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Abstract

Present day instrumentation networks already
provide immense quantities of data, very little of
which provides any insights into the basic
physical phenomena that are occurring in the
measured medium. In order to fully exploit the
information contained in the data, dimensionally
aware GP has been developed. The present paper
presents two application studies of dimensionally
aware GP on difficult hydraulic data sets.

1 INTRODUCTION

In making the most of a set of experimental data it is
generally desirable to express the relation between the
variables in the symbolic form of an equation. In view of
the necessarily approximate nature of the functional
relation, such an equation is described as ‘empirical’. No
particular stigma should be attached to the name since
many ultimately recognised chemical, physical and
biological laws have started out as empirical equations.

Sciences devote particular attention to the
development of a physical symbol system, such as a
scheme of notation in mathematics, together with the
evolution of more refined representations of physical and
conceptual processes in the form of equations in the
corresponding symbols. Each equation can be regarded as
a collection of signs, which constitutes a model of an
object, process or event. Data, on the other hand, remain
as ‘mere’ data just to the extent that they remain a
collection of signs that does not serve as a model. From
this point of view, the evolution of an equation within a
physical symbol system as a means of better conveying
the ‘meaning’ or ‘semantic content’ that is encapsulated
in the data, corresponds to the evolution of a model.
Evidently the ‘information content’ is very little changed,
or even unchanged, but the ‘meaning value’ is commonly
increased immensely. Since it is just this increase in

‘meaning value ’that justifies the activity of substituting
equations for data, there is a natural interest in processes
for further promoting such means.

1.1 COMPUTER-SUPPORTED SCIENTIFIC
KNOWLEDGE DISCOVERY

Means for data collection and distribution have never
been so advanced as they are today. While advances in
data storage and retrieval continue at an extraordinary
rate, the same cannot be asserted about advances in
information and knowledge extraction from data. Without
such developments, however, we risk missing most of
what the data have to offer. Disregarding the data simply
because we do not know how to analyze it would be a real
waste. This is particularly pronounced in scientific
endeavours, where data represent carefully collected
observations about particular phenomena that are under
study.

However, analyzing the data alone is not the entire
story. At least not in scientific domains! Scientific
theories encourage the acquisition of new data and these
data in turn lead to the generation of new theories.
Traditionally, the emphasis is on a theory, which demands
that appropriate data be obtained through observation or
experiment. In such an approach, the discovery process is
what we may refer to as theory-driven. Especially when a
theory is expressed in mathematical form, theory-driven
discovery may make extensive use of strong methods
associated with mathematics and with the subject matter
of the theory itself. The converse view takes a body of
data as its starting point and searches for a set of
generalisations, or a theory, to describe the data
parsimoniously or even to explain it. Usually such a
theory takes the form of a precise mathematical statement
of the relations existing among the data. This is the data-
driven discovery process. However, there is an enormous
amount of knowledge and understanding of physical
processes that should not just be thrown away. Therefore,
we strongly believe that the most appropriate way forward
is to combine the best of the two approaches: theory-



driven, understanding-rich with data-driven discovery
processes.

The process of scientific discovery has long been
viewed as the pinnacle of creative thought. Thus, to many
people, including some scientists themselves it seems an
unlikely candidate for automation by a computer
(Langley, 1998). However, over the past two decades
researchers in AI have repeatedly questioned this attitude.
The present paper is a modest attempt to describe the use
of GP within a scientific discovery framework.

1.2  MODEL INDUCTION

One particular mode of data mining is that of model
induction. Inferring models from data is an activity of
deducing a closed-form explanation based on
observations. These observations, however, always
represent (and in principle only) a limited source of
information. The question emerges how this, a limited
flow of information from a physical system to the
observer, can result in the formation of a model that is
complete in a sense that it can account for the entire range
of phenomena encountered within the physical system in
question — and to even describe the data that are outside
the range of previously encountered observations. The
confidence in model performance can not be based on
data alone, but might be achieved by grounding models in
the domain so that appropriate semantic content is
obtainable. This should be the ultimate goal of knowledge
discovery.

