
Heuristics for Evolutionary O�-line Routing in Telecommunications
Networks

Joshua Knowles and David Corne

Department of Computer Science, University of Reading, UK

J.D.Knowles@reading.ac.uk, D.W.Corne@reading.ac.uk

FAX: +44(0) 118 975 1994, TEL: +44 (0) 118 931 8983

http://www.rdg.ac.uk/�ssr97jdk

Abstract

O�-line routing in backbone telecommunica-

tions networks is a combinatorial optimiza-

tion problem well-suited to iterative search

methods. In this paper, a number of further

heuristics applicable to the routing problem

are introduced and evaluated. The presented

results show that these methods signi�cantly

improve the search for solutions, particularly

when on-line performance is considered. The

use of delta-evaluation of solutions in order

to reduce computation time further, is also

investigated. Previously, simulated anneal-

ing has had a signi�cant advantage over ge-

netic algorithms on problems where delta-

evaluation is applicable, because genetic al-

gorithms employing standard crossover oper-

ators cannot make use of the technique. How-

ever, we introduce a specialized recombina-

tion operator which enables a genetic algo-

rithm to exploit delta-evaluation e�ectively

on the routing problem. The performance

of the genetic algorithm employing the new

recombination operator is found to be signif-

icantly better than that of a mutation-only

genetic algorithm.

1 Introduction

O�-line routing has three main uses: First, it pro-

vides reference benchmark results for dynamic (on-

line) routing strategies; second, it can be used in net-

works where bandwidth may be booked in advance;

third, and most interestingly, o�-line routing is be-

coming more and more investigated and employed in

its own right as a way of quickly �nding signi�cantly

improved routings for live networks which can then be

imposed on the network to o�er a net improvement

in quality of service. The latter is applicable when

calls are only partly known in advance, or not known

at all: Given a collection of existing calls on a net-

work, an o�-line routing strategy can run in the back-

ground, and potentially �nd a better routing for the

existing calls, which can then be imposed on the net-

work via re-routing certain calls as necessary. Recent

work investigating this idea in the context of adaptive

distributed databases (intermittently re-routing clients

to di�erent servers based on changing access patterns

and base network communications speed data) can be

found in [14, 13]. In particular, [1] investigates the

tradeo�s between the speed of o�-line routing algo-

rithm, quality of solution, and relevance of solution

to the possibly changed network after the short delay.

In the context of standard telecommunications rout-

ing scenarios, o�-line routing has been investigated

by Mann and Smith [10], and is also the topic of a

major industrial project involving Nortel Communica-

tions Plc1.

O�-line routing involves �nding a set of routes for a

given network/tra�c combination such that commu-

nications costs and congestion are minimized. In this

paper, we show how, by biasing the initialization and

mutation operations used in the search process, sig-

ni�cant improvements in performance on this problem

can be made. We investigate three methods of biasing

the search: First, towards solutions containing many

short(est) paths; second, to favour paths which cause

little congestion; and third, using a combination of

the �rst and second methods. The latter is achieved

through the use of a `double' chromosome. The `dou-

ble' chromosome and its use has a similar 
avour to

the employment of multiploidy, in which a genotype

consists of multiple `sub'-chromosomes, and a `mask'

chromosome or a dominance mechanism is used to con-

struct the chromosome to be interpreted by indicating

1See \hot emulation" at the Internet website,
http://www.elec.qmw.ac.uk/telecom/industry.html



which sub-chromosome to use for each gene position.

See [7] for an early discussion of work employing such

ideas, and [3, 19] for more recent examples. A fur-

ther variant on this theme is Dasgupta's Structured

Genetic Algorithm (SGA) [4].

Next, we consider the use of `delta-evaluation'. This

is a way of very quickly calculating the �tness of a

candidate solution s, by using the �tness of one of

its parents, p, and knowledge of the genotypic di�er-

ence between s and p. In the o�-line routing prob-

lem delta-evaluation can be applied e�ectively; as has

been noted previously [10], the computation per evalu-

ation required by simulated annealing on this problem

can be greatly reduced by employing delta-evaluation.

