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Abstract

In this paper, we propose a new Genetic Al-
gorithm for JSP using two crossovers. The
crossover, JOX, obtained relatively good re-
sults, however o�spring generated by JOX
exist around parents or within an interme-
diate area of them. This feature of JOX
induces a convergence of the whole popula-
tion. To deal with this fault of JOX, we
propose a complementary combination of two
crossovers. One is JOX, and the other, EDX,
is our proposal. EDX is designed to have the
population enlarge using a local search and
explores the area where the population un-
covers. Although a mutation is applied for
exploration in general, we apply a framework
of crossover to EDX for a more eÆcient explo-
ration. The combination of two crossovers,
which has a di�erent search area, is able to
compensate for each other's fault. The GA
designed with these two crossovers was ap-
plied to large-size JSP benchmarks, and we
show its e�ectiveness.

1 Introduction

The job-shop scheduling problem(JSP) is well known
as one of the most diÆcult NP-hard ordering problems.
The JSP discussed in this paper is a makespan reduc-
tion problem that can be described as follows: N jobs
are to be processed on M machines; each job follows a
prescribed routing; the processing times of operations
on M machines are also prescribed; and all operations
are non-preemptive. The objective of the JSP is to
obtain a schedule having minimum makespan that is
the earliest time that all jobs can be completed.

In the �eld of operations research, the branch
and bound(BAB) method for JSP has been stud-
ied for a few decades. In recent years, how-
ever, a more eÆcient approaches using approxima-
tion algorithms were proposed. For example, al-

gorithms based on local search called Shifting Bot-
tleneck procedure [Applegate 91], simulated anneal-
ing [Aarts 94][Yamada 96], tabu search [Nowicki 93]
obtained good results. The combination of sim-
ulated annealing and shifting bottleneck procedure
proposed in [Yamada 96] showed the best perfor-
mance, especially in large-size JSP benchmarks from
the viewpoint of a computational time and a qual-
ity of the solution. On the other hand, several ge-
netic algorithms was also applied to JSP. For example
[Kobayashi 95][Ono 96][Yamada 97][Shi 96].

Although GAs are very e�ective optimizers and appli-
cable to many kinds of combinatorial/continuous op-
timization problems, the performance of GAs mainly
depends on the design of crossovers.

Crossover SXX proposed in [Kobayashi 95] was orig-
inally designed for any permutation representation,
such as TSP. Crossover SXX can be applied to any
combinatorial optimization problem whose solutions
are represented with permutations and is superior in
generality. On the other side, SXX does not con-
sider the dependency among elements and does not
exceed existent algorithms in performance. Crossover
JOX+GT method [Ono 96] is designed considering the
dependency among machines and got good results.
Crossover SPX [Shi 96] pays attention to the almost
same dependency. Crossover MSXF proposed in Ge-
netic local Search [Yamada 97] is based on a local
search. SXX, JOX and SPX generate its o�spring by
exchanging elements that exist in parents. On the con-
trary, MSXF doesn't exchange the elements between
parents. But the search area of MSXF is biased to-
ward the other parent and in terms of the feature of
MSXF, it resembles traditional crossovers.

As a qualitative framework of describing a behavior
of the GAs, the Functional Specialization Hypothesis
(FSH) was proposed in [Kita 99]. Given the assump-
tion that the population size is suÆciently large, FSH
illustrates the GAs as a development of a probabilistic
distribution function (p.d.f.) of individuals. Moreover,
FSH explains three statistic operators in the GAs: se-



lection; crossover; and mutation as follows:

1. The selection operation narrows the p.d.f. by se-
lecting and duplicating individuals having higher
�tness.

2. The crossover operation, the primary search oper-
ation in the GAs, converts the p.d.f. by generating
o�spring by combining information of parents.

3. The mutation operation, the secondary search op-
eration, enlarges the p.d.f. by giving perturbation
to each individual.

FSH gives a clear guideline for designing crossovers for
a real-coded genetic algorithm. [Kita 99] showed the
crossover UNDX [Ono 97] for real-coded GA capably
inherits statistics of parents such as the mean vector
and the covariance matrix of the population.