Thus, a model induction algorithms that produce
models amenable to interpretation next to the ability to fit
data is needed. Clearly, every model has its own syntax.
The question is whether such syntax can capture the
semantics of the system it attempts to model. Certain
classes of model syntax may be inappropriate as a
representation of a physical system. One may choose the
model whose representation is complete, in the sense that
a sufficiently large model can capture the data’s
properties to a degree of error that decreases with an
increase in the model size. Thus, one may decide to
expand Taylor or Fourier series to a degree that will
decrease the error to a certain, arbitrarily given degree.
However, completeness of representation is not the issue.
The issue is in providing an adequate representation
amenable to interpretation.

1.3 THE ROLE OF A SCIENTISTS IN A
COMPUTATIONAL DISCOVERY PROCESS

The term computational discovery appears to imply a
fully automated process. Indeed, most of the research in
AI and specifically in GP may suggests so, simply
because it is the automation process that is at the center of
attention. However, the most appropriate use of model

induction algorithms is the one in which scientists and
domain specialists play active role.  Langley (1998)
summarises the major ways in which scientists can
influence the behaviour of discovery systems as:

• problem formulation: the discovery problem must be
formed so that is can be solved using an induction
algorithm.  This phase covers problem definition and
related choice of dependent and independent
variables

• effective representation: the background knowledge
about the domain in terms of initial theory or
previous results can be incorporated through
appropriate representational engineering.

• data manipulation: collected data may be sparse,
incomplete, noisy or include outliers. Consequently,
data often need to be manipulated in order to
improve the results through computational
discovery.

• algorithm manipulation: setting of the inductive
system's parameters

• postprocessing: transformation of the inductive
system's output into a form which is meaningful to
scientific community.

2 DIMENSIONALLY-AWARE GP

In building empirical equations for a physical
phenomenon based on data alone, units of measurement
form a principal tool that help in interpreting these
equations. One standard approach in avoiding potential
conflicts with incorrect dimensionality of induced
formulations is to use dimensionless values (well known
examples are the Mach number and the Reynolds
number). This is the ‘standard scientific practice’. Units
of measurements are effectively eliminated through the
introduction of dimensionless ratios. Once the
dimensionless numbers are used instead of the original
dimensional values the problem of dimensional
correctness is conveniently avoided, as all analysed
quantities are dimension-free and can be used by
knowledge-free induction tools such as regression, neural
networks and genetic programming. Dimensionless
numbers themselves can be proposed by introducing
ratios that seem to make sense, or by the more systematic
method of applying Buckingham’s Pi-theorem. It is also
argued that dimensionless ratios collapse the original
search space, making it more compact, thus resulting in a
more effective behaviour of algorithms that fit models to
the data. At the same time, the information contained in
the units of measurements is ignored entirely, effectively
violating the basic premise of dimensional analysis.



The resulting equations can then be tested with
statistical methods to examine their ability to predict the
phenomenon on unseen data. Although physical laws are
preferably stated in dimensionless form (Ellis, 1965) an
empirically found relationship stated in the problem’s
units can aid interpretation and subsequently can lead to a
better understanding of the process in question.

Dimensionally aware genetic programming (Keijzer
& Babovic, 1999) differs from the approach sketched
above in that the raw observations are used together with
their units of measurement. The system of units of
measurement can be viewed as a typing scheme and as
such can be used in some form of typed genetic
programming. One candidate for this is a strongly typed
approach (Montana 1995, Clack & Yu 1997), where the
population is initialized with correctly typed equations
only and this correctness is maintained during the run. In
the case of ill-posed problems or problems where the
measured data gives an incomplete picture of the entire
problem, a strongly typed approach suffers from the fact
that it cannot propose equations that are more-or-less
correct. Although the object of search is a correctly typed
equation in terms of the dimensions, at any time there is a
balance between the accuracy of the formulation and the
dimensional correctness. When these two objectives for a
given problem are contradictory, an important indication
that the problem is ill-posed can be given. An example of
such a situation can be found below in section 3.2, where
an empirical equation was discovered that was not stated
in the desired units but which was amenable for
subsequent analysis.