When large problems are being considered this means

that the solution evaluation can be accelerated signif-

icantly. This would seem to give the simulated an-

nealing algorithm a major advantage in this problem

domain. However, we introduce a specialized recombi-

nation operator which allows the e�ective use of delta-

evaluation on this problem and show that through the

use of this operator very fast evolution to good solu-

tions can be achieved. We compare the delta-evaluated

GA employing our new recombination operator with a

mutation-only GA to verify its utility.

The new heuristics described above are compared with

standard representations and operators in a steady

state genetic algorithm (GA) [6]. Results are presented

from multiple runs on eighteen di�erent test problems

of varying network sizes and tra�c levels. Both the

o�-line and on-line performance of the GA is tested.

A baseline shortest path routing algorithm is also used

to place the performance of the genetic algorithms into

context.

The organization of the rest of this paper is as fol-

lows: Section 2 summarizes the approach taken by

Mann and Smith [10] to the routing problem, which

involves an algorithm due to Yen [18] for calculating

the K shortest paths in a graph. The heuristics that

we employ and the rationale underlying them are then

described. The incorporation of delta-evaluation is re-

ported in section 3. Before presenting results, a brief

outline of the test problems is given in Section 4. Re-

sults are then presented in Section 5 and the work is

summarized in Section 6.

2 Approaches

The detailed formulation of the o�-line routing prob-

lem adopted here, including the objective function,

is described in [10] and [8] . Brie
y, we are given a

sparse graph consisting of a set of vertices, and a set

of weighted edges connecting some pairs of vertices,

each with an associated bandwidth capacity. We are

also given a set of source-destination pairs and asso-

ciated bandwidths, to represent connection requests.

The task is then to assign paths through the network

for each connection request such that:

1. No edge is over-capacitated;

2. calls are spread as evenly as possible over the

graph;

3. the total cost of routing calls is minimized.

The problem can obviously be tackled as a (possi-

bly constrained) multiobjective optimization task, but

here we consider only the formulation used in [10],

which uses an aggregating function.This allows us to

focus on the e�ect of our heuristics, independent of

the di�culties of interpreting multiobjective results.

Elsewhere, we have considered this problem using a

multiobjective formulation [9].

The space of feasible solutions to a routing task in a

large network with a large number of calls to route is

enormous. Only a very small fraction of these solu-

tions meet the constraints on link utilization that we

require. So, to reduce the search space, routes which

we can predict will lead to a poor solution are ex-

cluded. One way to rule out such paths is to create

a list of the K shortest paths between the n(n� 1)=2

source-destination pairs. This is the approach taken

by Smith and Mann and is the basis of all the work

presented here. The shortest in \K shortest paths",

applies to the cost of the path not the hop number

but since the costs of using edges in our network are

proportional to the Euclidean distance between the in-

cident nodes, in general short paths are also ones with

fewer hops.

Using the K shortest paths for each source-destination

pair, as well as reducing the search space greatly, and

the computation of routes, leads to a simple repre-

sentation of solutions. Mann and Smith use a K-

ary representation of length n(n � 1)=2 to represent,

without repetitions, all possible source-destination

pairs. Our approach is to represent only the calls

that need to be routed so that we have a vec-

tor(chromosome), also of K-ary elements (genes)2, of

length l =
P

e2P (v;w) x(v; w), where x(v; w) = 1 if

there is tra�c to be routed over the path P (v; w) be-

tween node v and node w, and x(v; w) = 0 otherwise.

2Empirically, we found K = 15 to be a sound choice
for the problems considered here. Higher values lead to an
increased search space. Lower values limit the choices of
routes too much.



Each gene in the chromosome points to an entry in

a look-up table containing the route that it refers to

(see Figure 1). The routes in the look-up table, show-

ing each of the nodes to be visited, are pre-computed

using an algorithm due to Yen [18].

1 4 1 3 7 1 1 5 3 1 2 9 1 2 1 3 4 1 2

-

v w k path

12 27 1 (12, 34, 27)

12 27 2 (12, 17, 34, 27)

12 27 3 (12, 16, 19, 27)

12 27 4 (12, 16, 28, 34, 27)

12 27 5 (12, 16, 19, 28, 34, 27)

12 27 6 (12, 21, 16, 28, 19, 27)

Figure 1: How a chromosome encodes for routes in the

network. In the chromosome (top) each gene codes

for the route to be taken between its corresponding

source-destination pair v; w, via a look-up table (bot-

tom). In this example, the eighth gene codes for the

5th shortest path (k = 5) between nodes 12 and 27.