We have two purposes in this paper. The �rst purpose
is to analyze the behavior of crossovers for combina-
torial optimization problems, JSP, in terms of p.d.f.,
given the assumption that the distance and the transi-
tion operator, which depends on the problem domain,
is able to be de�ned. We examine in detail the feature
of JOX from a viewpoint of p.d.f., and pay special
attention to the fact that JOX almost generates its
o�spring inside the population.

The second purpose is to propose a more e�ective
crossover for JSP following the result of the analy-
sis. In this paper, to compensate for this fault of JOX,
we design a new crossover, EDX, which is based on
probabilistic local search and focuses on the explo-
rative search. Moreover, we propose a GA for JSPs
with complementary combination of EDX and JOX.
The e�ectiveness of the proposed method is shown ex-
perimentally by applying 10 large-size JSP benchmark
problems.

In section 2, we describe JOX+GT method [Ono 96].
In section 3, we de�ne the method to map the distri-
bution of the solutions in the discrete solution space to
two dimensional Euclidean coordinate system and in-
troduce the general concept of extrapolation and inter-
polation. Then we propose the extrapolation directed
crossover, EDX and examine the behavior of EDX. In
section 4 we design a GA based with two crossovers,
and section 5 shows the experimental results. Section
6 contains our conclusion.

2 The Inter-machine Job-based Order

Crossover and GT Method

2.1 Inter-machine Job-based Order
Crossover

Inter-machine Job-based Order Crossover (JOX) uses
the order of each job on all machines to represent the
solution of JSP. The order of each job corresponds

to sequences of operations on each machine in Gantt
Chart representation. JOX considers the dependency
among machines. The relevant algorithm is as follows:

1. With probability 0.5, choose the jobs whose locus
is preserved.

2. Copy the jobs chosen in step 1 from donor to o�-
spring preserving their locus.

3. Copy the jobs which are not copied in step 2 from
acceptor to o�spring preserving their order.

2.2 Enforcement using the GT method

O�spring generated by JOX are not always feasible.
To enforce an infeasible schedule to a feasible one, the
GT method is used. Originally, the GT method was
proposed for exhaustively generating active schedules.
An active schedule is a schedule in which no operation
can be processed earlier by the permissible left shift.
It was proved that optimal schedules are included in
a active schedule set. The GT method generates any
active schedules by repeating the following procedure.

1. Let O�be an operation whose earliest completion
time is minimum among unscheduled ones and
M�be the machine that processes O�

2. Make a conict set C, which contains the unsched-
uled operations that are processes on the M� and
whose processing overlap with O�

3. Choose an operation fromC randomly and sched-
ule it.

4. Repeat procedures 1 to 3 until there exist no un-
scheduled operation.

The GT method can be used for judging the active-
ness of a given job sequence matrix and modifying it
into an active schedule if it is not active. Let Jm� be
the �rst unscheduled job of machine M� on the job
sequence matrix. In step 3 of the above procedure, se-
lect the operation O(M�; Jm�) and schedule it. Oth-
erwise, choose an operation O(M�; J) in C randomly,
shift it to the head of the job sequence of unscheduled
operations and schedule it.

3 The Proposal of Extrapolation

Directed Crossover

3.1 De�nition of extrapolation and
interpolation

In FSH, a crossover is explained as an operator that
generates new sampling points depending on a distri-
bution of the parent population and a mutation is de-
�ned as an operator that gives perturbation to each
individual in order to enlarge the population. In other
words, a crossover that focuses on the area covered by



the parent population plays a role of exploitation, and
a mutation that focuses on the uncovered area by the
parent population plays a role of exploration.

We call a search that generates sample points on the
area covered by the parent distribution an interpo-
lation search, and a search that generates sample
points on the area uncovered by the parent distribu-
tion extrapolation search.

We are required to deal with the discrete space that
doesn't have any concept about inside and outside.
Therefore, we de�ne interpolation/extrapolation
using the distance between two individuals, on the as-
sumption that the de�nition of the distance and the
transition operator is decided in advance.

si represents a solution in a discrete space. Here, we
consider three solution: sa, sb and sc. jsa�sbj denotes
the distance between sa and sb. jsa � sbj and jsb� saj
have the same real value.