The dimensionally aware approach proposes what
can be called a weakly typed or implicit casting approach.
Dimensional correctness is not enforced, but promoted.
An extra objective for selection, goodness-of-dimension,
is introduced that is used in addition to a goodness-of-fit
objective. These two objectives are used in a multi-
objective optimization routine using the concepts of
dominance and Pareto optimality. Goodness-of-dimension
is measured by calculating how many constants with
appropriate units should be introduced to render an
equation dimensionally correct. The fewer are needed, the
better the equation’s goodness-of-dimension.

In contrast with strongly typed approaches where the
burden of typing is implemented in the language itself
(most notably in the initialization, crossover and mutation
routines), this weakly typed, or casting approach puts the
burden of typing in the selection component of the
algorithm. The search space is subsequently not reduced,
but transformed: selection pressure is added towards
correctly typed formulations, but it is not enforced so that
all proposed equations are correctly typed.

In the perspective of the bias/variance trade-off when
applying genetic programming to a regression-like
problem (Keijzer & Babovic 2000), the weakly typed
approach introduces less bias in the search than a strongly
typed approach and will subsequently imply a larger
variance in the resulting formulae. The larger variance is
helpful in a process of discovery as it will produce
competing equations of varying competence. It is then the
task of the user to reduce this variance by employing
background knowledge (representational engineering). It
is our view that in a process of scientific discovery it is
more helpful to allow the user to introduce background
knowledge when confronted with hypotheses about the
problem, rather than insisting in reducing the search space
even before it is clear how much information is actually
contained in the experimental data. The dimensionally
aware approach attempts at introducing enough bias to get
useful results, yet without sacrificing general
applicability.

The result of a single run of such unit typed genetic
programming is a number of equations — a so-called
Pareto front of non-dominated solutions — that balance
dimensional correctness (goodness-of-dimension) with
goodness-of-fit. The role of the user is then to choose the
most suitable formulation to further analyze the proposed
relationships (postprocessing). When the problem is well-
posed, the user can proceed by choosing the
dimensionally correct formulation, yet when not all data
is present the difference in goodness-of-fit between
correct formulations and slightly incorrect ones might
lead to the selection of an incorrect formulation. The user
can exploit background knowledge or implement some
belief about the problem domain. The final step lies in
examining the selected equation(s) in order to interpret
them. Here the user can relate elements of the equation to
the actual processes that are under investigation. When a
reasonable explanation for the apparent goodness-of-fit of
such an equation is produced, the user's belief in the
correctness of the equation is enhanced. The equation
then no longer functions as a black box for making
accurate predictions but as a genuine empirical equation
that can be used with more confidence than mere
statistical security. The equation and corresponding
interpretation is amenable to review by experts and peers.
The interpretation step is exceedingly difficult using
dimensionless ratios alone. The sections below will give a
few examples of this new method of induction of
empirical equations.

3 CASE STUDIES

In the sequel two case studies of knowledge
discovery using genetic programming are presented. Both
of these cases present results in which GP offers results
superior to those proposed by human experts.



3.1 CONCENTRATION OF SUSPENDED
SEDIMENT NEAR BED

To test the performance of GP within a framework of
scientific knowledge discovery, experimental flume data
utilized by Zyserman and Fredsøe (1994) were analysed.
The experimental data consisted of total, steady state
sediment load for a range of discharges, bed slopes and
water depths. Zyserman and Fredsøe used the Engelund-
Fredsøe and Einstein formulation to calculate the bed
concentration of suspended sediment cb and used these
values in conjunction with hydraulic parameters to
perform system identification and formulate the
expression for bed concentration of suspended sediment
cb. The hydraulic conditions were represented by Shields
parameter θ, defined as:

