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Abstract

One method for compacting executable com-

puter code is to replace commonly repeated

sequences of instructions with macro instruc-

tions from a decoding dictionary. The size of

the decoding dictionary is often small in com-

parison to the number of all possible macros.

Choosing the macros that yield the best com-

paction is a di�cult subset selection problem

because multiple, but colliding, macros may

be applicable to many code segments. We

show that a genetic algorithm using a new

crossover operator, MSX, gives better com-

paction than heuristics designed speci�cally

for this problem. We also compare MSX

with other crossover operators on a surrogate

problem that models the essential properties

of the code compaction problem.

1 INTRODUCTION

For large volume consumer electronics, the main cost

factor of the embedded software is its memory usage,

both ROM and RAM. For many products, like cellu-

lar handsets, memory costs are an increasingly greater

portion of the total product cost. A reduction of the

code memory size has several bene�ts. It may reduce

the direct cost of the product, by reducing the bill of

materials, usually silicon area or chip count. A re-

duction of the code size can also be used to �t more

features into the same ROM, enhancing the value of

the product. One method for compacting executable

computer code is to replace commonly repeated se-

quences of instructions with macro instructions from

a decoding dictionary.

Choosing macro instructions to replace commonly oc-

curring code segments to compress the executable code

footprint is a subset selection (SSS) problem. The goal

is to select the subset of macros that will yield the

best compaction of the code. These macros can then

be stored in a dictionary and used for decoding during

execution.

The problem of determining the best subset dictionary

is known to be NP-complete (Storer and Szymanski,

1982). Collisions between macros are expected to be

prevalent. Collisions occur at the points in the code

where multiple macros are applicable. The number of

macros that can �t into a decoding dictionary is small

compared with the total number of macros possible in

a given program. To evaluate the e�ectiveness of a

macro dictionary, the macros must be \tiled" on the

code and the actual compact code size measured. This

process is computationally expensive, scaling with the

size of the macro dictionary, the size of the original

code and the number of collisions encountered. Cur-

rent approaches to �nding the best subset of macros

have been limited to greedy search techniques (Kozuch

and Wolfe, 1994) and heuristics (Fraser and Proebst-

ing, 1995; Hoogerbrugge, et al., 1999).

Another special feature of our code compaction prob-

lem is that, while the size of the dictionary is given, one

may not have complete freedom to choose all macros

that will �t; if some macros are chosen, one or more

others may be needed to de-reference longer macros

and will be automatically included to insure that the

dictionary is complete. This means that if a chro-

mosome speci�es a list of macros equal in size to the

dictionary size, some of them may not be used. This

has signi�cant rami�cations for crossover operators.

SSS problems can be classi�ed according to whether

the subset size is known or unknown. Genetic algo-

rithms have been shown to be useful in SSS problems

and a number of operators have been designed specif-

ically for this purpose. Simple bit selection schemes

are often used for feature selection problems (Bala,



et.al, 1996; Whitley, et.al, 1997; Raymer, et.al, 1997)

where the subset size is unknown and often there is

a secondary goal of minimizing the size of the sub-

set. Other representations and operators have been

devised for situations where the subset size is known

(Radcli�e, 1993; Crawford, et al., 1997).

To facilitate the exploration of operators and algo-

rithms we have devised a SSS problem generator that

models the essential properties of our code compaction

problem but requires signi�cantly less evaluation time,

and the degree of epistasis (i.e., collisions) for any

problem can be tuned using our generator.

We present performance results for various SSS recom-

bination operators for randomly generated problems,

varying the degree of epistasis and introduce a new

crossover operator, MSX. MSX performs better than

other operators when only an upper bound on the sub-

set size is known. We then compare the performance

of MSX to a domain-speci�c search heuristic on sev-

eral benchmark programs, as well as some \in-house"

programs.

2 GENETIC RECOMBINATION

OPERATORS FOR SUBSET

SELECTION

Because the upper bound on the subset size is small

relative to the overall set size in our code compaction

problems, we chose an integer representation. That

is, our chromosome is a list of integers that are the

indexes of the items being selected. While other rep-

resentations are often used (e.g., binary selection) we

found their performance to be uncompetitive on our

problems.

