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Abstract

A genetic local search (GLS) algorithm,
which is a combination technique of ge-
netic algorithm and local search, for the un-
constrained binary quadratic programming
problem (BQP) is presented. An effective lo-
cal search algorithm, which is a variant of the
k-opt local search for the BQP by Merz et
al., is described, and the performance of the
GLS with the variant local search heuristic
is demonstrated on several large-scale prob-
lem instances. Our computational results
indicate that the GLS is able to frequently
find the best-known solution with a relatively
short running time and obviously our aver-
age solution values obtained are better than
previous powerful heuristic approaches espe-
cially for the large problem instances of 2,500
variables.

1 INTRODUCTION

It is well known that search performances of genetic
algorithms can be enhanced by incorporating local
search heuristics. Such the incorporation is often
called as Genetic Local Search (GLS). In many cases,
the GLS is capable of finding relatively good solutions
for difficult optimization problems. However, the per-
formance of the GLS may depend on choices of genetic
operators and local search of which the GLS algorithm
is composed. In this paper, the GLS is interpreted as
follows: a main search engine of the GLS is the lo-
cal search heuristic, and the genetic operators such as
selection, crossover, and mutation work as auxiliary
search engines for the local search. In addition, the
genetic operators may contribute to explore new re-
gions of search space of a given problem and many
individuals of a population in the GLS can be biased
so as to lead to high-quality solutions corresponding
to a collection of its promising search points during
evolutions in the GLS.

In this paper, we consider the unconstrained binary
quadratic programming problem (BQP) which is an
NP-hard problem and has a large number of important
applications. To solve the BQP, several exact meth-
ods have been developed [3, 6, 10, 22]. However due
to the computational complexity of the problem, at
the present time it is only capable of solving the small
size instances. To obtain near-optimal solutions, sev-
eral heuristic approaches such as tabu search [5, 9],
simulated annealing [2, 5, 13], genetic (local search)
algorithms [18, 20], and iterated local search algo-
rithms [14] have been proposed for the BQP.

For example, Merz and Freisleben [20] have proposed
a genetic local search algorithm for the BQP in the
GECCO-99 and impressive results for the test prob-
lems of the BQP contained in the OR-Library [4] were
shown. Moreover, they gave better values of best-
known solutions for several large instances than that
found by tabu search and simulated annealing inves-
tigated by Beasley [5]. Furthermore, Katayama and
Narihisa [13] have proposed a high-performance sim-
ulated annealing for the large instances ranging from
500 to 2,500 variables. This simulated annealing ob-
tained new best-known solutions, which were even bet-
ter than that reported by Merz et al. [20], for several
large instances and it was verified to be powerful and
faster than the heuristic algorithms presented in [20]
and [5].

These heuristic algorithms mentioned above belong to
the meta-heuristics and are based on 1-opt local search.
The 1-opt local search is the simplest one, which iter-
atively searches the solutions that can be reached by
flipping a single element in the current solution. In this
paper, we present a new genetic local search (GLS) al-
gorithm for the BQP. Our GLS algorithm is composed
of simple genetic operators and an effective local search
heuristic which is more powerful than the 1-opt local
search. The effective local search is a variant of the
k-opt local search, which has been proposed by Merz
and Freisleben [21]. By using this variant k-opt local
search heuristic, we implement the effective GLS al-
gorithm which is able to obtain high-quality solutions



even for large-scale instances of the BQP. Experimen-
tal results demonstrated that the GLS frequently could
find the best-known or near best-known solutions for
the instances ranging from 1,000 to 2,500 variables in
the OR-Library. Moreover, we showed that its running
times were reasonable.

The paper is organized as follows. In Section 2, we
give the definition of the BQP and review the previous
research on the recent heuristics for the BQP. Section 3
describes our genetic local search algorithm, including
our effective k-opt local search algorithm. In Section
4, we evaluate our GLS for the large instances and
show its performance by comparing with the previous
powerful heuristic approaches, and Section 5 contains
concluding remarks.