Yen's algorithm is e�cient, requiring only a few sec-

onds to calculate all the required paths in the net-

works considered in this paper. It requires an upper

bound of approximately 1=2Kn
3 operations for each

of the source-destination pairs, where n is the num-

ber of nodes in the network. The algorithm works by

calculating the �rst shortest path (using some suitable

method, see [17]) and then successively setting edge

costs in the path to 1, each time applying a standard

shortest path algorithm to �nd a new path. Guaran-

tees exist that the paths generated are the K shortest

and no re-ordering is required.

2.1 Biasing by Path Length

Under the representation scheme described above,

each chromosome consists of a list of genes, each hav-

ing an allele value in the range 0 to K. Smaller al-

lele values correspond to the selection of shorter paths.

Our �rst heuristic is simply to bias the initialization

and mutation functions used in the search process so

that lower allele values, and hence shorter paths, are

favoured. This is achieved by employing an exponen-

tial function on a random variable x 2 [0; 1], having

the form int(ex
p
:log(15:49)) (where p is a tuning pa-

rameter), in the random initialization and mutation

functions of the search algorithm. The tuning of the

exponential function was engineered to generate chro-

mosomes with a distribution of allele values that re-

sembled those chromosomes found (through previous

optimizations) to represent good solutions. In addi-

tion, the connections represented by the chromosome

are arranged in decreasing order of bandwidth. This

allows that the amount of bias applied can be linked

to the bandwidth of the connection request simply by

linking the value of the tuning parameter p to posi-

tion in the chromosome. This method is employed

because it is more important for the high bandwidth

calls to be routed by the shortest paths possible as they

contribute more to congestion than do low bandwidth

calls if they are routed along a round-about path.

2.2 Biasing by Congestion Contribution

We now seek to use the same biasing method but

this time to apply it to the explicit congestion that

a path contributes. This is achieved by re-ordering

the list of K shortest paths according to their `conges-

tion cost'. For each path P (v; w 2 N) the congestion

cost, con(P (v; w)) is calculated using :

con(P (v; w)) =
X

e2P (v;w)

ft(v; w)=b(e)� 100g (1)

where t(v; w) is all the tra�c to be routed from node

v to node w, and b(e) is the bandwidth capacity of

edge e. Applying Equation 1 gives rise to high costs

for long paths and/or paths that include edges with

capacities that cannot accommodate the bandwidth

of the tra�c. After evaluation, ranking of the paths is

carried out using a Shell sort.

2.3 Biasing Using a Multiploid Chromosome

The two schemes described above may be combined.

One possible way to combine the two schemes is, of

course, to weight the two previous scores and rank

the path choices according to a linear combination of

the scores. However, this method is unsatisfactory be-

cause the choice of weightings to use must be made

in a rather arbitrary way. In addition, some paths in

the K shortest lists are much longer than others and

therefore it is di�cult to obtain a ranking which is

useful as a measure of both of the objectives. Thus,

we take a di�erent approach. We employ a `double'

chromosome for each solution. The primary chromo-

some, as before, represents the choice of path. The

additional secondary chromosome is binary and rep-

resents whether to interpret the primary chromosome

as a choice from the shortest path ranking or from

the congestion score ranking. That is, each individual

gene is used to look up the choice of path from the

ranking established using either the measure of path

length, or the measure of congestion, but as a whole



Parent 1
Parent 2

1
1
2
2
1
4
1
1
1
2
3
3
1
1
5
1
1
1
1
1
1
9
2
2
1
1
4
7
1
1
1
1
1
1
2
1

?

Reduced Surrogate 4 2 1 9 7 1

?

Tournament Select 4 2 1 9 7 1

?

Winners 9 7

Break Ties
?

9

?

O�spring 1 2 1 1 1 3 1 5 1 1 9 2 1 4 1 1 1 2

Figure 2: Selection of a gene from parent 2 to generate o�spring from parent 1.

the chromosome uses paths selected from both look-up

tables.

