatic procedure. Furthermore, they
do not solve the problem to completion since in all their
reported runs, they leave an unacceptably large number of
trips unassigned.

1.3 Formulation

BLP is a true set partitioning problem with a side constraint
for the open time, and from this respect, it is a harder prob-
lem than the CP problem, because in CP more than one
crew can cover the same leg for an extra cost. In any case,
as is shown in [4], the rules that apply to the BLP, make it
NP-hard.

In order to give an exact mathematical definition of the
BLP, let

L=[lly...1,]

be the matrix whose columns represent all the valid lines
of time 1; that can be built using any valid combination of
trips in the current category. We represent these lines as p-
dimensional vectors in B? where B = {0, 1} and p is the
number of trips in our category. If the ¢-th bit of the vector
is set, then the line represented by that vector must include
the 4-th trip in it. Assuming we have a cost function q(1)
that assigns to every legal bidline a cost representing the
quality of the line, we can formulate the BLP as follows:

maqu(li)xi (1)
i=1

s.t. [0|ClC2...
x
S

where

¢; = credit of the i-th trip.
1

Nevertheless, finding a cost function that will accurately
measure the quality of a line is a highly non-trivial task.
But ALPA provides a description of a series of steps that
should be taken in order to obtain high quality lines. The
existence of these guidelines led us to the decision to use
a two-phase system. In the first phase, a greedy algorithm
based on these guidelines (to be described in 2.1) constructs
as many high quality lines of time as possible. In the final
second phase (to be described in 2.2), a Genetic Algorithm
solves the remaining problem of putting together into le-
gal bidlines all the remaining open trips. Our approach is
thus almost the opposite of the approach taken at Federal
Express (described in [1]) where the authors formulate a
cost function that approximates the objectives of the BLP
process, and use Simulated Annealing (SA) to compute as
many high quality lines as possible, and then a greedy algo-
rithm to act as a hill climber for finishing up. The authors
of the FedEx paper did not have to provide a complete so-
lution since their system was to be used as a cost evaluation
tool.

[[—

GEMETIC ALGORITHHM
PURITY PHASE PHASE

{Phase 1} {Fhase 2}

— !L:

LIME
COMPLETREILITY

|

RULES

Figure 1: System Design

2 System Architecture

Our approach is guided by the domain knowledge available
to us in an almost algorithmic form for what constitutes a
high-quality line. The system, in the Object-Oriented (OO)
fashion is divided among four major components, or mod-
ules, that provide implementations of well-defined inter-
faces for certain responsibilities. The four modules (and
their interactions) are shown in figure 1. The rule sub-
system employs the strategy pattern [6] to implement all
rules efficiently in a uniform manner. The line completabil-
ity component, implements a mechanism for answering the
following question: Given a line with some trips assigned
in it, is there a set of open trips that can complete this line,
i.e. render it a legal line? The mechanism implemented
is a tree construction and traversal that alternates between
depth-first and breadth-first search.

2.1 The First Phase: Domain Knowledge
Incorporation

In the first phase of the system, called the purity phase, we
build high quality lines following the steps below:

1 Family Creation: Choose among the open trips a set
of trips that are “essentially” the same. This set forms
a family of pairings to be used in line construction.

2 Perfect Lines: Build as many perfect (both day-pure
and trip-pure) lines from this family as possible.

3 Trip-pure Lines: Build as many lines as possible using
trips only from the family.

4 Day-pure Lines: Build as many lines as possible main-
taining day-purity, by using one or more filler trips

that meet best certain criteria.

5 Line Completion: If there are still left open trips from
the family, build as many lines as possible that can
be built with less than a specified number of different
fillers.

6 Estimation: Estimate the number of remaining lines to
be built from the current remaining open (unassigned)
trips.

7 Stacking Test: Perform a stacking test that ensures that
there exists no interval of time during which there are
more open trips than the estimated number of lines. If
the stacking test fails, undo as many of the lines built
as necessary to pass the stacking test.

8 Loop: While there remain sufficient open trips that
can form a family repeat the above steps.

The algorithm captures many of the techniques for line
building that the planners used to build high-quality lines
of time, and it follows the contract between ALPA and the
company.

The stacking test in the seventh step implements a semi-
assignment algorithm [9], that ensures that no interval of
time in the period is “neglected”.