Previously, we have characterized crossover as a form

of convergence controlled variation (CCV) (Eshelman,

Mathias, and Scha�er, 1996): crossover uses the con-

vergence of the population to constrain variation. This

follows from the property of crossover that Radcli�e

calls respect: if two parents have a feature in common,

then the children will inherit that feature (Radcli�e,

1993). Thus, for operators with the property of re-

spect, variations are constrained to features that have

not converged.

In order to guarantee respect when using an integer

representation, the crossover operator needs to copy all

indexes which are common to the two parents into each

child. How the remaining elements are �lled in is an

open question from a CCV point of view. One method,

suggested by Radcli�e, is to �ll the \remaining places

in the child with a random selection of the unused

elements from the two parents." Radcli�e refers to

such an operator as Random Respectful Recombina-

tion (RRR). We have implemented two variations of

RRR. The �rst operator we refer to as match and mix

crossover (MMX). Its only di�erence fromRRR is that

the common elements keep the same positions in the

child as they had in the parent, whereas RRR doesn't

require that the common elements retain the same po-

sition. Our second operator pairs the indexes that are

unmatched, and then randomly swaps them between

individuals. We shall refer to this operator as match

and swap crossover (MSX).

Both MMX and MSX, as described so far, constrain

the set of values for the unmatched indexes to val-

ues represented in the parents. Not only are children

guaranteed to inherit all the indexes that are in both

parents, but children are guaranteed not to acquire in-

dexes absent from both parents. They \inherit" the

common absence of certain indexes. Such an operator

can be said to have both positive respect (the common

presence of properties) and negative respect (the com-

mon absence of properties). MMX and MSX include a

parameter which allows us to relax the requirement for

negative respect, thus allowing new values to replace

indexes for which there is no match. This is a form

of mutation, but it is convergence controlled mutation

since mutation is restricted to those indexes that are

not matched in the two parents. Converged indexes

are protected from mutation, and as the population

converges, the e�ective rate of mutation decreases.

Both MMX and MSX (di�ering at the second step)

produce two o�spring from two parents as follows:

1. Match: The common elements in the two parents

are copied to the two children, preserving their

original positions. Thus, one of the children will

have the common elements in the positions of the

�rst parent, and the second will have the common

elements in the positions of the second parent.

2. a) Swap (MSX): The remaining (unmatched) el-

ements are paired up in order and swapped with

a 50% probability. For example, if the �rst un-

matched element in the �rst parent is in the �fth

position, and the �rst unmatched element in the

second parent is in the fourth position, then these

two elements will be swapped with a 50% proba-

bility (see Figure 1-a).

b) Mix (MMX): The remaining (unmatched) ele-

ments from the two children are placed in a bag,

and then the former positions of the unmatched

elements of the two children are �lled by randomly

selecting elements from the bag without replace-

ment (see Figure 1-b).



3. Mutation: Positions with unmatched elements are

mutated with a speci�ed probability. The new

value is chosen randomly from the set of all el-

ements, with a uniform distribution, taking care

not to duplicate indexes currently in the child.

Besides RRR, Radcli�e introduced another subset se-

lection recombination operator, the random assorting

recombination (RAR) operator (Radcli�e, 1993). To

have the attribute of proper assortment, a recombi-

nation operator must be able to produce, in a single

operation, any potential child whose total genetic ma-

terial is contained in one or the other parent. In the

context of subset selection this means that any sub-

set � of size j�j, composed of elements from the two

parents, can be generated by the recombination oper-

ator. For SSS problems proper assortment comes at

the expense of respect. RAR has a parameter, w, for

controlling the degree to which the RAR is likely to

produce a respectful recombination. As w approaches

in�nity, RAR approaches RRR.

As in RRR, the child is created by drawing elements

from a bag. The bag can contain both positive and

negative copies of elements. If a positive element is

drawn, then the element is included in the child. How-

ever, if a negated element is drawn, then the element is

marked as no longer available for inclusion in the child.

The RAR operator produces a child (i.e., subset, � of

size j�j) from a total set � of size j�j as follows:

1. Convert w into a fraction, w1=w2. (If w is 0, w1

is set to 1, and w2 to in�nity.)

2. Place w1 copies of each element common to both

parents in a bag. Place w1 negated copies of each

absent element (i.e., in neither parent) in the bag.