2 THE BQP AND PREVIOUS
RESEARCH

The objective of the BQP is to find, given a symmetric
rational n × n matrix Q = (qij), a binary vector of
length n that maximizes the following quantity:

f(x) =
n∑

i=1

n∑

j=1

qijxixj, xi ∈ {0, 1} ∀i = 1, . . . , n. (1)

The BQP belongs to the class NP-hard and has a
large number of important applications, e.g., ma-
chine scheduling [1], traffic message management prob-
lem [8], CAD problem [16], capital budgeting and fi-
nancial analysis problem [19], molecular conformation
problem [25]. Furthermore, it has been known that
the BQP is equivalent to many classical combinatorial
optimization problems such as maximum cut, maxi-
mum clique, maximum vertex packing, minimum ver-
tex cover, maximum independent set, and maximum
weight independent set problems [3, 11, 23, 24].

To solve the BQP, several exact methods such as
branch & bound or branch & cut have been developed
by many researchers, e.g., Pardalos and Rodgers [22],
Barahona, Jünger, and Reinelt [3], Billionnet and Sut-
ter [6], Helmberg and Rendl [10]. However due to
the computational complexity of the problem, at the
present time it is only capable of solving the small
size instances. For larger instances, such the meth-
ods would become prohibitively expensive to apply,
whereas high-performance heuristics might find high-
quality solutions with short times. The recent survey
concerning the exact methods can be found in [5]

On the other hand, several heuristic approaches have
been proposed to the BQP. These approaches are gen-
erally based on improving the current single solution
(or multiple solutions) by a greedy search and other
concepts for the neighborhood of the solution. In the
following, we briefly review recent powerful heuristic
algorithms that could find optimal/best-known or very
good approximate solutions for the BQP.

Glover, Kochenberger and Alidaee [9] have proposed a
tabu search heuristic for instances of up to 500 vari-
ables. Their tabu search consists of a strategic oscil-
lation scheme which alternates between constructive
and destructive phases.

Lodi, Allemand, and Liebling [18] have proposed a
heuristic based on the genetic algorithm for the same
problem set studied by Glover et al. Their heuristic
is combined with the local search algorithm that is
based on the constructive and destructive phases as in
Glover et al. In a crossover operator, they performed
an operator based on the uniform crossover utilizing
the MinRange algorithm which is based on the prop-
erty by Pardalos and Rodgers [22].

Alkhamis, Hasan, and Ahmed have proposed a simu-
lated annealing [2]. Unfortunately, only small problem
instances with up to 100 variables were investigated.

In [5], Beasley has provided larger BQP test problems
with up to 2,500 variables as new test problems of the
OR-Library [4]. Beasley showed the best-known solu-
tion for each of the provided instances by performing
other tabu search and simulated annealing.

Merz and Freisleben have proposed a genetic local
search algorithm [20], and tested on the instances stud-
ied in [5]. In their genetic local search, a simple local
search (called 1-opt, see below) and a variant of uni-
form crossover, HUX [7], were employed. For several
large instances, they gave new best-known solutions
and showed that their algorithm outperformed two al-
ternative heuristics reported by Beasley. Furthermore,
Merz et al. have developed a greedy heuristic and two
local search heuristics called 1-opt and k-opt [21]. They
showed that in particular the k-opt local search was
capable of finding high-quality solutions even for the
large-scale problem instances, and they also implied
that these heuristics are well suited as components for
the meta-heuristics.

Katayama and Narihisa [13] have proposed a new sim-
ulated annealing-based heuristic with reannealing pro-
cess and tested on the large instances ranging from
500 to 2,500 variables contained in the OR-Library.
Although the simulated annealing was based on the
simple 1-opt neighborhood structure, better average
solution results for the large instances were shown by
comparing with the other heuristics: the genetic lo-
cal search by Merz et al. [20] and the heuristics by
Beasley [5]. Moreover, it was considerably faster than
the others, and new best-known solutions for several
large instances were reported.