Both chromosomes are subject to random initializa-

tion, mutation and, in the case of a genetic algorithm,

recombination. Therefore the representation that is

most useful will be chosen during the optimization

process. The method has some similarities to Mul-

tiploid GAs [3] and structured GAs [4], both of which

use genes to indicate whether other genes are active

or not. However, these paradigms are aimed at im-

proving the convergence properties of GAs in general,

by keeping useful genetic material in the gene pool for

longer. Our use of an extra chromosome is for wholly

di�erent reasons - to indicate the means of interpre-

tation of genes - and we keep no redundant genetic

material from one generation to the next.

3 Delta-Evaluation

We now consider the use of delta-evaluation of solu-

tions on the routing problem in order to accelerate

the optimization process. It is possible to evaluate,

given the evaluation of a complete chromosome, and

some other simple book-keeping the change in evalua-

tion that results from a small change to the chromo-

some. Mann and Smith [10] note that this gives simu-

lated annealing an advantage in this problem because

delta-evaluation cannot be used in a genetic algorithm

employing recombination. However, we introduce a

new recombination operator which can be used with

delta-evaluation, and which retains the utility of re-

combination to a great extent.

Empirically, we �nd that chromosomes which encode

for good solutions to the problems considered here con-

tain a small number of genes with allele values which

lie in the middle to top of the allowed range. To com-

bine these alleles through mutation alone requires a

longer time than through recombination, and this is

particularly true with the biased initialization and mu-

tation used. Our approach in designing a recombina-

tion operator for use with delta-evaluation was to con-

sider how we could retain the speed with which these

unlikely allele values could be combined and retained.

To allow e�cient delta-evaluation, our operator selects

two parents and crosses just one allele of one into the

other. To ensure that this has a good chance of be-

ing a useful change, we use the `reduced surrogates`

[2] of the two parent chromosomes. We then look for

elements containing values with the smallest absolute

di�erence from 8, the median allele value which the

genes can take. This is achieved by employing a tour-

nament selection strategy between the genes remaining

in the reduced surrogate. The genes randomly selected

to take part in the tournament are evaluated accord-

ing to E = jK�8j, and the gene with the lowest value

of E is selected. Any ties between the di�erent genes

competing in a tournament are broken randomly. A

tournament size of three was used, or of size one (i.e.

random choice) if the reduced surrogate contains only

three elements or fewer. This method generates a new

chromosome with only one gene changed but retains

some of the e�ectiveness of crossover at combining rare

allele values quickly in the early stages of the optimiza-

tion process. The recombination operator is shown

graphically in Figure 2.



4 Generation of Routing Problems

In order to test our new heuristics, a set of routing

problems of di�erent sizes and degrees of di�culty was

used. A routing problem consists of a network topol-

ogy, including a speci�cation of the edge bandwidths,

and a tra�c matrix specifying the source-destination

pairs of the connections to be routed and their band-

width requirements. Real WAN telecommunications

networks are designed to meet several criteria: They

require that every node be accessible from every other

node, they should be reliable with regard to node or

link failure, and they should pay regard to parsimony

and minimising delay. In addition, a constraint often

exists on the degree of nodes. These considerations of-

ten lead to constructions based on minimum spanning

trees or degree-constrained minimum spanning trees.

To achieve reliability, extra edges are often added to

ensure that every node is reachable by at least two

paths from every other node, so that if a node or edge

fails there is a good chance that all tra�c can still be

accommodated.

44

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

2930

31

32

33

34

35

36

37

38

39

40

41

42

43

Figure 3: A randomly generated 45-node network.

To attend to the requirements above, a random

network generator, based on a suboptimal degree-

constrained minimum spanning tree construction algo-

rithm due to Narula and Ho [12], was designed. Due

to space restrictions we cannot give details here but a

fuller speci�cation is contained in [8]. The networks

used in the experiments here have links of two band-

widths. Figure 3 shows one of the 45-node networks

constructed using the generator. The larger circles

represent nodes on the backbone, and are connected

by bold edges, representing 64 unit bandwidth links.

The smaller circles represent the remaining nodes, and

are connected by feint edges representing 16 unit band-

width links. The network possesses good, general com-

munication properties: It o�ers numerous paths be-

tween most node pairs, is robust to node or link fail-

ure, and has an e�ective backbone spanning the entire

network - all achieved with parsimonious connectivity.