In the two dimensional Euclidean space, let the co-
ordinates of sa be (0; 0) and the coordinates of sb be
(d; 0), where jsa � sbj = d. Then, the coordinates of
sc(x; h), where jsc � saj = d1; jsc � sbj = d2; d1 � d2 ,
is represented as follows:

x =
d2 + d21 � d22

2d

h =
q
d21 � x2

We call this representation a distance representa-
tion. Moreover, we de�ne the partial solution space
about three solutions sa; sb; sc as follows:

Sin = fsc 2 Sjd1 � d and d2 � dg

Sex = fsc 2 Sjd1 > d or d2 > dg

Here, S denotes the entire solution space. We refer
to Sin as the interpolation area of sa and sb and
refer to Sex as the extrapolation area of sa and sb.
Fig.1 illustrates an interpolation area and extrapola-
tion area. The gray area shows the interpolation area.
This de�nition is applicable to any discrete space if a
distance is able to be de�ned among solutions.

Fig. 2 shows a typical distribution of o�spring gen-
erated by JOX with distance representation. We
adopted I2 distance (see Appendix) as a distance of
the solution space of JSP. The parents are located at
(0; 0) and (104; 0). All o�spring are located in the in-
terpolation area. We experimentally con�rmed that
more than 99% of the o�spring generated by JOX ex-
ist in an interpolation area in any stage of the search
of the GA using JOX.

When only an interpolation crossover is applied to
GAs, it may still possible to obtain a optimum if large-

solution sa solution sb
I sa - sb I

extrapolation 
solution

interpolation 
solutionsc sc

Figure 1: De�nition of extrapolation and interpolation
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Figure 2: The distribution of o�spring generated by
JOX

size population is provided and an ideal generation
alternation model, which can preserve a variety of in-
dividual suÆciently, is used. Under the limited com-
putational cost, however, the population size can not
help but be limited. Therefore, we conclude from the
above that the combination of mutation operator that
gives perturbation to each individuals is desirable.

3.2 Previous Work

3.2.1 Inter-machine Job-order based Shift
Change

In combinatorial optimization problems where a solu-
tion is represented as a permutation, Swap or Shift
Change is generally used to give perturbation to the
individuals. Fig. 3 shows the distribution of the o�-
spring that were applied a mutation, Job-order based
Shift Change (JBSC)[Ono 96], which considers a de-
pendency among machines. The parents are the same
as used in Fig. 2. First, the o�spring was generated by
JOX, which are represented with gray circles in Fig.
3, and then JBSC was applied, which are represented
with black circles.

The search area of mutations, which include JBSC, is
not a�ected by any other individuals and is maintained
uniformly throughout the whole process of the search.
Therefore, it is eÆcient for the purpose of recovering
the elements that were lost from the population in the
early stage of the search. But it does not work as well
especially in the end stage of the search because the



distribution of random mutations is too broad as ob-
served in Fig. 3 and the improvement rate of random
mutations becomes extremely low.
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Figure 3: The distribution of o�spring generated by
JOX and JBSC

3.2.2 Multi Step Crossover Fusion

MSXF [Yamada 97] is a crossover fused with a stochas-
tic local search using two solutions.

In MSXF, a solution, initially set to be one of the
parents, selects a candidate among the CB neighbor-
hoods of the parent. This selection is biased by the
distance between the candidate and another parent.
The smaller the distance to the other parent, the big-
ger the probability that the selected solution becomes
a candidate. If the �tness value becomes better than
the solution before a transition, it is replaced. Other-
wise, the replacement is taken place stochastically (the
metropolis method).

Fig. 4 represents the search trajectory of MSXF with
the distance representation. By biasing the search
direction using the other parent, MSXF narrows its
search area eÆciently.

parent sa parent sb

Search of 
MSXF

Figure 4: The search trajectory of MSXF

3.3 Proposal of Extrapolation Directed
Crossover for JSP

On the basis of this previous work, we propose a
Extrapolation Directed Crossover, EDX, based on a
stochastic local search. EDX is designed for the pur-
pose of giving individuals perturbation, and assumed
to be applied with JOX together in the GA. The search

area of EDX is controlled by the landscape of �tness
around the individual and therefore the given pertur-
bation becomes more eÆcient than a random muta-
tion.