3 GENETIC LOCAL SEARCH
ALGORITHM FOR THE BQP

The genetic local search algorithm is composed of the
genetic operators and the local search. Generally, since
the local search is applied to new offspring created by



crossover or mutation operators, all individuals (solu-
tions) in the population represent local optima. For a
set of the local optimal solutions, a selection operator
is applied to select promising individuals to make the
next collection of parents. In this section, we describe
details of search parts of which the GLS algorithm for
the BQP is composed, including our variant k-opt local
search algorithm.

When applied GLS to a specific problem, it is impor-
tant to determine the fitness function and the repre-
sentation. For the BQP, Eq. (1) can be used as the
fitness function. On the other hand, 0-1 binary rep-
resentation is an obvious choice for the BQP since it
represents the underlying 0-1 integer variables. In our
representation, we used a n-bit binary string, where
n is the number of variables in the BQP, and a value
of 0 or 1 at the j-th bit implies that xj = 0 or 1 in
the individual used in our GLS, respectively. All com-
binations of 0 or 1 appeared in all n elements of the
individual are feasible.

3.1 LOCAL SEARCH

Local search is a generally applicable approach that
can be used to find approximate solutions to hard op-
timization problems. The basic idea is to start from
an initial solution x, e.g., a randomly generated solu-
tion, and to search a better solution in its neighborhood
N(x) until no better solution is found in N(x). Thus,
the resulting solution can not be improved by refer-
ence to N (x) and is a local optimal solution in the
neighborhood N .

The performance of such the local search substantially
depends on: 1) the definition of the neighborhood
N(x) and 2) the move strategy, i.e., how to search
better ‘neighbor’ solutions from N(x) in the current
solution.

Neighborhood

For the BQP, due to the binary representation a struc-
ture of the simplest neighborhood is the 1-opt neigh-
borhood N1(x) that can be performed by flipping a
single element in the solution x, i.e., the hamming
distance dH between the current solution x and its
neighbor solution x′ ∈ N1(x) is equal to 1. Therefore,
a size of candidates of neighbor solution obtained by
N1(x) from the current solution x is only n. Merz
and Freisleben have proposed a powerful local search
heuristic that efficiently searches a small fraction of
the k-opt neighborhood such that 1 ≤ dH ≤ k (a num-
ber of dH is variable) [21]. The variable-depth k-opt
local search algorithm for the BQP is based on ideas
of Kernighan and Lin who proposed effective heuris-
tics for the graph partitioning problem [15] and the
traveling salesman problem [17], which are well-known
combinatorial optimization problems.

Move Strategy

The move strategy in the local search is defined by
a scheme of how to search the neighbor solutions that
can be reached by reference to the neighborhood in the
current solution. Generally, the move strategy used in
the local searchmay be divided into two types: 1) best-
improvement move strategy and 2) first-improvement
move strategy. The best-improvement move strategy
selects the improved neighbor solution x′ with the best
cost in the entire candidate set of N (x) and the solu-
tion x′ becomes the next solution. On the other hand,
the first-improvement move strategy scans neighbor
solutions in N (x) according to a pre-specified (ran-
dom) order, and if the improved neighbor solution x′

is found during the scan, the solution x′ is immediately
accepted as the next solution.

Both strategies can be adopted as a component of
algorithms for the BQP. For example, Merz et al.
have adopted the best-improvement for the 1-opt local
search algorithm in their GLS [20]. For our simulated
annealing approach to the BQP, we have adopted the
first-improvement in the 1-opt neighborhood. The de-
tailed description and fundamental results of the best-
improvement 1-opt and the first-improvement 1-opt
can be found in [13].