To generate the tra�c matrix simply requires ran-

domly choosing source-destination pairs from the

n(n � 1)=2 that exist, and assigning them a random

bandwidth requirement. We use bandwidth require-

ments t(v; w) 2 f1; 2; 3; 4g. Two networks at three

di�erent sizes, n = 30, n = 45 and n = 60, and nine

di�erent tra�c matrices, three for each size of net-

work, were generated. This gives eighteen problems

in all: Six networks each of which could be used with

any of three tra�c matrices for that size. The tra�c

matrices were all challenging to an extent, but the �rst

one (for each size of network) has slightly less tra�c

than the second, and the third has the most tra�c,

sometimes more than can be routed without violating

the bandwidth constraint of at least one link.

5 Results

5.1 Implementation details

The basic genetic algorithm that we employ is a steady

state GA [6] with a population size of 100. Tourna-

ment selection with tournament size 3 is used to select

a chromosome for mutation and for selecting parents

in crossover. In the former, the mutated chromosome

replaces itself regardless of evaluation and in the latter,

the o�spring created always replaces the worst current

member of the population. The mutate operator is ap-

plied to the bits of a selected chromosome with prob-

ability 1=chromosome length so that on average one

gene is changed. The genes mutated are replaced with

a new value taken from whatever distribution is being

used. Recombination is achieved using standard uni-

form crossover [15], except in the delta-evaluated GA

where reduced surrogates are used and a single gene is

selected, as described earlier. The crossover operator

is applied with probability pc and mutation with prob-

ability 1� pc where pc begins at 0:7 and is reduced to

0:3 over the �rst 4000 evaluations, where it remains

until termination. The total number of solution evalu-

ations is 20; 000 including the initial population of 100.

All parameter settings were derived empirically.

5.2 Baseline results

First, we show the validity of the cost function, and

the algorithms presented here, by comparing the link



0

50

100

150

200

250

0 10 20 30 40 50 60 70
0

50

100

150

200

250

0 10 20 30 40 50 60 70

Pe
rc

en
ta

ge
 u

til
iz

at
io

n

Edge number Edge number

Pe
rc

en
ta

ge
 u

til
iz

at
io

n

(a) (b)

Figure 4: Utilization of links on a 45 node network: In (a) a solution generated using shortest path routing, and

in (b) a solution generated using a genetic algorithm incorporating our double chromosome heuristics.

utilizations of a solution generated by shortest path

routing [5] and by our genetic algorithm employing

both congestion and cost ranking information. Fig-

ure 4 shows the percentage utilization of the links in

a 45-node network problem. Histogram (a) was pro-

duced by the shortest path algorithm and histogram

(b) was produced by a GA employing our double chro-

mosome heuristic, after a run of 20,000 evaluations. In

the GA solution, all links are at or below 100% uti-

lization, whereas the shortest path algorithm results

in link utilisations of over 200% in several links, and

spreads the load far less e�ciently. The cost of the so-

lution generated using shortest path routing was 2408

and that generated using the GA was 1651, according

to the objective function used.

5.3 Quality of �nal solutions

Next, we consider the performance of the four algo-

rithms as judged by the cost of the �nal solutions gen-

erated. The di�erent algorithms we are comparing are

labelled as follows:

� GA The standard GA with no biasing of the ini-

tialization or mutation.

� BIAS GA The GA with initialization and muta-

tion biased towards shorter paths.

� CON GA The GA with initialization and muta-

tion biased towards paths which cause less con-

gestion.

� DOUBLE GA The GA with a double chromo-

some.

The best heuristic in terms of �nal solution costs is,

on average, the one employing a double chromosome,

Percentage Cost

Algorithm 30-node 45-node 60-node

GA 103.8 105.5 104.4

BIAS GA 101.2 102.6 102.3

CON GA 101.1 102.1 101.9

DOUBLE GA 100.8 101.8 101.5

Table 1: Mean cost of solutions generated by the 4

algorithms at each of the 3 sizes of network. Costs

are expressed as the percentage of the lowest cost ever

found.

encoding both congestion and cost rankings. Table 1

presents these results. The results are the mean of

20 runs of 20,000 evaluations on six problems at each

network size.

