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Abstract
Nuclear materials safeguard efforts necessitate
the use of non-destructive methods to determine
the attributes of fissile samples enclosed in
special, non-accessible containers.  To this end, a
large variety of methods has been developed.
Usually, a given set of statistics of the stochastic
neutron-photon coupled field, such as source-
detector, detector-detector cross correlation
functions, and multiplicities are measured over a
range of known samples to develop calibration
algorithms.  In this manner, the attributes of
unknown samples can be inferred by the use of
the calibration results.

The sample identification problem, in its most
general setting, is then to determine the
relationship between the observed features of the
measurement and the sample attributes and to
combine them for the construction of an optimal
identification algorithm.  The goal of this paper
is to compare a combination of genetic
algorithms and neural networks (NN) with
genetic programming (GP) for this purpose.  To
this end, the time-dependent MCNP-DSP Monte
Carlo code has been used to simulate the
neutron-photon interrogation of sets of uranium
metal samples by a 252Cf-source.  The resulting
sets of source-detector correlation functions,
R12(• ) as a function of the time delay, • ,
served as a data-base for the training and testing
of the algorithms.

1 INTRODUCTION

Nuclear materials safeguard necessitates the use of non-
destructive methods to determine the attributes of fissile
samples enclosed in special, non-accessible containers.
To this end, a large variety of methods has been
developed at the Oak Ridge National Laboratory (ORNL)
and elsewhere (Mihalczo et al., 1997) (Krick et al., 1992).
Active non-destructive assay evolved based on the use of
an interrogation source emitting neutrons and gamma
rays, whose scope is that of inducing fission in the fissile
material within the sample.  Neutrons and gamma rays
from the source as well as those eventually emitted by the
fissile system are then measured with appropriate
detectors.

In particular, the 252Cf noise analysis method, currently
adapted at the Instrumentation and Controls Division of
the Oak Ridge National Laboratory, evolved as a
combination of randomly pulsed neutron measurements
and Rossi-α measurements.  The method consists in
collecting the times of each spontaneous fission event
from the source as well as the detection times, thus
allowing the computation of time-dependent signatures.
Previous measurements and Monte Carlo simulations
have shown the sensitivity of these signatures (for
instance source-detector and detector-detector time-
dependent cross-correlation functions, as well as
multiplicity measurements) to fissile mass.



The analysis is performed by means of a set of
measurements of the time-dependent signatures in a range
of known samples.  The attributes of unknown samples
can then be inferred by resorting to these calibration
results.  The sample identification problem, in its most
general setting, is to determine the relationship between
the observed features of the measurement and the sample
attributes and to combine them for the construction of an
effective identification algorithm.

The goal of this paper is to develop an artificial
intelligence approach to this problem whereby Neural
Networks and Genetic Programming algorithms are used
for sample identification purposes.  To this end, a number
of Monte Carlo simulations (Valentine, 1997) were
performed to obtain source-detector cross-correlation
functions for a set of uranium metal samples of different
shapes, masses, and enrichments.

The results found serve as a proof of principle for the
application of combined stochastic and artificial
intelligence methods to safeguards procedures.

The organization of the paper is as follows: Section 2 is a
description of the Monte Carlo simulations performed
with cylindrical and spherical uranium metal samples.
Section 3 identifies a number of features extracted from
the time-dependent cross-correlation functions. Sections 4
and 5 describe the use of the two approaches.  In the first,
a neural network is combined with a genetic algorithm to
optimize the network’s values of learning rate and
momentum.  In the second approach genetic programming
is used.  In both cases explicit expressions linking the
features to the quantities of interest (sample mass and
enrichment) are found. Section 6 compares the obtained
results, and in section 7 the conclusions are shown

The results obtained show that both the neural network
and the genetic programming algorithms are  robust in
predicting the mass and enrichment of uranium metal
samples.  These values were estimated with very good
approximation in both the set used for training and in that
used for testing (mean error of about .03 kg in the mass
prediction, and 1% in the enrichment prediction).