Several kinds of neighborhood for JSP have been pro-
posed previously. We adopt the CB neighborhood pro-
posed in [Yamada 96] whose size is relatively small and
the improvement rate is high. The CB neighborhood
is generated by shifting a operation that exists inside
the critical block to the head position of the critical
block or to the end thereof.

EDX uses two individuals as parents similar to JOX
or MSXF. The search of EDX starts from one of the
parents. The parent solution steps away from the
other parent by selecting a solution from one of the
CB neighborhoods and replacing it with the parent.
Although a solution transits only to its neighbor, the
direction of the search is biased by the other parents
and is dynamically changed by the combinations of
two parents. This feature is similar to a traditional
crossover.

EDX is executed by repeating the following procedure:
si denotes a solution of JSP; bij denotes a I2 coordi-

nates (see Appendix) of solution si; f(s) denotes a
�tness of solution s; pex, ptemp are real value parame-
ters. pex is bounded from 0 to 1 and ptemp is a positive
parameter. The EDX algorithm, which starts from a
parent sa, is as follows:

1. Select a pair of parent solutions sa; sb.

fbest := f(sa); sbest := sa.

2. Generate CB neighborhoods of sa, CB(sa).

3. Divide the CB(sa) into two sets CBex(sa) and
CBin(sa) so that sex 2 CBex satis�es jb

ex
j��b

b
j� j >

jbaj� � bbj� j and sin 2 CBin satis�es jbinj� � bbj� j �

jbaj� � bbj�j. Here, j� denotes a job name of the
operation which was transferred when generating
the CB neighborhoods.

4. Select snew randomly from CBex with probability
pex (extrapolation search), otherwise select snew
randomly from CBin(interpolation search).

5. If f(snew) < fa, then sa := snew with probability
1. Otherwise, sa := snew with probability pac =

exp(� f(snew)�f(sa)

ptemp
).

6. If f(sa) < fbest, then sbest := sa; fbest := f(sa).

7. If a termination condition is satis�ed, output
sbest; fbest and terminate. Otherwise, repeat the
above steps from 2 through 6.

3.4 The Behavior of EDX

There exists three parameters that control the behav-
ior of EDX.
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Figure 5: The algorithm of EDX

1. pex is a probability that the solution transfers to
the direction of extrapolation area. As this pa-
rameter becomes larger, the search area of EDX
becomes enlarged to the direction of extrapola-
tion.

2. pLS is a probability of applying EDX to a selected
pair. Then a probability of applying JOX be-
comes 1� pLS. As the parameter becomes larger,
the chance of executing extrapolation search be-
comes more frequent.

3. ptemp is a temperature parameter.
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Figure 6: The search area of EDX and JOX : the top
is pex = 0:5/the middle is pex = 0:75/ the bottom is
pex = 1:0

Fig. 6 shows o�spring generated by EDX when the pa-
rameter pex is 0.5, 0.75 and 1.0. Gray points represent

o�spring generated by JOX and black points represent
the o�spring generated by EDX.

The EDX with pex = 0:5 corresponds to a no-biased
stochastic local search. Therefore, the solution is al-
lowed to transfer both directions, extrapolation and
interpolation. In Fig. 6, a right-hand side solution
transfers to the interpolation area. However, the EDX
with pex = 1:0 allows a solution only to transfer to
the direction of extrapolation. O�spring in the inter-
polation area at pex = 1:0 are shifted ones by the GT
method.

4 Designing A GA for JSP

In this section, we design a GA for JSPs. Fig. 7
shows the concept of generation alternation model,
CCM [Ono 98b] employed in this paper.