5.4 On-line performance

A plot indicating the typical on-line performance of

the genetic algorithms is given in Figure 5. The re-

sults are the mean of 20 runs on one 60-node network

problem. However, this data plot is representative of

the results obtained with the other network sizes and

tra�c levels. The plot clearly indicates the success

of our biasing heuristics at decreasing the number of

evaluations required to reach solutions of a given level

of quality. Much of the advantage can be seen to arise

from the initialization process (observe the cost after

100 evaluations), but mutation must also be improved,

since the gradient of the curve is steeper at a given cost

level for the algorithms employing the heuristics. Sta-

tistical analysis indicates that DOUBLE GA reaches

a cost of just 104% of the best cost found after 20000

evaluations, after only 4500 evaluations on average.

This compares with a �gure of 112% for the standard

unbiased GA.



DOUBLE_GA

GA

CON_GA

BIAS_GA

3000

3200

3400

3600

3800

4000

4200

4400

0 500 1000 1500 2000 2500 3000
Evaluations

C
os

t

Figure 5: Mean on-line performance on a 60-node net-

work.

MUTATION_ONLY_GA

DELTA_GA

1650

1700

1750

1800

1850

1900

1950

2000

2050

0 1000 2000 3000 4000 5000 6000 7000

C
os

t

DOUBLE_GA

Evaluations

Figure 6: Mean on-line performance of the delta-

evaluated GA on a 45 Node Network, compared with

the standard DOUBLE GA and a mutation-only GA

5.5 Delta-evaluation of solutions

Next, we present results showing the performance of

the delta-evaluated GA. Figure 6 shows how the delta

GA compares with the fully-evaluated double GA, and

a mutation-only GA in terms of cost against evalua-

tion. As before, the results plotted are the mean from

20 runs. The delta GA is almost as e�ective as the

standard GA here, despite the recombination opera-

tor only crossing over a single allele from one parent

to the other. On 60-node problems, using the delta-

evaluated GA, leads to a speed-up of nearly 30% when

compared with the fully evaluated GA: The processor

times for 20000 evaluations of an objective function in

which 135 calls are routed over a 60-node network, on

a 300 MHz SUN ULTRA 30 Workstation, were 72.09

seconds and 53.19 seconds for full and delta-evaluation

respectively.

6 Summary and Conclusions

Finding routes for tra�c in a congested network is

a standard combinatorial optimization problem well

suited to iterative search methods. In this paper we

have shown that these methods can be further en-

hanced by biasing the initialization and mutation func-

tions to better re
ect the statistical distribution of al-

lele values found in chromosomes which represent good

solutions. By incorporating additional heuristics we

were able to decrease the number of iterations required

to reach a solution of a given level of quality. In par-

ticular, the use of a double chromosome encoding, for

each gene, the choice of interpretation of the gene to

be used, was found to be able to combine two separate

and useful heuristics into a single superior heuristic.

In addition, the delta-evaluation of solutions was con-

sidered. In this problem domain and many others,

the performance of simulated annealing and other

search methods based on small change operators can

be improved dramatically if solutions can be delta-

evaluated. In contrast, genetic algorithms, with stan-

dard crossover operators cannot usually take advan-

tage of delta-evaluation because of the large disrup-

tion caused to genetic material during recombination.

However, we have introduced and tested a new recom-

bination operator which selects a single allele from one

parent to be crossed into the other parent to produce

an o�spring with a small change that can be delta-

evaluated. We �nd that using this recombination op-

erator is superior to mutation alone, at least on this

problem, and is only slightly less e�cient than uni-

form crossover at combining genetic material in the

early stages of evolution. Thus, on this problem a ge-

netic algorithm using the new recombination operator

and delta-evaluation can conduct an e�ective search in

comparable time to simulated annealing.

In further experiments reported by us in [8], the heuris-

tics described here were also incorporated in a simu-

lated annealing algorithm. Experimental results indi-

cated that simulated annealing was still competitive

with genetic algorithms on the routing problems, and

in fact with a further heuristic for use in initialization,

actually outperformed our GAs. However, investiga-

tions in a multiobjective formulation of the problem

reported by us in [9], indicated that di�erences in per-

formance between local search and population-based

search on this problem were marginal. Further inves-

tigation of these matters, under a constrained mul-



tiobjective formulation of the routing problem is the

subject of future work.

Acknowledgments

The �rst author would like to express his gratitude to

BT Labs Plc., for their continuing sponsorship of his

Ph.D.