2.2 The Second Phase: Solving Set Partitioning with
a Genetic Algorithm

Once the first phase of the algorithm ends, we are left with
a number of high quality complete lines of time which con-
stitute a partial solution to the overall BLP. To complete
the solution, we must now arrange the remaining open trips
(which add up to a total credit that is usually enough to
build another 20% to 30% more lines) into valid lines of
time.

To achieve this goal, we employ the GA paradigm as the
search mechanism for exploring the space of valid combi-
nations of trips into lines. In this light, the GA acts as a
feasibility procedure that attempts to arrange the remaining
open trips into valid lines of time leaving open only a few
trips whose credit sums up to less than C}.

We designed a decoder strategy combined with repair pro-
cedures and hill-climbing heuristics. All our representa-
tions (to be discussed in detail in the next section) treat the
genotype of an individual as a “blueprint” or guideline for
the phenotype of the individual. The phenotype of an in-
dividual is an arrangement of some of the open trips into
valid lines of time. The objective value of the individual is
the total open time remaining after the objective function
has performed this arrangement.

As soon as a feasible solution is found, the GA terminates
returning this feasible solution. In this light, the approach
we take is similar to approaches described in [11, 12] where
the authors use decoder techniques to solve highly con-
strained optimization problems allowing for infeasible in-
dividuals to drive the genetic search.

In order to improve the initial arrangement of open trips
into lines of time done by the “blueprint” of the individual,
if the open time remaining is high (we are still infeasible),
we execute a hill-climbing heuristic that attempts to swap
trips between lines that were just constructed and trips in
the open time; we perform the swap only if it decreases the
new overall open time. This swap heuristic has a complex-
ity of O(#?) where t is the number of trips left open after the
purity phase. When the open time remaining after the hill-
climber returns is close to the feasible region, another hill-
climber attempts to modify lines built in the purity phase
in order to increase their total credit. This procedure can
often find a feasible solution in early generations, because
the lines built in the purity phase contain lines that can in-
crease their total credit by swapping low-credit trips with
high-credit trips from the open time.

The amount of credit that remains open after the final ar-
rangement of trips into lines forms the return value of the
evaluation function that must be minimized. We convert
objective function value to fitness value according to stan-
dard linear mapping to a fixed interval [0, M az F'it], so that
the less the objective function value is, the bigger the fitness
of the individual becomes.

The workings of the GA we used are explained in detail
in [3, 4]. The evolution follows the steady-state model with
a high degree of reproduction (defaulted to 70%). Selective
pressure is done using the roulette wheel sampling strategy
for selection of parents, and the standard operators of one-
point crossover and mutation are applied to produce the
new generation. Schematically, figure 2 shows the work-
ings of the GA.

DGA (our GA), is a distributed asynchronous GA based
on the island model of evolution, with a simple policy for
migrations of individuals among the islands. Whenever,
through chance, an island becomes almost deserted, the
best fit individuals from the other islands migrate to this
empty island with a very high probability. The empty is-
land becomes fertile ground for highly fit individuals with
no common ancestors to reproduce. The distributed na-
ture of the GA and the aging mechanism it employs are de-
signed to help maintain the diversity of the population with-
out the aggressive behavior the mutation operator exhibits
at high rates [3]. The aging mechanism removes from each
population all individuals that have reached their lifespan
(measured in number of generations they lived). This lifes-
pan is computed as a random variable with a mean value

DGA : An Asynchronous Distributed GA

DGA process:

Initialize Island Population

Evaluate & Rank Population

Select Subpopulation for Mating

Apply Genetic Operators
Insert New Individuals in the Island
Increase Age and Remove Olds

Next

Select Individuals to Send
COMMUNICATE

Probe for Incoming Individuals

and Insert them in the Island

EXIT

Figure 2: The workings of a DGA process

proportional to its fitness.

Finally, if after a fixed number of generations (defaulted to
30) we do not have a feasible solution, we break up a num-
ber of lines (usually 10) built in the purity phase and we
start the GA again with more open trips -and thus with a
less constrained problem to solve. As mentioned before,
the stopping criterion is the appearance of a feasible solu-
tion. The GA would also stop if it ever ran for 30 genera-
tions without finding a feasible solution and there were no
lines from the purity phase left unbroken (a situation that
has never materialized.)