Variant k-opt Local Search for the BQP

A variant of the k-opt local search algorithm proposed
by Merz and Freisleben [21] is described. Our vari-
ant k-opt local search for the BQP is based on an
ingenious combination of both the k-opt local search
with the best-improvement by Merz et al. (MFk-opt)
and the 1-opt local search with the first-improvement
presented by Katayama and Narihisa (KN1-opt) [13].
Roughly speaking, the search by the 1-opt neighbor-
hood of KN1-opt contributes to oscillations that are
performed so as to move good points likely to lead
to better solutions. Furthermore, although the result-
ing solution found by the k-opt local search with the
best-improvement depends on the starting solution,
KN1-opt works so as to mitigate such the search of
MFk-opt. This variant local search is performed until
no better solution can be found.

Fig. 1 shows the variant local search procedure written
by a similar code description in [21]. Given a solution
x and all gains g, provided that x should not be local
optimum and each (gi) of g has a gain value for neigh-
bor solutions that can be reached by flipping i-th bit
in the given solution x. The details for calculating and
fast updating of all gains at Step1.2.2.2 and Step1.2.7
for the BQP’s solution can be found in [21]. In the
inner repeat-loop of Step1.2, a search process of both
our 1-opt local search and the k-opt local search is per-
formed. The process from Step1.2.3 to Step1.2.8 is the
same as the search of the k-opt local search by Merz
et al. and the process for KN1-opt is located from



procedure Variant-k-Opt-Local-Search (x, g)
1 Do the following until Gmax ≤ 0. (Initially, a large integer value is set to Gmax)
1.1 Set xp = x, Gmax = 0, G = 0, C = {1, . . . , n}.
1.2 Do the following until C = φ.

1.2.1 Generate a random permutation RP [ ] ranging from 1 to n.
1.2.2 Perform the following n times (j is incremented from 1 to n)

1.2.2.1 k = RP [ j ].
1.2.2.2 If G + gk > Gmax then

- Set G = G + gk and Gmax = G.
- Set xk = 1− xk.
- Set xb = x.
- Update gains gi for all i in {1,. . .,n}.
- Set C = C\{k}.

1.2.3 Find j with gj = maxigi.
1.2.4 Set G = G + gj.
1.2.5 If G > Gmax, then set Gmax = G, xb = x.
1.2.6 Set xj = 1− xj .
1.2.7 Update gains gi for all i.
1.2.8 Set C = C\{j}.

1.3 If Gmax > 0, then set x = xb, else set x = xp.
2 Return x.

Figure 1: A variant k-opt local search procedure.

Step1.2.1 to Step1.2.2.2. In this study, the KN1-opt
process is performed in only the first iteration of loop
of Step1.2 that comes after Step1.1 rather than in all
iterations of the loop, in order to search gainful neigh-
bors. Therefore, the final stage of the variant search
is equivalent to the MFk-opt. Although a candidate
set C is used to assure that each bit is flipped exactly
once in the MFk-opt process, we do not care it in the
search process of KN1-opt. However, for forthcoming
MFk-opt, all bits that contributed to improve the so-
lution are removed from C at Step1.2.2.2.

To reduce the running time, Merz et al. suggested to
modify the termination condition of the inner repeat-
loop. We also modify it (Step1.2) so that the itera-
tive search in the loop is terminated if there were no
new xb solution for more than m iterations, provided
that m 	 n. In a preliminary testing, we found a
good value of m in a trade-off between solutions ob-
tained and running times. In our all experiments in
this paper, we set to m = 50. Turning now to a funda-
mental performance, the variant local search based on
this ingenious combination of both 1-opt neighborhood
with the first-improvement KN1-opt and k-opt neigh-
borhood with the best-improvement MFk-opt can ob-
tain slightly better local optimal solutions on average
without a large amount of running time than the origi-
nal k-opt local search of Merz et al. Furthermore, since
this variant search is performed with random choices
of better neighbors found by KN1-opt, the resulting
local optima strongly do not depend on the starting
solutions in many cases.