Place outside the bag a positive copy of each ab-

sent element.

3. Place w2 copies of each unique element (i.e., ele-

ment found in only one parent) in the bag. Place

w2 negated copies of each unique element in the

bag.

4. Repeatedly draw elements from the bag. When-

ever an element is drawn, remove any duplicates

or complements from the bag. If the element is

positive, place it in the child. Whenever a nega-

tive common element is drawn, remove its positive

complement from the elements outside the bag so

that they are no longer available.

5. Continue step 4 until either: a) j�j positive ele-

ments from the bag have been chosen, b) j�j� j�j
negative elements have been chosen, in which case

complete the child with the remaining positive el-

ements inside and outside the bag (all remaining

elements are necessary to complete the child), or

c) no more positive elements exist in the bag, in

which case, select positive elements from outside

the bag until the child is complete.

By including negated absent elements in the bag and

weighting these elements by the same w1 as the posi-

tive common elements, RAR gives equal weight to pos-

itive and negative respect. But this also means that

RAR introduces mutation into the operator since the

child can have elements that are not in either parent.

It should be noted, however, that mutation can only

occur when the operation is respectful (i.e., all com-

mon elements are passed to the child), so mutation is

always convergence controlled.

3 CODE COMPACTION USING A

DICTIONARY OF MACROS

A well known code compaction technique is to com-

pile application programs to an application-speci�c

instruction set (Fraser and Proebsting, 1995), which

includes basic instructions and macro instructions.

Given an application program we have to come up

with an instruction set that minimizes the code size

of the application. We construct such an instruc-

tion set in two steps. We start with a small �xed

set of basic instructions that are su�cient to imple-

ment every C/C++ program. This guarantees that

each program can be compiled to the instruction set

independent of the application-speci�c instructions.

Then we add macro instructions that correspond to

sequences of basic instructions, making the instruc-

tion set application-speci�c. To be able to execute the

application-speci�c instructions on a standard proces-

sor, the code has to be translated to native processor

instructions. This translation can be done by a soft-

ware interpreter, as shown by Hoogerbrugge (Hooger-

brugge, 1999), or by a hardware decode unit (Benes,

Wolfe and Nowick, 1998; Game and Booker, 1998).

3.1 MACRO INSTRUCTIONS

If we have a sequence of basic instructions that occurs

frequently in a compiled program, we can introduce a

macro instruction to encode this instruction sequence.

Replacing all occurrences of this sequence by the new

macro instruction reduces the number of instructions

in the code. In a way, this technique creates CISC-like

instructions to optimize for code compactness.

When we use a hardware decode unit to translate the

compact instructions to native processor instructions,

this unit must be programmed with the translation of
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Figure 1: Example of MSX and MMX crossover operators.

each compact instruction. Because the decode unit has

limited memory, we can only add a limited number of

macros to the instruction set. In our case, the total

number of instructions, basic and macro instructions,

is limited to 511. Furthermore, the length of a macro

(the number of basic instructions represented) is lim-

ited to 4. To minimize the code size, we have to select

the best set of macros, with maximal length 4, such

that the total number of instructions is at most 511.

We try to �nd the best set of macro instructions by

constructing a large pool of candidate macro instruc-

tions, based on the program, and select the best subset

from this pool.

Consider the following code sequence where A, B, C,

andD are instructions with parameters in parentheses:

A(1) B(6) C D(1) A(2) B(6) C D(2)

Assume we have the following set of candidate macros

M1, M2, M3, M4, and M5:

M1 : A(1) B(6) C D(1)

M2 : A(2) B(6) C D(2)

M3(x) : A(x) B(6) C D(x)

M4 : B(6) C D(1)

M5 : C D(1) A(2)

MacroM3, is a parameterized macro. The value of the

parameter of M3 will be used as a parameter for sub

instructions A and D. So macro M3(1) corresponds

to the sequence A(1) B(6) C D(1), which is the same

as the sequence of macro M1.