We should note that CCM localizes its selection pres-
sure not to the whole population as Simple GA or
Steady-State does, but only to the descendant of the
parent. By comparative experiments about the opti-
mization of real-value function and Traveling Salesman
Problem(TSP), a generation alternation model which
localizes selection pressure to its family gives better re-
sults than a model that does not localizes it [Satoh 96].
Localizing a selection pressure to the descendant,
which is more rigid localization than to the family, sup-
press the convergence of the population capably, espe-
cially in the diÆcult problems[Ono 98b][Nagata 99].

...
..

Generation t Generation t+1

the best offspring 
in the descendant

Figure 7: Concept of CCM

To apply two crossovers to our GA, we modify the
CCM. The algorithm of the modi�ed CCM for the
combination of EDX and JOX is as follows:

1. Make an initial population that is composed of
npop random operation sequences representing ac-
tive job schedules.

2. Prepare npop=2 pairs of two individuals sa; sb ran-
domly from current population.

3. Generate o�spring by applying EDX nEDX times
to each pair with probability pex, otherwise ap-
plying JOX nJOX times.

4. Enforce all o�spring to active schedules and eval-
uate them.



5. Choose the o�spring that has the highest �tness
in each Descendant

1 and create next population
with them.

6. Repeat the above steps 2 through 5 until a stop
condition is satis�ed.

In case of applying EDX at step 5, the enforcement
and evaluation is executed sequentially while process-
ing EDX.

5 Experiments and Results

The proposed procedure was implemented by C++ on
the Pentium3-550MHz.

5.1 Preliminary Experiments

The performance of the proposed method was tested
by benchmark problems. In the �rst experiment, the
well known and relatively small-size (10 jobs-10 ma-
chines) benchmark, ft10 and a more diÆcult bench-
mark abz5 was used. The optimal makespan of ft10 is
930 and that of abz5 is 1234.

The purpose of the �rst experiment is to determine the
�ne parameters for EDX, pex and pLS. At �rst, we set
pLS = 0:1 temporarily, and examine several di�erent
value of pex. We set the following parameters in ad-
vance. ptemp = 15; npop = 50; nJOX = 100; nEDX =
500. We stop the whole algorithm, if the GA �nd the
optimal schedule or the 5:0 � 105 schedules are pro-
duced.

The results of these experiments are summarized in
Table 1 and Table 2, where each column denotes the
value of pex, an averaged best �tness, an averaged cpu
time for a single run and the number of the trial that
succeeded to obtain the optimum solution. Each result
was averaged over 30 trials. The unit of time is one
second and a cpu time for each run means the �nal
updated time of the best �tness of the population.

The performance in ft10 isn't a�ected by the value
of pex. Thus, ft10 is an easy instance and it is as-
sumed that the extrapolation search doesn't promote
the search speed of the GA. On the contrary, in abz5,
when pex is 0.66 or 0.75, the search speed is shortened
by about 40% while preserving the same quality of the
solutions compared with pex = 0:5. This shows the
e�ectiveness of the extrapolative search.

Second, we determine the parameter pLS . We set
pex = 0:66 following the result of the �rst experiment,
and examine several di�erent values of pLS. Any other
condition of the experiment is the same as the �rst ex-

1Descendant A of EDX means sa and o�spring gener-

ated from sa. Descendant A of JOX means sa and o�spring

that are generated from parents sa; sb and preserves the

loci of sa.

Table 1: Performance in each pex : ft10
pex ave. of best ave. of time opt/trial

0.5 930.5 102.19 28/30

0.66 930.67 99.66 27/30

0.75 930.4 99.0 28/30

1.0 932.90 124.26 21/30

Table 2: performance in each pex : abz5
pex ave. of best ave. of time opt/trial

0.5 1235.17 243.4 22/30

0.66 1234.76 137.5 24/30

0.75 1234.73 135.6 22/30

1.0 1237.0 230.8 8/30

periment. The results of these experiments are sum-
marized in Table 3 and Table 4.