3 Representation Issues

3.1 Trips to Lines Representation

Both representations we use are based on decoder tech-
niques: the first one is a simple and straightforward rep-
resentation. Each position in the individual’s string (allele)
represents a trip to be placed in the line represented by the
value of the string at this position (the gene). A decoder
scans the string from left to right attempting to assign each
trip to the lines indicated by the gene. If this assignment is
not possible, we assign the trip to another line as close as
possible to the one indicated. In such a case, we change the
chromosome’s gene at the current allele to indicate the line
where the trip was actually assigned. The representation is
shown schematically in figure 3.

Trip with id n should be placed in line 38

Trip with id 1 should be placed in line 38
I
|
I
#dl #id21 #id3 #ig
|

‘ 38‘42! 2] w0 [~ [%]
A
CrossOver Point
i
! Parent Individuals
I
#dl #id2, #id3 #idn

[4] 3 [50 [30 [. [50]

~_

£TN
I
#idl #id2) #id3 #idn

[38 [a2] 50] 25 [.

and Mutation
Mutation 30 -> 25

Figure 3: Trips to Lines Representation

3.2 Groups Representation

The second representation is based on the ideas of multi
coordination techniques in GAs for grouping problems [5].
These ideas attempt to exploit the observation that in
grouping problems such as set partitioning, it is the groups
that should be the building blocks of the solutions and not
the objects, and thus any representation and genetic opera-
tors should facilitate the transmission of whole groups from
parents to children in order for the genetic search to be suc-
cessful. Accordingly, the representation requires maintain-
ing a set L of legal lines of time. For this reason, in this rep-
resentation, before we run the GA, we generate a number
of lines from the open trips using the familiar tree build-
ing algorithms used in the purity phase of the system. We
generate these lines to have as much credit as possible, and
to be as day-pure as possible (trip purity is hardly possible
at this point). Any two lines in this set may have trips in
common, which of course implies that in the final solution
such lines cannot be both present. Each position in an in-
dividual’s string now is an index to a line from the set L
(see figure 4). An individual’s chromosome is a string of
indices to lines in L and we use a decoder to create lines
of time as follows: we scan the chromosome from left to
right; we select the trips in the line indicated by the gene
we are currently examining, and we create a (possibly par-
tial) line that is restricted to those trips we selected that are
still open.

Often, after the decoder ends, many of the last lines are left
incomplete with only a few trips in them because the origi-
nal lines in L contained trips that were present in other lines
used before in the string. From that point on, the same hill-
climbing heuristics will take over and attempt to complete
the partial lines and then improve upon the solution.

‘ 59 ‘ —— Offspring produced via Crossover

- ~— I e
Return Value

= --1

Open Trips for Swaps

RESULTS
AFTER SWAPS

LINE SET

SELECTED SET
AFTER 1ST PASS

Figure 4: In the lines to trips representation, a set of (inter-
secting) lines is maintained, and an individual is a string of
indices to this set. Swaps are performed to improve upon
the solution provided by the initial decoding of the string.

After the hill climber is executed, we augment the set L
by any new lines that we created and that are not present
in L. Then, we modify the individual’s chromosome to
indicate the lines in the set L that it contains. This idea
(often called Lamarckian evolution) has been used many
times in scheduling problems and usually helps improve
the GA process (find a feasible solution faster).

The main advantage of this representation is that it repre-
sents groups of trips that should form a line rather than sim-
ple guidelines for assignments of individual trips to lines.
As a result, any standard crossover operator such as one-
point crossover will create offspring that inherit whole lines
from each parent, instead of the less meaningful guidelines
of assignments of trips to lines; indeed the representation
of trips to lines will create offspring that more often than
not lead to large number of lines that are not present in ei-
ther parent thus hindering the evolutionary process. For a
more thorough discussion of this effect see [5].

4 The Runs

In December of 1997, an industrial-strength version of the
system described in this paper was put in production at
Delta Air Lines and has been used ever since to build the
monthly work schedules of the pilots. The representation
we used was the simpler to implement trips-to-lines rep-
resentation. We wrote the system, called LOTO, entirely
in C++ with the sole exception of the Genetic Algorithm
library which predates the system and is written in ANSI
C. DGA uses PVM 3.3 for interprocessor communication
when running on a parallel or distributed computing envi-
ronment. The system uses the Sybase relational DBMS for
all I/O purposes. The results we present in this section are

obtained from a uniprocessor IBM 595 RS6000 RISC ma-
chine with 256MB of on-board memory.