2 252CF-SOURCE-DRIVEN
SIMULATIONS

In the 252Cf-source-driven measurement the source
undergoes spontaneous fission emitting neutrons and
gamma rays.  The timing of each spontaneous fission
event is recorded in appropriate time bins.  If fissile
material is present inside the sample to be analyzed, the

neutrons emitted by the source will initiate fission chains.
Neutrons and gamma rays from the source as well as
those eventually emitted by the fissile system are
measured with two detectors.  The detection times are
also recorded, in time bins of 1 ns.  The uranium sample
to be analyzed is placed between the source and two fast
plastic scintillation detectors.  The source was located at
25.4 cm from the center of the uranium metal sample at a
height of 10 cm.  The detectors, 10.16 cm width and
height and 5.08 cm thick, are placed one on top of the
other at a distance of 25.4 cm from the center of the
sample.

Simulations were performed with cylindrical and
spherical samples of seven different masses (8 kg, 10 kg,
12 kg, 14 kg, 16 kg, 18 kg, and 20 kg).  The different
masses were obtained by increasing the sample radius,
both in the case of the cylinders (in which case the height
was kept constant at 20 cm) and in that of the spheres.
For each mass, four different enrichments were tested
ranging from depleted to highly enriched (0.2 wt% 235U,
36.0 wt% 235U, 50.0 wt% 235U, and 93.15 wt% 235U).
Two additional simulations were run for both cylinders
and spheres giving a total of 30 simulations for the
cylindrical samples and 30 for the spherical ones.  An
additional simulation run with no sample between source
and detectors will be referred to as the void simulation.

The source-detectors cross-correlation functions [R12(τ)]
were generated by correlation of the source signal with
the combined signal from the two detectors, and
normalizing to the source count rate to remove the
dependence on the source.

3 SELECTION OF FEATURES FOR
THE SAMPLE  IDENTIFICATION
ALGORITHM

The selection of features for the sample identification
algorithm (SIA) was performed on the basis of their
relationship to sample attributes and of their ability to
discriminate between close numerical values within each
attribute group.  The first feature (F1) chosen is the
integral of the cross-correlation function at time lags from
0 to 8 ns, normalized to the same integral of the void
calculation.  It essentially corresponds to the normalized
area of the first peak of the cross-correlation function and
depends only on the sample mass (see figure 1).

The second feature chosen (F2) is the integral of the
cross-correlation function at time lags from 0 to 100 ns,
normalized to the same integral of the void simulation. F2

is sensitive to both the sample’s total mass and
enrichment (figure 2). The average delay time was
selected as the third feature (F3). This feature is



essentially constant for the depleted samples, increases
with sample enrichment and for high enrichments is very
sensitive to sample mass (figure 3).  Because the
asymmetry of the second peak of the cross-correlation
function is generated by the neutron induced fission in the
sample, the skewness of the cross correlation function
was selected as feature (F4) (figure 4).

Fig. 1.  Cylindrical samples:  F1 as a function of sample
mass (kg) for the four different enrichments.

Fig. 2  Cylindrical samples:  F2 as a function of sample
mass (kg) for the four different enrichments.

Fig. 3.  Cylindrical samples:  F3 as a function of sample
mass (kg) for the four different enrichments

Fig. 4.  Cylindrical samples:  F4 as a function of sample
mass (kg) for the four different enrichments

4 NN APPLIED TO THE PREDICTION
OF THE SAMPLE TOTAL MASS AND
235U ENRICHMENT

Two three-layered artificial neural networks (Marseguerra
et al. 1992) (Urig, 1991) were trained to generate a
mapping from input (F1, F2, F3, and F4) to output. One
network mapped sample’s mass and and the other the
enrichment.  The well known error back-propagation
algorithm was used for the network’s training.  The
activation functions were chosen to be sigmoidal from the
input to the hidden layer and linear from the hidden layer
to the output.  The number of hidden nodes was set to
two.
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For each NN, the values of learning rate and momentum
for the training were optimized by a genetic algorithm
(GA) (Chambers, 1995) as shown in Figure 5.  In the GA
an initial population of 50 chromosomes, each made up of
two genes coding the quantities of interest, is allowed to
evolve according to the rules of mating, cross-over, and
mutation, similarly to what occurs in biological systems.
The objective is to maximize the fitness function, defined
as the inverse of the network’s training error.  After a
predetermined number of generations (100 in our case),
the fittest chromosome is selected.

