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Abstract

In this paper we introduce a promising hy-

bridization scheme for a Memetic Algorithm

(MA). Our MA is composed of two optimiza-

tion processes, a Genetic Algorithm and a

Monte Carlo method (MC). In contrast with

other GA-Monte Carlo hybridized memetic

algorithms, in our work the MC stage serves

two purposes:

� when the population is diverse it acts

like a local search procedure and

� when the population converges its goal

is to diversify the search.

To achieve this, the MC is self-adaptive based

on observations from the underlying GA be-

havior; the GA controls the long-term opti-

mization process.

We present preliminary, yet statistically sig-

ni�cant, results on the application of this ap-

proach to the TSP problem.We also comment

it successful application to a molecular con-

formational problem: Protein Folding.

Paper Category: Genetic Scheduling

and TSP

1 Introduction

Memetic Algorithms, and Genetic Algorithms in gen-

eral, have been applied in a number of di�erent areas

and problem domains. It is now well established that

it is hard for a `pure' Genetic Algorithm to `�ne tune'

the search in complex spaces. Researchers and practi-

tioners have shown that a combination of global and

local search is almost always bene�cial.

In Richard Dawkins' book \The Sel�sh Gene"[7], the

concept of a meme (a cultural gene) was introduced.

The memes reshape the search space where they in-

teract with genes and can themselves adapt. Inspired

by the ideas of learning in an evolutionary time scale

and individual's life-span time scale, Genetic Algo-

rithms which used some kind of interaction with local

searchers (adaptive or not) were named Memetic Al-

gorithms (MAs). In di�erent contexts and situations,

Memetic Algorithms are also known as Hybrid GAs,

Genetic Local Searchers, Baldwinian GAs, Lamarkian

GAs, etc.

From an optimization point of view MAs have shown

that they are orders of magnitude more accurate than

traditional GAs for some problem domains. See for ex-

ample reference [11] for a continuous domain research

and [18] for combinatorial optimization studies. It is

argued that the success of MAs is due to the trade-

o� between the exploration abilities of the underlying

GA and the exploitation abilities of the local searcher-

s used. The price to be paid is a greater number of

�tness evaluations and often a swift loss of diversity

within the population.

In this paper we introduce a promising hybridization

scheme for a Memetic Algorithm (MA). Our MA is

composed by two optimization processes, a Genetic Al-

gorithm (GA) which controls the long-term behavior

of the scheme, and a Monte Carlo like local search and

diversi�cation process. In our study the local search

process pursues two goals. At the early stages of the

global search it tries to focus, hence exploit, the vicin-

ity of the point from where it starts the search. At

later stages, when the population starts to converge

or when the search is stagnated, it changes its role

from exploitation to exploration, allowing the search

to (eventually) move `uphill' (if we assume the underly-

ing GA is moving `downhill' or minimizing) to explore

di�erent basins of attraction.

We applied the method to two NP-Hard problems, the

Traveling Salesman Problem (TSP) and the Protein



Folding Problem (PFP).

2 TSP:Problem De�nition, Previous

Works and Methodological

Approach

The TSP is one of the most studied combina-

torial optimization problems. It is de�ned by

Minimum Traveling Salesman Problem

Instance: Set C of m cities, distances d(ci; cj) 2

N for each pair of cities ci; cj 2 C.

Solution: A tour of C, i.e., a permutation � :

[1 : : :m] 7! [1 : : :m].

Measure: The length of the tour, i.e.,

d(fc�(m); c�(1)g) +
Pi=m�1

i=1 d(fc�(i); c�(i+1)g).

In [1] a short review on early MAs for the TSP was

presented. Those works reported near optimal solu-

tions for small instances of the problem. Although the

results were not de�nitive they were very encouraging

and many of the following applications of MAs to the

TSP (and also to other NP-Optimization problems)

were inspired by those early works.

In [12] a MA is used with several non-standard fea-

tures. In [12] the local search used is based on the

powerful Guided Local Search (GLS) meta-heuristic

due to Voudoris and Tsang [27]. This algorithm was

compared against Multi Start Local Search (MSLS),

a GLS and a MA. The MA used as a local search

engine the same basic move used by GLS but with-

out the guiding strategy. In this paper experiments

were run using instances taken from TSPLIB [25] and

fractal instances[19]. In no case was the MSLS able

to achieve an optimal tour, while the other three ap-

proaches were able to �nd optimal solutions. Out of

31 instances tested the MA solves to optimality 24,

MSLS 0, MA with simple local search 10 and GLS 16.

