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Abstract

The problem addressed is that of detecting
the orientation of objects in infrared lines-
can (IRLS) imagery obtained by low-flying
aircraft. A novel method for orientation de-
tection is described, based upon the minimi-
sation of pixel-value deviation for linearly-
spaced pixels. Genetic programming (GP) is
used to discover the optimum manipulation
of pixel information for this task. Results are
compared against those produced using the
conventional method of second-order central
moments for principal axis detection.

1 INTRODUCTION

The principal axis (also known as major axis) of a
2-dimensional shape is the axis corresponding to the
least second moment of inertia, and this axis gives an
object’s orientation relative to some fixed coordinate
system. The principal axis is conventionally derived
from the second-order central moments as follows (Xi-
aoqi and Baozong, 1995):
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where fi,, denotes the (p + ¢g) order central moment
which is computed as:

fpg = D Y (x = 2p)P(y — )iz, ) (2)

where (2, ym) is the centre of mass for the imagery
i(z,y).

This method assumes that an object’s shape is
strongly correlated to pixel brightness. However, ob-
jects in IRLS imagery often have poorly defined shape

due to hot spots, cold spots, thermal shadows and
noise, thus producing brightness variations across an
object’s regions (Howard and Roberts, 1999). Most
importantly for orientation detection, an object can
have uneven brightness at its boundaries, e.g. parallel
sides of different brightness. An alternative method
for orientation detection is described below, which is
less susceptible to overall brightness variation.

The ability to detect an object’s orientation is im-
portant for automatic object discrimination because
it provides a reference axis and could thus avoid the
need to repeat computationally-intensive rotationally-
variant processes. For example, a template com-
parison technique could index pixel information rel-
ative to the principal axis prior to convolution as op-
posed to repeating the convolution at different tem-
plate rotations. The impetus for investigating ori-
entation detection was to aid an object detection
system that uses GP, by eliminating the prerequi-
site for rotation-invariant terminal data (Roberts and

Howard, 1999)(Howard et al., 1999).

2 AN ALTERNATIVE METHOD
FOR ORIENTATION
DETECTION

The method assumes that for a regularly-shaped ob-

ject, a line of pixels exists on or near the object where

the deviation of pixel values is minimal, i.e. the line
has near-uniform brightness. Furthermore, it is as-
sumed that this line can be systematically related to
an object’s orientation.

This is illustrated by Figure 1 which shows 2 lines su-
perimposed near a car. The line with the lowest de-
viation is that which lies outside the car and indeed
this line indicates the car’s orientation by virtue of the
fact that it is parallel to the car. In general, a line will
have a relatively low deviation if it does not cross an



object boundary, and within the vicinity of an object
this is most likely to occur when the line is parallel to
the object.

Figure 1: Example of a vehicle in IRLS imagery.

Any line that lies within a uniform region will have a
low pixel-value deviation, thus a configuration of lines
is required in order to discover uniform lines on or near
objects. Hence a configuration is required where a line
crosses an object boundary whilst another line does
not, i.e. one line has a relatively high deviation whilst
another line has a relatively low deviation.

The triangular configuration shown in Figure 2 was
deemed advantageous for near-rectangular objects
(like vehicles). When a single line has a relatively low
deviation it is likely to be parallel to the object and
thus the other two lines are likely to have relatively
high deviations, i.e. the other two lines are unlikely
to be aligned with the object’s major or minor axes.
Therefore, this reduces the orientation detection prob-
lem to that of formulating a process which manipu-
lates pixel deviations along a set configuration of lines.
GP was used to discover the optimum processing for
various line configurations to detect the orientation of
vehicles in IRLS imagery.

3 EVOLVING AN ORIENTATION
DETECTOR

Given a rectangular image of n x n pixels containing a
single vehicle, the task was to construct a function of
pixel data which could indicate the vehicle’s orienta-
tion. Typically, n x n was O(103) pixels but the actual
value depended on altitude scaling. A vehicle width
(VW) was typically 23 pixels at a reference altitude of
300ft.

3.1 Pixel data

The pixel data comprised the following elements:

e AA and AS are the average and standard devi-
ation pixel values over an area of approximately
15VW square.

e PA; and PSy are the average and standard devi-
ation pixel values over a single-pixel width ring of
diameter d defined in terms of VW. (See (Roberts
and Howard, 1999) for more details.)

e TAprrn and T'Sppry are the average and stan-
dard deviation pixel values over one line in a trian-
gular configuration, where D refers to the triangle
size, L refers to the line length, R is a rotation in-
dex and N is a line index as described below.