3.2 GENETIC OPERATORS

Designs of the genetic operators are simple in our GLS
approach to the BQP. However, crossover and muta-
tion are designed so as to create appropriate offspring
for the variant k-opt local search described above, since
the local search starts from these offspring solutions
except for a creating process of initial solutions. The
flow of our GLS is illustrated in Fig. 2. Initial PS indi-
viduals (I0

1 , . . . , I0
P S) of a population P 0 are randomly

generated and are locally optimized by the variant k-
opt local search heuristic to obtain a new P 1, which is
an initial set of local optima. After that, a main loop of
the GLS is repeated until a generation counter GC is
reached a predefined termination generation GN or for
a time-limit. Each of the genetic operators and others
implemented in our GLS is described in the following.

Crossover

In the BQP, classical genetic crossovers can be applied
without any modification. For our GLS approach to
the BQP, the uniform crossover (UX) [26] is employed
because several researchers who investigated genetic
local search approaches to the BQP have chosen the
UX or its variant as a crossover. From a collection of
promising individuals in the population, the couples of
PS/2 are randomly chosen, but each individual is per-
mitted to be a mate exactly once in the population. In
our crossover, one offspring is created from the couple
of two parents as shown in Fig. 3, and thus a number
of all offspring after the crossovers of PS/2 times is



procedure Genetic-Local-Search
0 Determine a population size PS and a generation number GN or a time-limit for the termination. Initialize
a generation counter GC = 1.

1 Generate initial individuals I0
1 , . . . , I0

PS of population P 0 randomly.
2 Each individual I0 ∈ P 0 is locally optimized by the local search for obtaining a new P 1.
3 Do the following until GC is reached to GN or for the time-limit.
3.1 Increment GC = GC + 1.
3.2 Do the following until a number PS/2 of all couples is reached.

3.2.1 Select a couple Ia, Ib ∈ PGC−1 randomly.
3.2.2 Perform Crossover(Ia, Ib), obtaining Ic.
3.2.3 Perform Mutation to the offspring Ic, if needed.
3.2.4 Run the local search on the offspring Ic, obtaining new Ic.
3.2.5 Ic is inserted to an offspring population PGC

c .
3.3 (Each fitness of all individuals ∈ PGC−1 and PGC

c is calculated.) Select better PS individuals to be
the population P GC from P GC−1 and PGC

c so that individuals which have the same fitness can not be
survived.

3.4 Perform diversification strategy to the population P GC, if needed.
4 Return the best individual ∈ P .

Figure 2: The flow of genetic local search.

parent1 1 0 0 1 1 0 1 0
parent2 0 0 1 1 0 1 1 0

∗ 0 ∗ 1 ∗ ∗ 1 0
offspring 0 0 1 1 1 0 1 0

Comment : For the offspring, a value of 0 or 1 at each
position ‘*’ is chosen with probability 0.5.

Figure 3: An example of our uniform crossover.

equal to PS/2. In the crossover process, the resulting
offspring are expected to be suitable solutions. The
suitable solutions imply that they move to hopeful re-
gions of search space of the BQP from the old states
and are not local optima. Generally, it is difficult to
judge whether the offspring is suitable without a mea-
sure. As the measure, we check a hamming distance
between their two parents (see Mutation for more de-
tails). If this judgment by the hamming distance is
satisfied, the offspring is improved by the effective local
search without any modification such as the mutation
as described below.

Mutation

When the resulting offspring created by the crossover
is not suitable, the mutation operator is applied to the
offspring as an auxiliary operator of the crossover. In
our GLS, we check the hamming distance dH of par-
ents that were used in each of the crossover processes
as described above. If dH(Ia, Ib), i.e., the hamming
distance between two parents, was below a number of
n/10, where n denotes a number of variables of a given
BQP instance, the mutation operator flips a value of
the offspring location randomly chosen from all loca-

tions where have the same value at the same location
in both parents until the hamming distance between
the offspring and the parent Ia (or Ib) is reached the
number of n/10. In our preliminary testing, it appears
that the number n/10 was suitable in our GLS.