Figure 5: GA-NN combinated operation

The values of learning rate and momentum selected as
described above were then used in training the neural
networks for the prediction of the total mass and
enrichment of the samples on the basis of the four features
F1-F4.

4.1  RESULTS

Having chosen a linear transfer function in the output
nodes of the NN allows us to express the network
mapping structure in terms of the simple analytical
formula below:

where ai, (i=1,2,3), bj, cj, (j=1,…5) are coefficients which
depend on the network’s weights, and the output is the
sample mass or enrichment.

19 simulations, about two thirds of the data available,
were selected for the NN training. The NN were tested

with the remaining 11 cases.  The results are shown in
Figures 6 and 7.  Inspection of these results shows that the
present type of neural network can predict enrichment and
mass values for uranium metallic samples to a very good
approximation both in the case of the training patterns and
in the test cases.

Fig. 6.  Neural network prediction of mass and
enrichment on the basis of features F1, F2, F3, and F4:  test
set of 11 cases relative to cylinder simulations.  The true
values are shown with the circles and the values predicted
by the network with stars.

Fig. 7.  Neural network prediction of mass and
enrichment on the basis of the features F1, F2, F3, and F4:
test set of 11 cases relative to sphere simulations.  The
true values are shown with the circles and the values
predicted by the network with stars.
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5 GP APPLIED TO THE PREDICTION
OF THE SAMPLE TOTAL MASS AND
235U ENRICHMENT

A Steady State GP algorithm (Banzhaf et al. 1998) was
applied to generate a mapping of the features, F1, F2, F3,
and F4, to the sample mass and enrichment.  The
parameters of the algorithm were as follows:

a) Terminal set: F1, F2, F3, and F4, normalized in [-1, +1],
and random constants in (-01., +0.1).  A normalization of
the output was also done.  It is important to note that the
normalization was not necessary for the cylinder‘s data,
but on the contrary it was almost mandatory for the
sphere’s in order to get good results. Random constants
were selected with a probability of 28%, while each Fi

with 9%.

b) Function set:  operators +,-,*,/ (protected), selected
with equal probabilities of 9%.  The accumulative
probability of selection between terminals and functions
in a genetic operation is 100%.

c) Population size:  10,000.

d) Maximum initial size for trees (step 1 of the
algorithm):  4 nodes.

e) Maximum size for trees after any genetic operator:  50
nodes.

f) Termination criterion:  -0.001 error or 100,000
iterations.  It is important to note that the criterion based
on the number of iterations, which is the criterion that
says that the population of trees cannot be improved in its
present configuration and a restart should be done, it is
unlikely reached in these experiments.

g) Tournament size:  7.  The replacement of bad elements
is done within the entire population.

h) Probabilities for selecting genetic operators:
reproduction 7%, mutation 20%, crossover 73%.

Training and test sets were similar to those used in section
4.

5.1 RESULTS

The following equations show one example of results
obtained for each sample (note that the features and
desired outputs were normalized).  We got many of them
with an acceptable error and this selection was not made
under any objective criteria.

Cylinder:

Mass = (((((F1 - -0,514) * ((F1 - ((((F1 * F1) -

F1) + -0,876) / (-0,502 + -0,584))) * -0,58)) *

-0,582) * -0,574) - (((-0,876 - F1) + ((F1 *

((((F1 * F1) - F1) + -0,882) / (-0,49 + -

0,544))) * (F1 * F1))) / (-0,498 + -0,59)))

Enrichment = (((F4 - (-0,014 * (F4 - (-0,014 /

F4)))) - (((F2 * 0,748) * ((F3 * 0,366) + (F4 -

(-0,014 / ((F1 + ((F4 - (-0,014 / (F2 - (F4 *

F3)))) - (-0,014 * F4))) - (F4 * (F3 /

0,748))))))) * F3)) + F2)

Sphere:

Mass = ((-0,204 * ((F2 * (((-0,49 * ((F4 - -

0,722) - (F2 * ((-0,49 / -0,88) + F2)))) * (-

0,45 / ((((F3 * F2) * ((F2 * F2) - F2)) * ((F3 *

-0,722) - F2)) - F2))) - F2)) - F3)) - F2)

Enrichment = ((((-0,5 + (F4 + (F2 * (F4 - F3))))