The line configuration was based on an equilateral tri-
angle as shown in Figure 2. The triangle had an in-
ternal circle of diameter D defined in terms of VW
(i.e. the centre point of each side lay on the circumfer-
ence). The length of each line was a factor L of the
triangle side where 0.5 < L < 1.0. In theory, lower val-
ues of L should more readily yield near-uniform lines
(i.e. the line was less likely to cross an object bound-
ary or shadow boundary). The values D and L were
varied for different GP runs.

Figure 2: Configuration where lines are equal to or
shorter than the sides of an equilateral triangle.

The line configuration was rotated clockwise about its
centre in 5 degree steps thus giving 24 positions be-
fore the configuration returned to its initial position,
although a given line would now cover the pixels ini-
tially covered by the line immediately clockwise. This
is depicted in Figure 3. Thus each vehicle was associ-
ated with 72 values of TA and T'S for a given GP run
(i.e. a value for each of the 3 lines at 24 rotations).

The lines in the configuration were indexed in the
clockwise direction to suit the reference coordinate sys-
tem for orientation measurements. For each rotation
step, the lines were ordered according to ascending
pixel-value deviation, such that Ny gave the index of
the line with the minimum deviation and Ny gave the
index of the line with the maximum deviation. This
is illustrated by Figure 4 which shows the indexed line



Figure 3: Line configuration rotated clockwise about
the geometric centre of a vehicle. Top left is at 0 de-
grees; top right is at 30 degrees; bottom left is at 45
degrees and bottom right is at 60 degrees.

configuration at four rotation steps and Table 1 which
gives a possible line order for each rotation step, as-
suming that a pixel deviation is lower when the asso-
ciated line lies mostly outside the vehicle.
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Figure 4: Line indices at four rotation steps. Top left
is at 0 degrees; top right is at 30 degrees; bottom left
is at 45 degrees and bottom right is at 60 degrees.

The variables associated with the above pixel data fea-
tures were fixed for each GP run, as opposed to ran-
domising the variables during evolution, thus allowing
all the pixel data to be pre-computed for each vehi-
cle prior to any GP runs. This approach reduces both
the size of the search space and the computing time
requirement (Poli, 1996); concerns which have been
reported by other investigators researching GP for im-
age analysis (Tackett, 1993)(Winkeler and Manjunath,
1997)(Daida et al., 1996).

Table 1: Example of line ordering based on pixel de-
viation at four rotation steps.

rotation | Ng N; Ny
(degrees)
0 1 2 0
30 2 1 0
45 2 0 1
60 0 2 1

Table 2: GP parameters

parameter setting
functions +,-, %/ (x/0=1),
min(A, B), max(A4, B),
if (A < B) then C else D,
TriCmp (see below)
terminals pixel data: AA, AS,
PAgy, PSy,
TAprLry, TSprLrn,
altitude in feet (250 to 650)
population 1000
mate radius 1000

size 2 for steady-state GP

size 4 for steady-state GP

90% x-over, 5% clone,

5% truncation mutation

max generations 20

max tree size 1000 nodes

fitness measure av. orientation error (see below)

kill tournament
breed tournament
regeneration

3.2 GP specifications

Each individual was represented as a tree consisting
of function and terminal nodes. The population was
initialised using the ramped-half-and-half technique
(Koza, 1992) with a maximum initial tree size of 10
nodes. The GP parameters are given in Table 2.

Four concentric pixel rings (PAq and PSg) were used
for each vehicle with d = 0.5,1.0,1.5 and 2.0VW as
displayed in Figure 5. The limits of the line config-
uration data were 1.0 < D < 2.0VW, 0.5< L <1.0,
0<R<24and 0 <N < 3.

The motivation for using truncation mutation was
to counteract the well-known ‘bloating’ behaviour of
GP without severely restricting GP’s generality and
search power, e.g. as opposed to including parsimony
pressure in the fitness measure (Langdon and Poli,

1998)(Rosca, 1996)(Soule and Foster, 1997).

For each vehicle, the fitness measure was formulated to



Figure 5: Four concentric pixel rings centred on a ve-
hicle with diameters: 0.5, 1.0, 1.5 and 2.0VW.

train a GP tree to flag when the line configuration was
rotated to the same orientation as the vehicle. The
line configuration was rotated clockwise through the
24 possible positions, and the tree was evaluated for
each position. Note that, at a given rotation step,
the tree could exploit all of the 72 T'A and T'S values
due to the rotation index R. When R = 0 the values
corresponded to the current rotation. When R = n
the values corresponded to n clockwise rotations in
advance, which included wrap-around such that R =
23 was actually a single anti-clockwise rotation.

When the tree returned a negative value the current
rotation was deemed insignificant, otherwise the vehi-
cle orientation was calculated in degrees as follows.