Selection

All solutions after the local search which starts with
offspring created by the crossover and mutation oper-
ators represent local optima. Before applying a selec-
tion operator in each generation, we have local optima
of PS+PS/2 which are parent and newly created off-
spring solutions. Due to the fixed population size, PS
individuals with better fitness are selected from all the
candidate local optima. However, duplicate individu-
als are not contained in the new population and new
individual, i.e., offspring, which is one of the dupli-
cates, is survived to the next generation. The similar
selection in the GLS approach can be found in [12].

Diversification/Restart Strategy

Obviously, during the search, our selection opera-
tor leads to a convergence in the population. Thus,
we perform a diversification/restart strategy to move
other points of the search space if no new best in-
dividual in the population was found for more than
30 generations or the average distance of the popula-
tion has dropped below a threshold 30. (In our ob-
servations, this strategy was mainly performed with
the former requirement.) In response to these require-
ments, the individuals except for the best one in the
population are mutated by flipping randomly chosen
n/2 bits for each individual. After that, each of the



mutated individuals is improved by the local search
heuristic to obtain a new set of local optima and the
search is started again with newly diverse individuals.
This strategy is borrowed from [7] and [20]. Although
our strategy is considerably disruptive, our k-opt lo-
cal search heuristic can easily compensate for search
points significantly moved and in the long run, these,
i.e., processes of the diversification and the concentra-
tion, cooperate in moving new regions where are not
visited in the search space and may contribute to im-
prove a total performance of the GLS.

4 COMPUTATIONAL RESULTS

This section reports the results of computational ex-
periments which were performed for our effective GLS
algorithm described above. In order to show the per-
formance of our GLS, a comparison is carried out with
the recently reported results of the genetic local search
by Merz and Freisleben [20], the tabu search and sim-
ulated annealing by Beasley [5], and the simulated an-
nealing by Katayama and Narihisa [13] for the large-
scale test problems ranging from 1,000 to 2,500 vari-
ables contained in the OR-Library [4].

Our GLS algorithm implemented in C are executed on
a Sun Ultra 5/10 (UltraSPARC-IIi 440MHz) under the
OS Solaris 7. The algorithm code is compiled with gcc
compiler using optimization flag -O2. The population
size PS is 20. The crossover rate is set to 1.0 and the
mutation rate is not set because the mutation operator
is adaptively performed according to states of offspring
created by the crossover. See sub-section 3.2.

The large-scale test problems are 20 instances. The
breakdown of these instances is as follows. Each of
two sets that were firstly studied in [5], beas1000
(n = 1, 000) and beas2500 (n = 2, 500), consists of ten
instances with a matrix density dens(Q) of 0.1, where
dens(Q) is defined as the number of non-zero entries
divided by the number of total entries in the matrix.
At the present time, the instance of size n = 2, 500 is
the largest BQP test problem in the OR-Library.

Table 1 summarizes the results of our GLS incorpo-
rating the variant k-opt local search and of the other
algorithms, which have been tested on the large-scale
instances. For our GLS, 30 runs were performed and
the running times to reach the best-known solutions
were recorded. If the best-known solution could not
be found for each run, the run was performed until
the time-limit (60(s) for each instance of beas1000 and
360(s) for beas2500) was reached. In this table, for our
GLS, the best found solution value “best”, the average
final solution “avg.”, the number of times in which the
best-known solution could be found “(b/30)”, the aver-
age running time “t1” in seconds in the case which the
GLS could find the best-known solution, and the time-
limit “t2” in seconds except for the case which the GLS
could find the best-known solution, were provided. In

the other results, for SA-KN [13], we provided the re-
ported results of the average final solution in 30 runs,
“(b/30)” by SA-KN, and the average running times in
seconds which were required by SA-KN on Sun Ultra
5/10 (UltraSPARC-IIi 440MHz). For GLS-MF [20],
the average final solution in 30 runs was provided for
each instance. Their GLS was performed until 600(s)
for each instance of beas1000 or 1,200(s) for each of
beas2500 was reached on Pentium II PC (300MHz).
For TS-B and SA-B, in [5], Beasley provided the best
result for each instance. These algorithms (TS-B and
SA-B) for each instance of beas1000 consumed about
4,500(s) and 6,800(s), respectively, and for each of
beas2500 about 14 hours and 17 hours were required
on Silicon Graphics (R4000 CPU with 100MHz), re-
spectively.