If we look at the program fragment above, we can re-

place it by the sequence of macros M1 M2 but also

with sequence M3(1) M3(2). In such a case, we say

that macro M3 collides with macros M1 and M2. In

general, macro M3 will be more expensive than M1

andM2 because its parameter has to be encoded in the

instruction stream. Implementing the program frag-

ment by sequence M1 M2 will give denser code, but

we use two macros instead of one. Since the number of

macros is limited, it may be that for a complete pro-

grammacroM3 may ultimately be a better choice, but

given only the local program fragment, using macros

M1 and M2 would be the better solution.

In addition to collisions between macros that can cover

the same sequence of basic instructions, there can also

be a collision when we have partial overlap. This oc-

curs for macrosM4 andM5. Due to the limitation on

the number of macros we may select, the collisions be-

tween macros, and the number of possible candidate

macros in large programs, selection of a good set of

macros is extremely di�cult.

4 METHODS

Crossover operator performance in this work was

tested in the context of the CHC adaptive search al-

gorithm (Eshelman, 1991). CHC has been shown to

be very robust, yielding e�ective optimization results

without tuning the algorithm parameters. CHC with

standard parameter settings generally performs bet-

ter than the simple genetic algorithm (SGA) (Eshel-

man, 1991; Mathias and Whitley, 1994; Whitley, et.al,

1995). CHC is a generational style GA with three dis-

tinguishing features. First, selection in CHC is mono-

tonic: only the best M individuals, where M is the

population size, survive from the pool of both the o�-

spring and parents. Second, in order to maintain ge-



netic diversity and slow population convergence, CHC

prevents parents from mating if their genetic material

is too similar (i.e., incest prevention). When using

the index representation, incest prevention was imple-

mented by permitting matings for only those pairs of

individuals whose number of unmatched indexes was

greater than the incest threshold. For these experi-

ments we have used an initial incest threshold of j�j�2.
As usual in CHC, the incest threshold is decremented

whenever no o�spring are accepted into the parent

population, causing the incest threshold to drop as

the population converges. Third, CHC uses a \soft-

restart" mechanism. When convergence has been de-

tected, or the search stops making progress, the popu-

lation is diverged. For these experiments this is done by

preserving the best individual found so far and gener-

ating the rest of the population randomly. The initial

population is also randomly generated. In both cases,

no index is used more than once in a chromosome.

5 A SURROGATE TEST PROBLEM

GENERATOR

The search for good macros in code compaction is a

SSS problem and evaluating the compaction obtained

in real programs for a given subset of macros is com-

putationally expensive. Designing a surrogate prob-

lem that models the characteristics of our real-world

problem without the computational cost allows more

latitude for exploration. We developed a SSS problem

generator, modeled after our code compaction prob-

lem, that allowed us some control over the interaction

between subset members (analogous to macro colli-

sions) and which required signi�cantly less computa-

tion for evaluation. The objective in these problems

was to �nd the best subset, �, of a speci�ed size, j�j,
from a candidate pool, �, where � = fxi : i = 1; j�jg
and j�j >> j�j. The �tness of � is determined by:

f(�) =

j�jX
i=1

�
C(xi) if xi 2 �

0 otherwise

where C(xi) is the �tness contribution of xi as a mem-

ber of �. Elements that are not a member of � do not

contribute to the subset �tness for these problems.

The simplest form of this problem models the case

where there are no-collisions (i.e., no epistasis). Let �

represent theminimum number of elements in � that

interact with each element xi. Then this is the � = 0

case. Problems in this class were generated with the

values of C(xi) randomly selected in the range [1; 10]

except for j�j of them (randomly chosen) which were

set to zero. The �tness of the single optimum is zero.

Another class of problems were generated with inter-

element interactions (� > 0) to model collisions be-

tween macros. The �tness contribution C(xi) of an

element xi is computed according to:

C(xi) = �(xi) + I(xi)

I(xi) =

j�jX
j=1

�
 (xi; xj) if xj 2 � and i 6= j

0 otherwise

where �(xi) is the base value for the element xi, I(xi)

is the interaction function for element xi, and  (xi; xj)

is the interaction value for the link from xi to xj . Thus,

f(�) depends only on the elements contained in �. The

object in the search for the problems where � > 0 was

to �nd the subset, �, whose cumulative base values

and intra-subset interaction penalties were minimal.