Table 3: Performance in each pLS : ft10
pLS ave. of best ave. of time opt/trial

0.0 932.43 62.18 22/30

0.1 931.26 100.02 26/30

0.25 930.53 126.10 28/30

0.50 931.03 171.09 26/30

0.75 931.40 199.89 25/30

1.0 933.36 180.28 18/30

Table 4: performance in each pLS : abz5
pLS ave. of best ave. of time opt/trial

0.0 1242.40 100.72 1/30

0.1 1235.20 177.56 20/30

0.25 1234.46 202.49 24/30

0.50 1234.13 209.56 28/30

0.75 1234.33 239.61 26/30

1.0 1235.03 203.96 21/30

The GA without EDX (i.e. pLS = 0:0) can hardly
obtain the optimal solution of abz5. But with EDX,
the GA can �nd the optimal solution in the ratio of
more than eight to ten. As pLS becomes larger from
0.0 to 0.5, the quality of solution improves and the
running time becomes longer. But at more than 0.5,
the quality of solution becomes worse considering the
running time.

From the above, we con�rmed that too much extrap-
olative search has a bad inuence upon the search it-
self. Therefore, we may reasonably conclude that pex
should be from 0.66 to 0.75, and pLS should be 0.1 to
0.25, especially in the diÆcult instances.

Third, in order to con�rm the e�ectiveness of EDX,
we compare EDX with a mutation JBSC. We set
pex = 0:75 and pLS = 0:25. JBSC was applied with
probability 0.1 after JOX was applied. Any other con-
dition of the experiment is the same as the �rst exper-
iment. The results of these experiments are summa-
rized in Table 5 and Table 6.



Table 5: Comparison results with several JOXs : ft10
crossover ave. of best ave. of time opt/trial

JOX 932.43 62.18 22/30

JOX+JBSC 932.03 154.81 19/30

JOX+EDX 930.53 126.10 28/30

Table 6: Comparison results with several JOXs : abz5
crossover ave. of best ave. of time opt/trial

JOX 1242.40 100.72 1/30

JOX+JBSC 1239.00 201.89 4/30

JOX+EDX 1234.46 202.49 24/30

The both results show that EDX with JOX is prefer-
able to JBSC in both terms of computation time and
the quality of the best obtained solution.

5.2 Experiments and Results

We applied our proposal method to the well-known
large-size problems of JSP, ten tough problems. We
set the following parameters in advance. ptemp =
15; npop = 50; nJOX = 200; nEDX = 500; pLS =
0:25; pex = 0:66. We stopped the whole algorithms
if the GA �nds the optimal schedule or the 5:0� 107

schedules are produced. The results of these experi-
ments are summarized in Table 7. The symbol * indi-
cates that the solution is optimum. The �rst column
shows the name of instances and optimum(*)/upper
bound(no marked). The second column shows the best
�tness obtained thorough 10 iterations. The third col-
umn shows the cpu time(sec) to obtain the best solu-
tion.

Table 7: Results of experiments in 10 tough problem
using JOX+EDX

instance JOX+EDX time opt/trial

abz7(*656) 670 3:58� 10
4

0/10

abz8(669) 683 2:04� 10
4

0/10

abz9(679) 686 1:94� 10
5

0/10

la21(*1046) *1046 5:90� 10
4

1/10

la24(*935) *935 1:75� 10
4

4/10

la25(*977) *977 5:65� 10
3

4/10

la27(*1235) 1236 1:13� 10
5

0/10

la29(1153) 1167 2:00� 10
5

0/10

la38(*1196) *1196 2:79� 10
4

1/10

la40(*1222) 1224 2.72 �10
4

0/10

We compare our results to the other GA/GLS ap-
proaches (Table 8). Ono98 was implemented with a
population size 3000 and JBSC was used as mutation
[Ono 98a]. The proposed method JOX+EDX loses to
other GA/GLS approaches in two instances at most.
In comparison with Ono98 (JOX+JBSC), the popu-
lation size of Ono98 (JOX+JBSC) is 3000 and our
method is only 50. However, our method has better