As observed in Table 1, our GLS obtained good av-
erage solution values in comparison to the other ex-
isting heuristic algorithms: GLS-MF and two alterna-
tive approaches of TS-B and SA-B, especially for the
largest problem set tested, beas2500, because our GLS
algorithm could frequently find the best-known solu-
tion which agreed with the value of the best solution
found by the simulated annealing algorithm (SA-KN)
for each instance investigated in [13]. Particularly, in
all 30 runs, the best-known solutions were found for all
the instances of the set of beas1000 and beas2500-1,
-4, -5, -6 instances.

For the general framework of GLS, our approach to
the BQP is similar to the other existing genetic ap-
proaches by Merz et al. and Lodi et al. [18] in that all
individuals in the population after the local search rep-
resent local optima and the similar genetic operators
(e.g., uniform crossover) are performed. However, one
of the most different points between our GLS and the
others may be that our GLS algorithm is performed so
as to achieve an effective use and properties of our lo-
cal search algorithm for finding better local optima. To
show a superior point of our GLS, we should give the
average number of generations which the GLS spent
to find the best-known solution. For example, in in-
stances of 1,000 variables, the GLS spent the follow-
ing average generation numbers: 13, 10, 5, 11, 25, 11,
21, 30, 15, and 15 generations for each instance (from
beas1000-1 to beas1000-10) of beas1000. In com-
parison with GLS-MF (their PS was 40, see [20]), the
generation numbers spent by our GLS are considerably
fewer. From this fact, we believe that our variant k-
opt local search used in the GLS contributed much to
find high-quality solutions with fewer generations (i.e.,
it implies the smaller number of cost evaluations) or
short running times.

In terms of the running times, it seems that the simu-
lated annealing SA-KN is fast compared to the other
algorithms (because we have already observed in [13]
that SA-KN on S-4/5 with 110MHz was still faster
than the others) if we do not push the fact in respect



Table 1: Comparison of our genetic local search algorithm (GLS) and four algorithms: simulated annealing (SA-
KN) by Katayama and Narihisa, genetic local search (GLS-MF) by Merz and Freisleben, tabu search (TS-B)
and other simulated annealing (SA-B) by Beasley, for beas1000 and beas2500 instances.

BQP GLS SA-KN GLS-MF TS-B SA-B
instance best avg.(b/30) t1(s) t2(s) avg.(b/30) t(s) avg. t(s) best best
beas1000-1 371438 371438.0 (30) 5 — 371342.1 (10) 1.5 371304.1 600 371438 371134
beas1000-2 354932 354932.0 (30) 4 — 354836.5 (16) 1.4 354862.3 600 354932 354637
beas1000-3 371236 371236.0 (30) 3 — 371193.5 (22) 1.5 371233.8 600 371073 371226
beas1000-4 370675 370675.0 (30) 4 — 370605.4 (13) 1.5 370506.0 600 370560 370265
beas1000-5 352760 352760.0 (30) 10 — 352685.0 ( 3) 1.5 352687.6 600 352736 352297
beas1000-6 359629 359629.0 (30) 5 — 359480.0 (10) 1.5 359487.8 600 359452 359313
beas1000-7 371193 371193.0 (30) 8 — 371046.3 (11) 1.5 371084.9 600 370999 370815
beas1000-8 351994 351994.0 (30) 11 — 351844.9 ( 2) 1.5 351844.6 600 351836 351001
beas1000-9 349337 349337.0 (30) 7 — 349160.9 ( 3) 1.4 349253.3 600 348732 348309
beas1000-10 351415 351415.0 (30) 6 — 351214.1 (10) 1.5 351125.6 600 351408 351415
beas2500-1 1515944 1515944.0 (30) 32 — 1515828.9 ( 9) 15.1 1514804.6 1200 1514971 1515011
beas2500-2 1471392 1471195.1 (13) 215 360 1470600.9 ( 1) 15.2 1469721.0 1200 1468694 1468850
beas2500-3 1414192 1414111.9 (21) 117 360 1413657.1 ( 8) 15.1 1412943.0 1200 1410721 1413083
beas2500-4 1507701 1507701.0 (30) 22 — 1507630.3 (21) 14.6 1507674.2 1200 1506242 1506943
beas2500-5 1491816 1491816.0 (30) 51 — 1491692.8 ( 6) 15.2 1491623.4 1200 1491796 1491465
beas2500-6 1469162 1469162.0 (30) 52 — 1468810.3 ( 5) 15.3 1467918.2 1200 1467700 1468427
beas2500-7 1479040 1479038.8 (29) 117 360 1478397.4 ( 2) 15.4 1477101.7 1200 1476059 1478654
beas2500-8 1484199 1484197.1 (25) 86 360 1483907.9 ( 6) 15.0 1483226.9 1200 1484199 1482953
beas2500-9 1482413 1482411.3 (27) 176 360 1482192.0 ( 1) 15.1 1481622.9 1200 1482306 1481834
beas2500-10 1483355 1483172.8 (16) 178 360 1482522.4 ( 1) 15.4 1481899.2 1200 1482354 1482166