Problem instances in this class were constructed by

randomly assigning \base" values, �, in the range [-

10.0, 0]. For each element, xi, in �, � other elements

were randomly chosen, without replacement, as the

interactors of element xi. Each of these interactions,

 (xi; xj) is randomly assigned a positive real value in

the range (0:0; 10:0] so as to interfere with the negative

� values. Reciprocal interaction values,  (xj; xi), are

also randomly chosen from the same range for each

of the � elements. Thus, if macro xi interferes with

macro xj there will always be a reciprocal, but not

necessarily equal, interference. The optimal �tness for

problems where � > 0 is not known.

5.1 SUBSET SELECTION WHEN ONLY

AN UPPER BOUND ON � IS KNOWN

Substantial testing has shown that when the subset

size is known, MMX is as good as, and often bet-

ter than, the RAR and MSX operators. However, in

our real-world code compaction problem only an up-

per bound on the size of the subset is known. This is

because some of the macros speci�ed by the chromo-

some require other macros for support (i.e., recursion

of depth one). These support macros are automati-

cally added to � when required, consuming valuable

slots in the dictionary. Thus, the number of macros

that may be speci�ed by the chromosome is uncertain

and context sensitive (i.e., depends on the preceding

macros in the chromosome). Knowing only an upper

bound on j�j, we are forced to code for the maximum

number of elements that can be chosen. To simulate

this added di�culty in our SSS problem generator and

test the e�ectiveness of these subset operators, we set

our chromosome length to 125, but used only the �rst

100 elements when determining the �tness.

The results reported here are based on 30 random

problems for each of �ve interactivity levels (i.e., � = 0,



� = 0 � = 5 � = 10 � = 20 � = 50
Alg Solved Trials Fitness Fitness Fitness Fitness Fitness

RAR w=0.25 0 ( ) 16.83 (0.28) -881.53 (2.52) -782.59 (3.76) -472.56 (8.95) 1148.53 (20.43)
RAR w=7 0 ( ) 12.4 (0.26) -891.67 (2.18) -811.54 (2.83) -544.50 (5.50) 890.91 (12.67)
MMX 11 178,002 (6,745) 0.67 (0.10) -922.39 (1.72) -874.80 (1.87) -697.50 (4.21) 432.44 (11.14)
MMX-S 30 31,905 (2,245) 0.00 (0.00) -928.01 (1.73) -892.81 (1.65) -751.25 (3.34) 325.33 (11.25)

MSX 30 37,597 (4,258) 0.00 (0.00) -927.99 (1.62) -892.51 (1.80) -753.13 (3.94) 309.14 (11.09)

Table 1: Performance for algorithms on SSS for �=0, 5, 10, 20, and 50 interactors.

5, 10, 20, and 50), keeping the problems constant

for all algorithms. All of the problems were of the

size j�j = 1024 and j�j = 125, using only the �rst

100 elements in �. For the non-interactive problems

(� = 0), the optimal elements are distributed ran-

domly throughout � and the optimal solution is 0.

The optimal solution for the interactive problems (i.e.,

� > 0) is not known. A maximumof 200,000 trials was

allowed for each of the algorithms on all problems. We

used a mutation rate of 5% for MMX and MSX and

values of 0.25 and 7 for w for RAR. Radcli�e (1993)

recommended a value of w = 0:25, but after extensive

testing we found w = 7 was best for our problems.

Table 1 shows the average best results, with the stan-

dard error of the mean in parentheses. RAR performs

the worst on these problems, unable to solve the non-

interactive problem a single time in the 200,000 trials

allowed. MMX also performs quite poorly but is able

to solve 11 of the 30 non-interactive problems. MSX

performs much better than MMX or RAR. The reason

that MMX and RAR perform poorly is that the values

on the string not common to the parents are mixed in

a bag and then randomly chosen for insertion into the

o�spring. The order that the elements are inserted

into the o�spring is completely random. This causes

indexes to be moved back and forth across the bound-

ary on the chromosome between the 25 elements that

do not contribute to the �tness evaluation and the 100

positions that do. This makes it more di�cult for the

GA to converge on the meaningful elements (i.e., the

�rst 100 indexes in the string). MSX, on the other

hand, maintains the relative position that the indexes

occupy in the parents, swapping the indexes directly.