0. = 5R. + 120N, (3)

where R, is the index of the current rotation step (0 to
23) and Ny is the index of the line with the minimum
pixel-value deviation at the current position (0 to 2).
The actual orientation of each vehicle was known thus
allowing the absolute orientation error 6, to be cal-
culated. Note that the maximum 6. was 90 degrees
because the known orientation did not discriminate
the front of the vehicle from the back, as it was the
orientation of the vehicle’s shape which was deemed
important. In other words, rotating a vehicle about
180 degrees had no consequence. The fitness measure
was assigned to the average 6. for all orientation cal-
culations over all vehicles:

Ny nC(U)
1
fitness = - ngl (o) CE 1 Oc(v,c) (4)

where n, is the number of vehicles and n.(v) is the

Table 3: TriCmp conditions dependent on variable j.
J | condition data
0 R=0and N=1
>0 | R=jand N=0

number of orientation calculations for a given vehicle.

It was possible for a tree to return a negative value
for all rotation steps when processing a single vehi-
cle, thus never spawning an orientation calculation.
In this case, the tree was punished by setting 6. to
180 degrees. Conversely, it was possible for a tree to
return a non-negative value for all rotation steps thus
accumulating a large average 6.

The TriCmp function was associated with a ran-
domised integer 0 < j <23 to compare specific
TSprry values to a single argument « as follows. If
TS >« for R=0and N =0 (i.c. the minimum devi-
ation at the current rotation step) then the return was
—a. Otherwise the return depended on an additional
TS > a condition using different R and N as shown in
Table 3. Therefore, when j = 0 TriCmp depended on
the second lowest T'S at the current rotation step, and
when j > 0 TriCmp depended on the minimum TS
at j clockwise rotations from the current step (with
wrap-around). If this 'S > « condition was true, the
function returned « otherwise it returned —a.

Hence, the TriCmp function typically returned a neg-
ative when the minimum deviation at the current ro-
tation was relatively high or when deviations on other
lines were relatively low. This function, therefore,
alded the fitness measure to drive the evolution to-
wards discovering when the line configuration com-
prised a single relatively low deviation.

3.3 GP results

GP was trained on pixel data for the geometric centres
of 598 vehicles that were taken from 28 IRLS images
that corresponded to various altitudes. The vehicles
varied greatly in appearance, e.g. vehicles in low alti-
tude images contained the inner detail of windscreens,
roofs, etc. whereas vehicles in high altitude images ap-
peared more uniform; some vehicles appeared as bright
objects on dark backgrounds whereas others appeared
as dark objects on bright backgrounds. Furthermore,
the images comprised a diverse set of environments:
industrial, docklands, residential, rural, etc.

GP runs were conducted for various line configurations
corresponding to different combinations of D and L.
Twenty different randomiser seeds were used for each



Table 4: Distribution of 6, (degrees) and n. for the
training set.

D L 0. Ne
av.(runs) av. sd. [ av. sd

1.4 0.6 | 325 285 174 |6 3
1.4 0.7 [ 29.6 25.1 155 |6 2
1.4 08 (249 23.8 18713 1
1.4 09| 283 240 16.2 |6 2
1.6 0.6 [ 234 205 164 | 4 2
1.6 0.7 | 23.0 193 142 |3 1
1.6 08| 23.9 202 1247 3
1.6 09| 241 208 159 |4 1
1.8 0.6 | 23.7 208 171 | 4 1
1.8 0.7 | 23.2 195 19.0 | 3 1
1.8 0.8 | 24.0 209 135 | 8 )
1.8 09 (245 228 163 | 4 2
20 0.6 | 289 262 159 |7 3
20 071293 259 14319 )
20 081303 239 145 |6 2
20 09| 328 255 123 |9 3

configuration and the resulting average 6, are shown
in the “av.(runs)” column of Table 4. These averages
were computed from the lowest 0, for each GP run
for a given line configuration. It can be seen that the
average 0, was lowest when D = 1.6 or 1.8VW and
L = 0.7. Larger values may have caused the lines to
intersect boundaries of neighbouring objects (partic-
ularly because vehicles tend to be parked in rows or
close to buildings), but smaller values may have un-
desirably prevented lines from crossing vehicle bound-
aries. Note that preliminary experiments investigated
a broader range of line configurations and found the
best range to be that shown in the table.

The results for the trees which gave the minimum 6,
for each line configuration are also shown in Table 4.
The 0, column gives the average and standard devia-
tion of the orientation error over all vehicles. The n,
column gives the average and standard deviation of the
number of orientation calculations that were spawned
per vehicle, i.e. the number of rotation steps at which
the tree returned a non-negative value for a single vehi-
cle. These results confirm the aforementioned optimal
line configurations.

The best trees for the training set were applied to a
test set of 128 vehicles taken from 18 further IRLS
images. These images corresponded to different alti-
tudes and flight missions. Table 5 shows the perfor-
mance of these trees, giving the average and standard
deviation of 6, and n. over all vehicles in the test set.
The 6, values in Table 5 are lower than those in Ta-

Table 5: Distribution of 0, (degrees) and n. for the
test set.