1)gd-(s

u
=

fθ  and 
1)gd-(s

u
=

f ′′θ   (1) and (2)

where:

uf  -shear velocity =(gDI)0.5

s -relative density of sediment

d50 -median grain diameter

D -average water depth

I -water surface slope

uf’ -shear velocity related to skin friction =(gD’I)0.5

D’-boundary layer thickness defined through:
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v -mean flow velocity

ws -settling velocity of suspended sediment

kN -bed roughness =2.5d50

An interesting observation is that all ‘directly
measurable’ quantities do not correlate as well with the
concentration of sediment cb as the derived dimensionless
quantities θ and θ’. For example, the correlation
coefficient between cb and uf’ amounts to 0.784 and
between cb and uf to 0.628. At the same time, correlation
between cb and θ’ amounts to 0.894 and between cb and θ
to 0.711. Bearing such strong correlations in mind, it is a
little surprise that, after dimensional analysis, Zyserman
and Fredsøe (1994) formulated the following expression:

)0.045-( 
0.46

0.331
+1

)0.045-0.331(
 = c

1.75

1.75

b

θ

θ

′

′ (4)

so that cb is a function only of θ‘. Comparative analysis
with some other and more complex expressions involving

more variables presented in their 1994 paper, has shown
that formula (4) is of comparable, if not higher accuracy.

3.1.1 Results Based on Standard Genetic
Programming

Firstly, a standard genetic programming environment
was set-up in such a way as to comprehend all
corresponding parameters based on both directly observed
the derived quantities. The evolutionary process resulted
in a number of expressions, of which only the best
performing is presented. The best performing expression
can be written in an ordinary notation as:
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Statistical measures of accuracy for the equation (5) are
given in Table 1. The degree of accuracy is rather high,
and it offers an improvement over the human-proposed
equation (4). However, there is an immediate question of
interpretability of such an equation. The formula above is
dimensionally incorrect, and it is rather difficult to
interpret it in physical terms. This is an example of pure
fitting.

3.1.2 Results Based on Dimensionally Aware
Genetic Programming

By way of comparison, a dimensionally aware
genetic programming environment was set-up to
comprehend all measured data and not the corresponding
dimensionless parameters based on the measurements.
The purpose for conducting such experiment was to test
whether such a GP setup is capable of creating a
dimensionally correct and still accurate formulation.
Since the pre-processing of raw observations (formation
of dimensionless θ and θ’) was not employed here, it can
be argued that GP was confronted with a problem of
trying to formulate a solution from first principles. The
evolutionary processes resulted in a number of
expressions, of which only the most interesting one is
presented here:
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The degree of accuracy of the induced expression is
quite satisfactory. A statistical measure of conformity,
such as the coefficient of determination, gives a value of
0.82. This provides an improvement over the value of
0.81 based on the Zyserman-Fredsøe relationship (Eq.5).
At the same time, the formula is dimensionally correct, it
uses the most relevant physical properties in the relevant



context. For example, the dimensionless term 
50

’

gd

wu sf  is

effectively a ratio of shear and gravitational forces. Shear
forces are represented by uf’, ‘responsible’ for elevating
sediment particles into the stream, while the gravitational

term 
sw

gd 50  is ‘responsible’ for settling the particles. The

remaining group ( )
’

’

ff

sf

uu

wu

+
−  is a ratio of resultant energy

near the bed and of the total available energy in the flow
transporting the particles.

Table 1 Statistical summary for expressions (4), (5) and
(6) - where: r denotes the correlation coefficient, R2

Pearson's product moment correlation squared, RMS Root
Mean Squared Error, NRMS Normalised Root Mean

Squared Error RMS is normalised by the standard
deviation of the desired outcome.

r R2 RMS NRMS

(4) 0.89 0.81 0.049 44.46 %

(5) 0.90 0.82 0.048 42.88 %

(6) 0.90 0.82 0.048 43.74%

Formula (6) offers a marginal improvement regarding
accuracy over the formula induced through standard
scientific practice. However, the simple fact that this
formula was induced through automatic means based on
raw data and that it provides a competing view on the
importance of the processes occurring in this phenomenon
is very exciting indeed.  It may even be argued that
expression (6) can be more easily interpreted than the
Zyserman-Fredsoe expression (4).