This prohibits indexes from relocating randomly in the

chromosome. The reason that MMX performs bet-

ter than RAR on these problems is that MMX has

some positional stability, i.e., those elements common

to both parents remain in their parental positions after

recombination while in RAR this information is lost.

The positional instability exhibited by the MMX op-

erator can be remedied by sorting the elements cho-

sen from the bag according to their parental positions.

Then the elements can be inserted into the available

slots (MMX-S) in the o�spring using the parental posi-

tions to produce a relative order.1 This method adds

a great deal of stability, improving the performance

of the normal MMX operator in this selection envi-

ronment as indicated by the performance results of

MMX-S in the table. However, the added computa-

tional complexity makes this a less desirable solution

than MSX. Similar positional information could be in-

cluded for the RAR operator but the best way to do

this is still an open question.

We ran an ANOVA using problem as a random fac-

tor (30) and with � (5, 10, 20, 50) and operator

(MSX, MMX, MMX-S, RARw=0.25, RARw=7) as

�xed factors. After pulling out the obvious � main

e�ect, we still saw a signi�cant operator main e�ect:

there was no signi�cant di�erence between MSX and

MMX-S but MSX and MMX-S were signi�cantly bet-

ter than RAR, regardless of the value of w. A signi�-

cant operator-� interaction revealed that the inferior-

ity of MMX �rst appears at � = 20 and is sustained

for � = 50, while the inferiority of the RAR operator

was signi�cant from � = 5 and sustained for all higher

�'s.

6 CODE COMPACTION

BENCHMARK RESULTS

The surrogate SSS problem generator proved to be a

good model of our code compaction problem and re-

sulted in the development of the MSX crossover opera-

tor. The performance rankings of the various crossover

operators was the same in both the surrogate and real-

world problems. However, the performance advantage

of MSX over the other operators was more dramatic

in our code compaction problem than in the surrogate

SSS problems and MMX-S was not as competitive as

was observed on the surrogate SSS problems. Thus,

we compared the performance of MSX with that of a

code-compaction-speci�c search heuristic (CCSSH).

1All elements in the o�spring could be sorted according
to the positions occupied in the parents; however, this is
computationally expensive and the e�ort remains constant
throughout the search. The computational e�ort for sort-
ing only the indexes inserted from the bag decreases as the
population converges.



Pool = 12,000 Macros Pool = 20,000 Macros Best of Two Pools
CCSSH MSX � Bytes � % CCSSH MSX � Bytes � % � Bytes � %

compress92 1472 1436 36 2.4% N/A 36 2.4%
compress95 1864 1780 84 4.5% N/A 84 4.5%
eqntott 7012 6764 248 3.5% 7148 6668 480 6.7% 344 4.9%
li 15428 15304 124 0.8% 15740 15136 604 3.8% 292 1.9%
Philips-1 17124 16520 604 3.5% 17332 16428 904 5.2% 696 4.1%
Philips-2 22280 21464 816 3.7% 22480 21492 988 4.4% 788 3.5%
sc 25560 24936 624 2.4% 25868 24980 888 3.4% 580 2.3%
m88ksim 44996 43824 1172 2.6% 45416 43668 1748 3.8% 1328 3.0%
espresso 48124 47420 704 1.5% 48296 47068 1228 2.5% 1056 2.2%
ijpeg 52944 51588 1356 2.6% 53376 51896 1480 2.8% 1348 2.5%
Philips-3 69028 67660 1368 2.0% 69864 67952 1912 2.7% 1076 1.6%
go 72632 71996 636 0.9% 73008 71328 1680 2.3% 1304 1.8%
perl 86600 85568 1032 1.2% 87356 84928 2428 2.8% 1672 1.9%

Table 2: Code sizes for benchmarks using CCSSH and MSX and improvements of MSX over CCSSH (Bytes/%).

Our CCSSH begins by generating all possible macros

having four basic instructions or fewer. The frequency

of occurrence for each macro in the program is de-

termined at generation time. After all macros have

been generated, an initial subset of macros is selected.

For each macro its \gain" is calculated. The gain of

a macro is its length minus 1, multiplied by its oc-

currence count. This gain represents the savings of a

macro if no other macros were used (i.e., no collisions).