D L 0. Ne
av. sd. | av. s.d

1.4 06199 176 |6 2
1.4 07185 158 |5 3
1.4 08166 181 ] 3 1
1.4 09 (171 168 |5 2
1.6 06| 141 16.1 |4 1
1.6 07138 16.6 | 3 1
1.6 08147 138 1|6 2
1.6 09157 148 |5 2
1.8 06140 14216 2
1.8 07139 159 1]4 2
1.8 08 (146 14119 3
1.8 09158 156 1|5 2
20 061203 15115 2
20 071192 1296 2
20 081189 152 |4 2
20 091190 1318 4

ble 4 for the following reasons. The 6, value for most
vehicles on training and testing was well below the av-
erage 0., but some vehicles (typically 10%) yielded 6,
greater than twice the average. Observation showed
that these vehicles included inner detail (e.g. strong
roof boundaries) which caused the method to prefer
the minor axis to the major axis, thus producing a 6,
value which tended towards 90 degrees. This explains
the considerable standard deviations in 6. in the ta-
bles. Furthermore, the training set was considerably
larger than the test set and it comprised a greater va-
riety of vehicles and vehicle contexts.

Although there was no explicit restriction on the num-
ber of rotation steps at which a tree could spawn an
orientation calculation, Tables 4 and 5 show that trees
seldom spawned more than 6 calculations per vehi-
cle thus minimising an accumulative orientation error.
Pixel uniformity along the lines in the triangular con-
figuration was likely to occur at more rotation steps
when D was relatively high (i.e. the lines were further
from the vehicles) or when L was relatively low (i.e. the
lines were short). There is slight evidence for this in
the tables where n, tends to be greater for higher D
and lower L.

The second-order central moments method described
in Section 1 was applied to the training and test sets
and the results are presented in Tables 6 and 7 re-
spectively. The moments were calculated over a disc
centred on each vehicle and the average and standard
deviation of the resulting 6. over all vehicles were com-



Table 6: Second-order central moment results using
various disc diameters (x VW): average and standard
deviation of 6, (degrees) across all vehicles in the train-
ing set.

diameter | av. 6, s.d. 6,
1.0 39.1 30.4
1.2 33.2 30.7
1.4 28.3 31.0
1.6 26.4 31.6
1.8 26.4 32.4
2.0 28.5 33.2
2.2 31.3 33.5
2.4 34.1 33.8
2.6 38.0 33.6
2.8 414 33.3
3.0 44.9 33.1

Table 7: Second-order central moment results using
various disc diameters (x VW): average and standard
deviation of 6, (degrees) across all vehicles in the test
set.
diameter | av. 6, s.d. 6,

1.0 53.4 34.9

1.2 46.6 35.6

1.4 27.4 31.1

1.6 21.7 294

1.8 17.7 25.8

2.0 15.1 23.0

2.2 14.9 22.1

24 15.3 225

2.6 16.4 23.1

2.8 18.4 24.9

3.0 23.1 26.2

puted. This procedure was repeated using different
disc diameters. The tables show that the disc diame-
ter had to exceed 1.2VW in order to capture substan-
tial information about the vehicles’ shape. Comparing
these tables with Tables 4 and 5 shows that the av-
erage orientation error was greater for the moments
method (with an optimal disc diameter of approxi-
mately 2VW) than for the GP method (with an opti-
mal line configuration of D = 1.6VW and L = 0.7).
Furthermore, the GP trees gave a lower standard de-
viation in 6. across the diverse sets of vehicles thus
the GP method generalised better than the moments
method.

4 CONCLUSIONS

A novel method for orientation detection is described,
based upon the analysis of pixel-value deviations along
a set configuration of lines. GP was used to discover
the optimal processing of various line configurations
in order to detect the orientation of vehicles in IRLS
imagery. The associated error was lower than that
obtained when using second-order central moments to
derive the principal axis. Furthermore, the GP method
generalised better across the diverse vehicles. This
suggests that the shape of objects as defined by their
boundaries is more important for the current task than
the shape as defined by overall brightness.

Note that the new method does not require edge or line
detection explicitly. This is an advantage for analysing
objects in IRLS imagery due to the blurring of edges
as a result of noise, jitter and inadequate resolution.
Furthermore, the method does not require an object’s
precise centre of mass or geometric centre to be known
as it simply depends on the relative uniformity of lines;
whether a particular line falls on or outside an object
is not important.

Further work will investigate the method’s perfor-
mance when applied to multiple points per object.
This work is expected to involve a point clustering
scheme in order to prioritise orientation hypotheses
for a single object.
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