PROBLEM Groups Representation
TL | PP [TP | DP [Time (mins)
767 CPT ATL 12/99 340 | 42 | 66 | 113 212
767 CPT CVG 12/99 98 | 13 | 17 | 20 50
767 CPT DFW 07/99 75 | 10 | 12 | 29 1
767 FO DFW 07/99 79 9 13 | 38 1
727 CPT ATL 05/99 156 | 27 | 34 | 82 24
727 CPT ATL 02/99 165 | 0 4 | 107 5
M88 FO DFW 06/99 148 | 15 | 24 | 62 18
M88 CPT DFW 02/99 || 151 | 24 | 31 | 88 48
L10 CPT ATL 07/99 78 | 12 | 33 | 32 2

Table 1: Results using the Groups Representation

PROBLEM Trips to Lines Representation
TL | PP [TP [DP [Time (mins)

767 CPT ATL 12/99 341 | 45 | 68 | 119 221
767 CPT CVG 12/99 99 | 16 | 21 | 33 13
767 CPT DFW 07/99 76 | 12 | 14 | 31 2
767 FO DFW 07/99 79 8 | 12 | 38 1
727 CPT ATL 05/99 156 | 27 | 34 | 75 57
727 CPT ATL 02/99 166 | 0 4 | 106 49
M88 FO DFW 06/99 149 | 10 | 19 | 59 10
MS88 CPT DFW 02/99 || 151 | 22 | 29 | 79 18
L10 CPT ATL 07/99 79 | 11 | 36 | 33 2

Table 2: Results using the Trips to Lines Representation

Table 1 shows the results of a number of runs we did over
a wide range of categories and monthly periods using the
groups representation. The column “TL” represents the
total number of lines constructed for this category. The
columns “"PP”, ”TP”, and "DP” represent the number of
perfectly pure lines, trip-pure lines and day-pure lines re-
spectively. The last column shows the run times in minutes
of user time. The columns in table 2 have the same meaning
but they represent instead results from runs we did using the
simpler trips-to-lines representation.

A comparison of these results shows that the groups repre-
sentation may give better results in some cases (fewer lines
of time needed for a category, combined with more day-
pure lines and sometimes even more perfect lines). How-
ever the difference in the quality of these results is not very
significant. Far more significant is the following observa-
tion: when the GA runs without the hill-climber heuristics,
both representations fail to find a feasible solution in most
categories. Apparently the genetic operators of crossover
and mutation by themselves can only produce a partial so-
lution that the swaps can then significantly improve.

We also attempted to solve the BLP by exact methods. We
used the formulation of section 1.3. We assigned to each
line a cost that is a convex combination of the inverse of
the total number of different trips in the line and the in-

verse of the total number of different trip departure days.
We restricted the matrix L so as not to contain all valid
lines (which cannot be generated in any reasonable time
interval), but just all the lines generated by our GA in the
evolutionary process. Basically, after having obtained a
solution to the BLP from the GA, we saved all the lines
generated, and passed the resulting set partitioning prob-
lem to CPLEX [7], a widely used LP/IP solver for solv-
ing linear, integer and combinatorial optimization prob-
lems. The test cases we tried were two “easy” problems,
namely the June 99 L1011 Atlanta Captains’ category, and
the June 99 MD88 Dallas Fort-Worth Captains’ category.
The larger of the two test cases contained less than two
thousand columns, and a feasible solution was guaranteed
because the GA had found it. Surprisingly, even after run-
ning for more than 48 hours on a 4 processor HP 9000 V-
class server, CPLEX had not found even a single integer
solution to any of the problems. This outcome shows that
the BLP problem cannot be solved by exact methods using
classical branch & bound methods. The reason probably
lies in the fact that while the LP relaxation of the result-
ing problem can be solved within a few seconds, the nature
of the constraints admits very few solutions, and therefore
implicit enumeration has very little chance of coming up
with a solution. It is the same reason that forces the system
to spend most of its time in the GA phase trying to com-
plete the partial solution constructed in the first phase. This
also helps explain why the GA phase cannot find a feasi-
ble solution without the help of swaps. With the help of
local improvement techniques, implicitly many more lines
are examined from each individual that is being evaluated
than when local swaps are turned off. In a landscape that
has few feasible points, the genetic operators alone simply
lack the search power to locate a desired point.