to the average results of the solutions found by SA-
KN. However, our GLS seems to be capable of finding
better solutions on average with reasonable running
times (although it is not clear whether the SA-KN can
obtain comparative results on average with the longer
running times spent by our GLS). If required the best-
known solution frequently, our GLS approach appears
to be one of the most promising approaches to the
BQP. From a practical point of view, the performance
of our GLS algorithm outperformed the previously re-
ported heuristic algorithms in terms of average solu-
tion results.

In the OR-Library, there are many test problem in-
stances of the BQP that are smaller than beas1000
and beas2500. However, these small instances rela-
tively become easier to solve by our GLS approach.
For example, for glov500-1 of n = 500 and dens(Q) =
0.1 the GLS could found the best solution of f (x) =
61,194 in all 30 runs and the average running time was
less than a second on the computational circumstances
mentioned above. Even for a test instance of n = 500
and dens(Q) = 0.75, namely glov500-4, which ap-
peared to be hard for the genetic local search algorithm
by Merz et al. [20], our GLS obtained the best solution
of f (x) = 172, 771 in all 30 runs with the average time
of 24 seconds. For glov500-5 with dens(Q) = 1.0,
the best solution of f(x) = 190, 507 could be found
by our GLS in all 30 runs with the average time of
11 seconds. In this connection it seems that the den-
sity of the matrix, dens(Q), has a significant effect on

the performance or running times of the GLS as well
as the previous GLS of Merz et al. To claim the ef-
fectiveness of our GLS approach in the strict sense,
additional testing may be required on larger instances
with higher densities such as des(Q) > 0.1.

5 CONCLUSION

This paper presented an effective genetic local search
(GLS) algorithm for solving the large-scale instances
of the unconstrained binary quadratic programming
problem (BQP). It was shown that our GLS incorpo-
rating the variant k-opt local search heuristic was able
to frequently obtain the best-known solution with rea-
sonable running times. Although the GLS consumed
more running times than the simulated annealing pre-
sented in [13], we demonstrated that the GLS was ca-
pable of finding better solutions on average than the
simulated annealing or the other existing heuristic al-
gorithms especially for the large problems.

Moreover, it was showed that the GLS approach could
be considerably improved by incorporating the effec-
tive local search into the GLS framework. However,
our GLS preferably performed the mutation in com-
parison to the previous GLS approaches to the BQP.
This may raise the question of whether GLS algo-
rithms that often perform disruptive operations are
always better than ‘conservative’ GLS algorithms for
the BQP that seems to have a structured landscape.
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