* F2) * (F4 * -0,742)) - ((F4 * -0,49) + ((((F4

+ F2) - (-0,496 + ((F4 - ((((F4 - F3) - -0,81) *

((F4 - F3) * (F4 + F2))) * F4)) * -0,49))) + F2)

* -0,54)))

Figures 8 and 9 show their application to the test set.
After inspection of the above equations, it can be found
that:

a) Mass for the cylinder is calculated using just F1.
This simplification can be found in most of the
solutions.  The explanation of this result is that the
cylinder intercepts most of the source photons, thus,
the area under the photo peak, normalized to the
same area for the void run, is a measure of the photon
attenuation that depends on the sample mass.
Because for cylinders, the F1 feature depends so
strongly on the mass of the sample (see section 3),
the GP program selected just F1 among the four
inputted features.

b) Mass for the sphere is calculated using just F2 and F3.
We have found this kind of simple dependence in
many other solutions.  The spherical sample
intercepts less photons than in the case of the
cylindrical sample, thus, F1 does not contain too
much sample mass information.  The F2 feature, on
the contrary, contains the mass information from the
photo peak (F1), plus the sensitivity to sample mass
imprinted in the left side of the second peak.  The
third feature, F3, is also selected by the program for
its high sensitivity to sample mass at high sample
enrichments.



For both spherical and cylindrical samples, the equations
constructed by the GP algorithm to determine the sample
enrichment depend only on the F2, F3, and F4 features
because of the F1 feature exclusive dependence on sample
mass.

Fig. 8.  Genetic Programming: prediction of mass and
enrichment on the basis of features F1, F2, F3 and F4: set
of 11 cases used for testing relative to Cylinder
simulations.  The true values are shown with the circles
and the values predicted by the algorithm with stars.

Fig.9. Genetic Programming: prediction of mass and
enrichment on the basis of features F1, F2, F3 and F4: set
of 11 cases used for testing relative to Sphere simulations.
The true values are shown with the circles and the values
predicted by the network with stars.

6 COMPARISON OF RESULTS

In order to make a more meaningful comparison of the
results we applied a Standard Regression to predict the
mass and enrichment of the cylindrical and spherical

samples. Tables 1 and 2 summarize the error for the three
techniques for both training and test cases. The error
measure used was:

Table 1: Error results for the cylindrical samples.

Table 2: Error results for the spherical samples.

The tables show that GA-NN and GP are comparable and
more effective than a regression in solving the prediction
problem.  GA-NN and GP are capable of dealing with
non-linear problems and this is demonstrated in the case
of the enrichment for both configurations, cylinder and
sphere, in which the linear solution, the regression,
performs very poorly, indicating that the problem is
strongly non-linear.

We have found non remarkable differences in the
performance between GA-NN and GP techniques. Two
cases (rows labeled as ‘Extra’ samples in the tables 1 and
2) of the test sets had enrichment values selected outside
of the training set range, that can be used to test the
overfitting of the models.  The error in predicting these
enrichment values range from 8% to 14%, far larger than
the error produced with the other values, indicating that
some overfit has taken place.  This can be explained by
considering that there were only four values of
enrichment in the training set, covering a wide range of
enrichment: from depleted to highly enriched uranium.
Better results can be obtained by adding more cases to the
training set.

7 CONCLUSIONS

Monte Carlo simulations of the source-detector cross
correlation function for various sample shapes, mass, and
enrichment values have been performed to serve as a
training set for two artificial intelligence algorithms (AI):
neural networks (NN) and genetic programming (GP).
The input presented to the AI algorithm has been in the
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MASS ENRICH MASS ENRICH MASS ENRICH
Training 0.71% 1.67% 0.22% 2.07% 3.05% 14.81%

Test 1.34% 2.16% 0.81% 2.14% 2.69% 12.68%
Extra 0.45% 8.18% 0.13% 9.05% 1.87% 10.52%
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form of features extracted from the physical properties of
the cross-correlation functions related to mass (beam
attenuation) and to enrichment (fission induced pulse
broadening).  Both the NN and GP algorithms have
shown good capabilities and robustness for mass and
enrichment predictions of uranium metal samples.

These results serve as a proof of principle for the
application of combined stochastic and AI methods to
safeguards procedures.
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