5 Conclusions

We presented several issues that we faced during the de-
sign, implementation and evolution of a GA-based software
system for solving the scheduling problem of bidline gen-
eration. We used the domain knowledge about the problem
to separate the system in two phases (modules) that have
clearly drawn responsibilities; the first phase is responsible
for building high quality solutions whereas the second uses
a GA to complete the partial solution that the first phase
produced. We experimented with two different representa-
tions in order to understand which search mechanisms are
better suited for this problem. The groups representation as
expected, gives better results but it is only with the help of
the hill climbing techniques after the decoder of the evalu-
ation function that a feasible solution can be located.

The system is in production at Delta Air Lines since 1997
and has consistently produced very good quality solutions

in a fraction of the time that the airline used to spend to
build schedules before.

References

[1] K. W. Campbell, R. B. Durfee, and G. S. Hines.
FedEx generates bid lines using simulated annealing.
Interfaces, 27(2), 1997.

[2] Y. C. Cheng, D. J. Jr. Houck, J. M. Liu, M. S. Meke-
ton, L. Slutsman, R. J. Vanderbei, and P. Wang. AT&T
KORBX system. AT&T Technical Journal, 68(3):7—
19, 1989.

[3] I. T. Christou and R. R. Meyer. Fast distributed ge-
netic algorithms for paritioning uniform grids. In
A. Ferreira, J. Rolim, Y. Saad, and T. Yang, editors,
Lecture Notes in Computer Science 1117. Springer-
Verlag, 1996. Proceedings of the 3rd Interna-
tional Workshop on Parallel Algorithms for Irregu-
larly Structured Problems (Irregular 96).

[4] I. T. Christou, A. Zakarian, J.M. Liu, and H. Carter.
A two phase genetic algorithm for large scale bidline
generation problems at Delta. Interfaces, 29(5), 1999.

[5] E. Falkenauer. Genetic Algorithms and Grouping
Problems. John Wiley & Sons, New York, NY, 1998.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable Object Ori-
ented Software. Addison-Wesley, 1995.

[7] ILOG CPLEX Division, 889 Alder Ave. Incline Vil-
lage, NV 89451. Using the CPLEX 6.0 Callable Li-
brary, 1998.

[8] A. I. Z. Jarrah and J. T. Diamond. The problem of
generating crew bidlines. Interfaces, 27(4), 1997.

[9] J. Kennington and Z. Wang. A shortest augmenting
path algorithm for the semi-assignment problem. Op-
erations Research, 44(1), 1992.

[10] D. Levine. A Parallel Genetic Algorithm for the Set
Partitioning Problem. PhD thesis, Illinois Institute
of Technology - Dept. of Mathematics and Computer
Science, 1994.

[11] Z. Michalewizc. The significance of the evaluation
function in evolutionary algorithms. In L. D. Davis,
K. De Jong, M. D. Vose, and L. D. Whtiley, editors,
Evolutionary Algorithms, volume 111 of The IMA
Volumes in Mathematics and its Applications, pages
151-166, New York, NY, 1999. Springer.

[12]

[13]

[14]

B. Paechter, A. Cumming, H. Luchian, and
M. Petriuc. Two solutions to the general timetable
problem using evolutionary methods. In Proceedings
of the IEEE International Conference on Evolution-
ary Computation, pages 300-305, Los Alamitos, CA,
1994. IEEE Press.

M. D. Vose. What Are Genetic Algorithms? A Math-
ematical Perspective. In L. D. Davis, K. De Jong,
M. D. Vose, and L. D. Whtiley, editors, Evolution-
ary Algorithms, volume 111 of The IMA Volumes in
Mathematics and its Applications, pages 251-276,
New York, NY, 1999. Springer.

D. H. Wolpert and W. G. MacReady. No free lunch
theorems for search. Technical Report SFI-TR-95-02-
010, The Santa Fe Institute, Santa Fe, NM, 1995.