Table 8: Comparison results with GA/GLS ap-
proaches

instance JOX+EDX Ono98 YN97 Matt

abz7 670 680 678 672

abz8 683 685 686 683

abz9 686 702 697 703

la21 *1046 1050 *1046 1053

la24 *935 944 *935 938

la25 *977 984 *977 *977

la27 1236 1258 *1235 1236

la29 1167 1189 1166 1184

la38 *1196 1202 *1196 1201

la40 1224 1235 1224 1228

Table 9: Comparison results with other famous ap-
proximation methods

best Nowi Aarts Appl YN96

abz7 670 | 668 668 665

abz8 683 | 670 687 675

abz9 686 | 691 707 686

la21 *1046 1047 1053 1053 *1046

la24 *935 939 *935 *935 *935

la25 *977 *977 983 *977 *977

la27 1236 1236 1249 1269 *1235

la29 1167 1160 1185 1195 1154

la38 *1196 *1196 1208 1209 1198

la40 1224 1229 1225 *1222 1228

performance in all instances.

Moreover, we compare our results to the famous ap-
proximation algorithms (Table 9). Nowi is the taboo
search algorithmproposed in [Nowicki 93]; Aarts is the
simulated annealing method proposed in [Aarts 94];
Appl is a shifting bottleneck procedure proposed in
[Applegate 91]; YN96 is a combination of simulated
annealing and shifting bottleneck procedure proposed
in [Yamada 96]. In comparison with the famous ap-
proximation methods except YN96, our method also
loses in two instances at most. Our method �nds the
optimum solution which YN96 could not �nd, however
solutions our method found are behind YN96 in four
instances.

From the view point of the computation time, the com-
putation time for obtaining the optimum of la24; la25
in [Yamada 96] is 6:24� 103sec; 4:14� 103sec and our
method is 1:75 � 104sec; 5:65 � 103sec. We can not
conclude that out method is superior to [Yamada 96]
in consideration of the di�erence of the computer used
for calculation.

Moreover, from the viewpoint of the quality of the ob-
tained solution, our method �nds good solution espe-
cially in middle size instances, such as la instances.
However, our method is inferior to YN96 in large size
instances such as abz instances.



6 Conclusion

In this paper, we proposed a new genetic algorithm
using the combination of two crossovers, JOX and
EDX. We proposed a method for analyzing the be-
havior of crossovers using a distance in a general dis-
crete solution space and the de�nition of interpolation
and extrapolation . Then we analyze JOX using pro-
posed method and we con�rmed that o�spring gener-
ated by JOX exists mainly in the extrapolation area.
To compensate for this fault of JOX, we designed a
new crossover, EDX, that searches the extrapolation
area and analyzed the behavior of EDX. We designed
a GA for these two crossovers and applied the GA to
the large-size benchmark problems. From this experi-
ment, we were able to demonstrate its e�ectiveness.

There still exists several future works to be completed.
Although precise comparison is diÆcult because the
computers used for calculation is di�erent, on the run-
ning time of the whole procedure, our method is rela-
tively long compared with other approximation meth-
ods. Furthermore techniques for recovering this fault
are desirable especially for the large-size instances. Fi-
nally, we would like to extend the proposed de�nition
about extrapolation/interpolation to various problem
domains, design EDX, and show the generality thereof.

Appendix

Let sa; sb be a schedule, where jM j is a number of the

machine and jJ j is the number of the job of the schedule

s. Let o(p; q) be an operation whose job name is p and

whose machine name is q. Let ji be a set of an operation

that has the same job name, where i is a job name, that is,

ji = fo(i; k)jk = 1; :::;Mg; s = fjkjk = 1; :::; Jg. Let l be a

function that returns a number of the locus of an operation.

For example, a operation o(1; 1) is located at the �fth locus

of the job sequence of the job 1, then l(o(1; 1)) = 5.

Here, we de�ne a distance between j
a

i and j
b

i ; I2i(s
a
; s

b
)

such as the following, where j
a

i is a ji of sa. I2i(s
a
; s

b
) =P

M

k=1
jl(o

a
(i; k)) � l(o

b
(i; k))j

Moreover, we de�ne I2 distance between two schedules

sa; sb as follows: I2(s
a
; s

b
) =
P

J

k=1
I2k(sa; sb)

When we regard l(o(p; q)) as a coordinate of a operation,

we can de�ne a coordinate of jp; bp as: bp =

P
M

k=1
l(o(p;k))

M
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