References

[1] G. Bilchev and H. Olafsson. Comparing Genetic

Algorithms and Greedy Heuristics for Adapta-

tion Problems. In Proceedings of the 1998 IEEE

International Conference on Evolutionary Com-

putation, pages 458{463. IEEE Neural networks

Council, 1998.

[2] L. Booker. Improving Search in Genetic Al-

gorithms. In L. Davis, editor, Genetic Algo-

rithms and Simulated Annealing. Lawrence Erl-

baum, 1995.

[3] E. Collingwood, D. W. Corne, and P. Ross. Useful

Diversity via Multiploidy. In Proceedings of the

1996 IEEE International Conference on Evolu-

tionary Computation, pages 810{813. IEEE Neu-

ral Networks Council, 1996.

[4] D. Dasgupta and D. McGregor. A Structured Ge-

netic Algorithm: The model and the �rst results.

Technical Report IKBS-2-91, Dept. of Computer

Science, University of Strathclyde, Glasgow, UK,

1992.

[5] E. Dijkstra. A note on two problems in connexion

with graphs. Numerischme Mathematik, 1:269{

271, 1959.

[6] D. E. Goldberg. Genetic Algorithms in Search,

Optimization & Machine Learning. Addison-

Wesley, Reading, MA, 1989.

[7] D. E. Goldberg and R. E. Smith. Nonstationary

function optimization using genetic algorithms

with dominance and diploidy. In Proceedings of

the 2nd International Conference on Genetic Al-

gorithms. Morgan Kaufmann, 1987.

[8] J. D. Knowles and D. W. Corne. Evolution-

ary approaches to o�-line routing in backbone

communications networks. Technical Report

RUCS/1999/TR/007/A, Department of Com-

puter Science, University of Reading, Berkshire,

UK, 1999.

[9] J. D. Knowles and D. W. Corne. The Pareto

Archived Evolution Strategy: A New Baseline Al-

gorithm for Multiobjective Optimisation. In 1999

Congress on Evolutionary Computation, pages

98{105, Piscataway, NJ, July 1999. IEEE Service

Center.

[10] J. W. Mann and G. D. Smith. A Comparison of

Heuristics for Telecommunications Tra�c Rout-

ing. In V. Rayward-Smith and I. Osman, edi-

tors, Modern Heuristic Search Methods. John Wi-

ley and Sons Ltd., 1996.

[11] M. Munetomo, Y. Takai, and Y. Sato. An Adap-

tive Network Routing Algorithm Employing Path

Genetic Operators. In Proceedings of ICGA97,

pages 643{649, 1997.

[12] S. C. Narula and C. A. Ho. Degree-Constrained

Minimum Spanning Tree. Computers and Oper-

ations Research, 7:39{49, 1980.

[13] M. J. Oates and D. W. Corne. Investigating Evo-

lutionary Approaches to Adaptive Database Man-

agement Against Various Quality of Service Met-

rics. In T. B�ack, M. Schoenauer, and H.-P. Schwe-

fel, editors, Parallel Problem Solving from Nature

V, pages 775{784. Springer, 1998.

[14] M. J. Oates and D. W. Corne. QoS-Based GA

Parameter Selection for Autonomously Managed

Distributed Information Systems. In H. Prade,

editor, Proceedings of the 13th European Confer-

ence on Arti�cial Intelligence, pages 670{674.Wi-

ley, 1998.

[15] G. Syswerda. Uniform Crossover in Genetic Al-

gorithms. In Proceedings of the 3rd International

Conference on Genetic Algorithms, pages 2{9,

1989.

[16] A. Tanenbaum. Computer Networks (third edi-

tion). Prentice-Hall Inc., 1996.

[17] R. J. Wilson and J. J. Watkins. Graphs: an intro-

ductory approach: a �rst course in discrete math-

ematics. John Wiley and Sons, Inc., 1990.

[18] J. Yen. Finding the K Shortest Loopless Paths in

a Network. Management Science, 17, July 1971.

[19] Y. Yoshida and N. Adachi. A Diploid Genetic

Algorithm for Preserving Population Diversity |

pseudo-Meiosis GA. In Davidor, Schwefel, and

Manner, editors, Parallel Problem Solving from

Nature III, pages 36{45. Springer, 1994.