The j�j macros with the highest gain are selected to

form the macro pool, � (i.e., set of macros to choose

from), where j�j is determined by the user. After the

generation of the macro pool, an initial tiling is made,

assigning a cost of one byte for each macro. Then the

following steps are iterated until the decoding dictio-

nary contains 511 macros:

1. From the occurrence count of each macro a new

encoding cost is calculated using Hu�man's algo-

rithm: the 255 most frequently occurring macros

get cost 1, the next 256, cost 2, and the remaining

macros, cost 3.
2. Using the occurrence counts and the costs of the

macros, the gains of the macros are recalculated.

The gain of a macro is its relative savings times its

occurrence count. The relative savings of a macro

is the sum of the costs of its sub-instructions mi-

nus the cost of the macro itself. Thus, the savings

of a macro is the increase in code size if each oc-

currence of a macro in the program were replaced

by its sub-instructions.
3. After recalculating the gain of the macros, a �xed

percentage of the macros with the lowest gain are

removed. Using the new set of macros, the pro-

gram is re-tiled.

There is no known method for determining a lower

bound on the compression that is possible given the

constraints of our code compaction problem. It is also

di�cult to determine how best to limit the pool of

macros, �, considered in the search, since searching

the entire set seems pointless since many macros will

save only one byte.

Table 2 shows the search results for both algorithms

using macro pool sizes of 12,000 and 20,000, except for

the compress92 and compress95 benchmarks, whose

total macro pool sizes are less then 10,000. The bench-

mark set consists of the standard benchmarks from

SPEC CINT92 and CINT95 (SPEC CPU Benchmarks,

1992 and 1995), as well as three Philips applications.

CCSSH is deterministic and of �xed complexity, scal-

ing with the size of the benchmark and the size of the

macro pool and number of collisions encountered. The

results given for the GA are after 200,000 evaluations.

Using CHC and the MSX operator yields the smallest

code footprint on all 14 benchmarks. The improve-

ments range between 36 and 1368 bytes (0.8% - 4.5%)

when using a macro pool of 12,000, and 480 - 2428

bytes when using a macro pool of 20,000 (2.3% - 6.7%).

However, the GA takes signi�cantly longer to run than

CCSSH. In the case where millions of instances of an

application will be �elded in silicon and every byte is

critical the extra time taken to compress the code us-

ing the GA may be worth the savings; however, it is

impractical to optimize each time a small change is

made during development. Furthermore, the perfor-

mance of CCSSH declines as macro pool sizes become

larger, while the GA usually improves on most bench-

marks when a larger macro pool is used.

The last column in Table 2 represents the advantage of

the GA over CCSSH when the best results for each al-

gorithm are chosen independent of pool size (i.e., usu-

ally a pool size of 12,000 for CCSSH and usually 20,000

for the GA). Comparisons based on these values show



that the the GA performs 1.6% - 4.9% better than

CCSSH.

The results in Table 2 re
ect a single run of the GA.

Since the GA is a stochastic algorithm, it is important

to measure the repeatability of the search. Given the

evaluation time it takes to run multiple experiments,

repeatability ranges have only been established for a

few of the benchmarks. The total range of solutions

observed for the Philips-1 benchmark is 49 bytes (i.e.,

solutions range from 16428 to 16477), or 3 parts per

thousand.

7 CONCLUSIONS

Developing a surrogate problem that accurately mod-

els a real-world problem and saves computation time

allows greater exploration of algorithms/operators

than is possible when testing only on the real-world

problem. The process of constructing a surrogate also

contributes to better understanding of the real prob-

lem and may lead to better algorithms/operators. In

this case, exploration lead to the development of MSX.

MSX is able to discover signi�cantly better subsets

than the MMX and RAR operators on problems where

only an upper bound on the the size of the subset

is known. MSX decreases the positional instability

created by recombination when there isn't truly an

ordering subproblem but rather a boundary between

elements that will be evaluated in the subset and those

that will not.

A strong specialized method is almost always better at

solving the target problem than a GA. However, in our

case CHC using MSX is able to �nd decoding dictio-

naries that yield better code compaction than CCSSH.

And while the computational cost for this added per-

formance is not insigni�cant, it may well be worth the

time when memory savings are valuable.
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