3.2 ADDITIONAL RESISTANCE TO FLOW
INDUCED BY FLEXIBLE VEGETATION

Based on the bitter experiences of recent floods in
Europe and the USA, many pressure groups have
promoted the restoration of natural wetlands that would
act as natural ‘sponges’ capable of absorbing excess water
and thus reducing flooding risks. The wetland restoration
projects favour the growth of reeds and other similar
vegetation within a river basin. The presence of
vegetation influences the flow conditions, and in
particular the bed resistance, to a large degree. However,
the influence of the rigid and flexible vegetation on flow
conditions is not understood well enough.

Recently, a numerical model has been developed with
the intention of deepening the understanding of the
underlying processes (Kutija & Hong 1996). This model
is a one-dimensional vertical model based on the

equations of conservation of momentum in the horizontal
direction. This numerical model is employed here as an
experimental apparatus in the sense that this, fully
deterministic (even if highly parametrised), model is used
as a source of data that are the further processed by two
apparently different methodologies in order to induce a
more compact model of the additional bed resistance
caused by vegetation.

3.2.1 Data

The Kutija-Hong model, used as a generator of data,
was in effect used as a truthful representation of a
physical reality, while providing the conveniences of fast
calculation and an ability to produce results with any
degree of scale refinement. In this way, the numerical
model not only replaced physical scale modelling
facilities within this exploratory environment, but also
introduced several intrinsic advantages over scale models.
It is well known that so-called roughness scaling is one of
the principal difficulties in the development of physical
models. Since the roughness is the primary phenomenon
in question here, the issue of its physical correctness
remained critical. The ‘realism’ of the complete numerical
model was reasonably well proven against experimental
data in the case of stiff (non-flexible) vegetation (Kutija
& Hong 1996). As the first attempt towards the
development of a model of additional roughness, only the
effects of non-flexible reeds with high stiffness were
simulated. Altogether, some 4,800 items of training data
were generated. The training data consisted, in the first
instance, of dimensional numbers formed from:

- water depth hw, varied in [2.5 – 4.0]

- reed height hr, varied in [0.25 – 2.25]

- reed diameter d, varied in [0.001 – 0.004]

- number of individual reed shoots per square meter m,
varied in [50 – 350]

- a numerical parameter p related to the eddy-viscosity
approximation and its further relation to the
vegetated layer height, which varied in [0.4 – 1.0].

The target variable is Chezy’s roughness coefficient C.
This coefficient is stated in the derived units of square
root of length over time. The awkwardness of the units of
C suggests that it is chosen in such a way that the overall
dimension of a more encompassing model will match. As
such, the physical meaning (grounding) of this calibration
coefficient C is questionable.

3.2.2  Results Based on Standard Genetic
Programming

The following two sections are based on Babovic
(1996) and Babovic & Keijzer (1999). The results of



Kutija-Hong simulations were presented as C: the Chezy
number corresponding to the flow conditions with
developed vegetation.

Dimensional values

In the first attempt, Babovic (1996) used standard
symbolic regression to approximate the data in their
original, dimensional form, resulting in the following:

( / (exp (-d hr ) (-(rlog (/ (rlog (/ m

hw )) (sqrt (sqrt (/ d d))))) (* (/ hr

(sqrt (sqrt (/ d (sqrt (sqrt (exp (-d hr

))))))))(* (* (rlog (/ (rlog (/ m hr ))

(exp (-d hr )))) (* (-(-d hr ) hr ) -

0.00410)) p))))

The shear complexity of the formulation almost
immediately eliminates it from a knowledge induction
framework.

In order to improve the interpretability, Babovic &
Keijzer (1999) employed a more advanced version of GP
with the best performing formula being:
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There is some dispersion or the higher values of Cnew

but otherwise the equation exhibits good accuracy (see
Table 2). The scatter plot for Equation (7) is depicted in
Figure 1. However, it has to be emphasised that Equation
(7) is not dimensionally correct. This shortcoming can be
corrected by introducing an auxiliary constant with
dimension of length and magnitude of 1.0 that should be
multiplied with dimensionless p to correct dimensions. At
the same time, both constants 55.93 and 11.39 should be
assigned dimensions of the Chezy number [m½ s-1] to
make this formula dimensionally correct. As indicated
earlier, such behaviour is not surprising when applying
standard instances of GP. Satisfactory goodness-of-fit
may be obtained, but the semantics of the generated
expressions cannot be warranted.

Dimensionless values

In the dimensionless case the results of Kutija-Hong
simulations were presented as a dimensionless ratio η of
an original Chezy number, that corresponding to an
absence of vegetation, and a new Chezy number, that
corresponding to developed vegetation. This ratio η can
be conveniently incorporated in the Chezy formula for
velocity under steady flow conditions:

RiC  =u η (8)

For example, for η=0,the resistance to flow becomes
infinitely large, thus stopping the water flow, which is

physically unlikely situation. The smallest values of η
experienced within Kutija-Hong numerical model were η
= 0.1. For η = 1, the influence of vegetation on the
roughness amounts to zero. Another set of model
induction experiments has been performed, but in this
case a collection of dimensionless numbers has been used.
The dimensionless ratios introduced were defined as

follows: 
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In addition to these, parameter p and m were used without
any changes. The best performing expression found is:
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The performance statistics are presented in Table 2.
The first interesting observation is slightly counter-
intuitive: the accuracy of induced formulation in a
dimensionless case is not as good as the accuracy of
dimensional formulation. Even if the accuracy of η would
be acceptable, it is the behaviour of Chezy’s C
(calculated as Cnew =η Corg ) that is undesirable in this case
(see the upper two graphs in Figure 1). Thus, the
acclaimed compression of the search space through the
use of dimensionless values obviously incorporates
several hidden risks that need to be handled with
considerable care.

Figure 1 Scatter plots for expressions (7), (9) and
(10) on the test set. The upper two graphs depict

behaviour of an induced relationship in
dimensionless case (denoted as FDL). The graph in

the upper left corner is a scatter plot for
dimensionless η, whereas the graph in the upper
right corner is a plot for the corresponding Chezy

coefficient. The graph in the left right corner depicts
performance in the dimensional case (FDM). Finally

the graph in the lower right corner depicts the results
for the dimensionally aware GP (FDAGP)



3.2.3 Results based on dimensionally aware genetic
programming

Again, a dimensionally aware genetic programming
environment was set up to comprehend all measured data
and not the corresponding dimensionless parameters
based on the measurements. As in the case of
concentration of suspended sediment near bed, the pre-
processing of raw observations was not employed here.
The purpose or conducting such an experiment was to test
whether such a dimensionally aware GP setup is capable
of creating a dimensionally correct and still accurate
formulation. The evolutionary processes resulted in a
number of expressions, of which only the most interesting
one is presented here:
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This formulation is statistically superior to other
formulations found using the different techniques.

Table 2 Statistical summary for expressions (7), (9) and
(10) on an independent test set. The large difference in
RMS between equation (9) and equations (7) and (10)
comes from the calculation of model performance with

respect to the transformed target η.

r R2 RMS NRMS

(7) 0.96 0.92 2.880 27.89%

(9) 0.94 0.89 0.076 37.47%

(10) 0.98 0.97 1.800 17.44%

At the same time the formula is dimensionally
consistent, it uses some of the most relevant physical
properties in the relevant context. For example, the

dimensionless term p
dm

hh rw − describes a ratio between

the effectively available cross-section (hw-hr) p and a part
of the cross-section that is blocked by the plants per unit

width of the channel. The remaining group 
2/1

rh

g

represents a ratio of gravity forces and flow resistance
‘force’ expressed through the reed height.

In this example, evolution produced a dimensionally
consistent, meaning-rich formulation that is very accurate.
It did so without employing assumptions (other than units
of measurement); the process operated only on raw
observations. Still, Equation (10) is not dimensionally
correct; it does not produce the derived units for the

Chezy coefficient. This may originate in at least two
causes:

1. Incomplete data: in the present data set neither
time nor elasticity components were provided
(the authors supplied g=9.81 m/s2). The next
iteration in this direction must resolve this
deficiency in one way or another.

2. The problem may simply be ill posed: the
authors attempted to model Chezy’s C despite
their reservation about its grounding (however,
without any reservations about its usefulness).

4 GP AS AN AID IN THE DISCOVERY
OF SCIENTIFIC KNOWLEDGE

When using dimensional correctness as a as a second
objective in searching for accurate equation, the user of
this system will be confronted not only with a single best
solution, but generally with a front of non-dominated
solutions balancing goodness-of-fit with dimensional
correctness. Taken further into account that genetic
programming is a randomized algorithm and common
practice dictates that multiple runs are needed to obtain
good results, the question then remains what to do with all
these proposed formulae? For the examples presented in
this paper, the authors made the choices: in the sediment
transportation problem several runs were performed, each
leading to different dimensionally correct and incorrect
equations. The solution (6) presented here was selected as
it was the most accurate equation among  dimensionally
correct equations. Further analysis then revealed the
underlying structure of the equation. In the problem
involving roughness coefficient, none of the runs
produced a dimensionally correct equation that had an
accuracy comparable to the incorrect equations. It was
then judged that the most accurate formulation that had
second best dimension correctness should be further
analyzed. It turned out that this equation was internally
consistent although it did not produce a quantity in the
desired dimensions of roughness (10). The fact that
adequate dimensionless expressions could not be found
furthermore gave an indication that data were missing
from the problem.

It is our view that the process of generating
hypothesis about the data and subsequently judging and
analyzing a set of such hypothesis reveals the true
strength of this approach. Scientific discovery is not, and
perhaps should never be, a fully automated process where
the machine generates solutions that are accepted at face
value. Physical interpretation of the proposed equations is
needed! It is our firm belief that dimensionally aware GP
can be best used as a generator of novel formulations,
balancing important properties such as goodness-of-fit,
dimensional correctness and parsimony. Domain experts



should then be exposed to a completely new set of
formulations, off the beaten track, yet within the domain
of physical validity.

5 CONCLUSIONS

Traditionally, dimensionless numbers are used as the
dominant vehicle in interpretation and modelling of
experimental values. Such a choice is natural as this
alternative conveniently avoids the issues related to
dimensional analysis and its correctness. It is also
believed that dimensional numbers collapse the search
space and that resulting formulations are more compact.
This paper demonstrated that it can be advantageous to
use data together with its dimensions. The knowledge
discovery software system uses this information to guide
the search for an accurate and physically sound
formulation.

The authors maintain that the approach presented in
this paper is very useful for the purposes of model
induction. The dimensionally aware approach is open-
ended in that it does not strictly adhere to the dimensional
analysis framework. The authors will go even further to
claim that the dimensionally aware approach is much
more useful than a strict use of dimensional analysis to
create and use only dimensionless ratios. At the same
time, the authors remind the reader that the object of the
presented exercise is to find an empirical equation based
on data. The present work cannot be characterised as a
search for a universal law (though it might help). Being
able to use units of measurements (either through the
dimensionally aware or through strong adherence to
dimensional analysis) provides an opportunity to truly
mine the knowledge from the data, to learn more from
data and other associated information. The ultimate
objective is to build models that can be interpreted by the
domain experts. Once a model is interpreted, it can be
used with more than just statistical confidence. It is only
in this way that one can take full advantage of knowledge
discovery and advance our understanding of physical
processes.

As the examples in the previous sections show,
genetic programming can also contribute to creation of
novel knowledge. The obvious corollary of the discussion
above is that main intention should be to use genetic
programming as an aid to scientists, rather than their
replacement. Clearly, we are only beginning to develop
effective ways of combining the strengths of human
cognition with those of computational discovery systems.
However, it is fairly easy to predict a more widespread
use of genetic programming in the process of scientific
discovery.
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