It is interesting to note that the mentioned paper did

not intend to be a \better than" paper but a peda-

gogical paper where the MAs were exposed as a new

meta-heuristic in optimization. For details the reader

is referred to [12] and [22].

Merz and Freisleben in [9],[10] and [20] show many dif-

ferent combinations of local search and genetic search

for the TSP (and the asymmetric version ATSP) while

de�ning speci�c purpose crossover and mutation oper-

ators. In their approach the initial population was a

set of local optima with respect the to Lin-Kernighan

heuristic, which seeds the underlying GA with near op-

timal solutions at initialization. An important feature

of their approach is that the selection strategy is not

a (� + �) nor a (�; �) but a hybrid between the two.

As the authors remark, the Large Step Markov Chains

and iterated-Lin-Kernighan techniques are special cas-

es of their algorithm. In [20] their optimization scheme

is changed to one which has a more traditional muta-

tion and selection scheme. It is important to remark

that Merz and Freisleben MAs are perhaps the most

successful meta-heuristics for TSP and ATSP and a

predecessor of the schemes described was the winning

algorithm of the First International Contest on Evolu-

tionary Optimization.

In [23] Nagata and Kobayashi described a powerful

MA with an intelligent crossover in which the local

searcher is embedded in the genetic operator. Watson

et.al. in [28] described a detailed study of Nagata's and

Kobayashi works and relate it with the local searcher

used by Merz et.al.

In what follows we will describe our MA for the TSP

and our methodology. Our purpose here is to show the

potential for both search and diversity in our approach.

It is not the goal of this paper to develop a specialized

TSP solver.

We have used very naive and generic genetic operators

(i.e. crossover or mutation). The local search move

that was employed used no knowledge of the instance

being solved besides that provided by the �tness func-

tions. In this way we can guarantee that any bene�t

found will be an intrinsic property of the approach

and not the consequence of using powerful operators.

In all of the previously cited MAs for the TSP intelli-

gent operators were used in the form of specially de-

signed mutations, crossovers and local searchers. Fur-

thermore, the local searchers used in the cited papers

employed knowledge about the instance (i.e. list of

nearest neighbors, kd-trees, etc). Besides that, there

is nothing in the literature like a \standard MA" for

the TSP with which to make comparisons. For these

reasons, \absolute values" comparisons with other ap-

proaches will be done elsewhere.

3 A Memetic Algorithm for the

Traveling Salesman Problem

In this section we describe and study the new self-

adaptive hybridization scheme. We will show how the

nonlinear interaction between the underlying GA and

the local search/diversi�cation process (which is gov-

erned by observations from the GA's population) gives

rise to a better global search meta-heuristic.



3.1 Description of the Memetic Algorithm

The overall pseudo-code of the MA used is:

MA:
Begin
Initialize population Parents;
Repeat Until ( Finalization criteria met ) Do
Local Search(Parents,Pls);
mating pool := Select mating(Parents);
Offsprings := Cross(mating pool);
Mutate(Offsprings);
Parents := Select(Parents;Offsprings);
Od
End.

In this basic scheme the Select(...) procedure is a

(� + �) or a (�; �) selection strategy, representing t-

wo extremes of selection pressure, with the +-strategy

having the highest pressure and the ;-strategy the low-

est. Select mating(...) is a Tournament selection

method. In the case of the +-strategy a given indi-

vidual can be modi�ed several times during its life-

span either by local search or by mutation because the

strategy allows an individual to persist. The best in-

dividual is never modi�ed by the local search method.

The local search/diversi�cation process is:

Local Search(Parents,Pls):
Begin
/* Parents is a set of solutions to which local search */
/* will be applied with prob Pls */

temperature= 1
jmaxFitness�minFitnessj

;

beginInterator(Parents);
While ( ! endIterator(Parents) ) Do
indip = getIterator(Parents);
If ((pls � random(0; 1))^ indip :best solution) Then
ApplyMove(indip);
Fi
nextIterator(Parents);
Od
End.

The procedures ApplyMove(...) can be seen below.

It must be noted that Modify(...) can be any local

search move (i.e. a 2swap, city insertion, etc). The

self adaptation of the local search to either an exploita-

tion or exploration behavior is governed by the tem-

perature parameter. In the case presented above the

entire population shares the same temperature. This

temperature determines the degree by which, uphill

moves will be allowed. As the temperature is inversely

proportional to the spread of �tnesses within the pop-

ulation, when the later converges the former rises. A

consequence of this is that each individual in the pop-

ulation will be more \nervous" and will try to move

away from its initial position, exploring the search s-

pace. Eventually, the �tnesses will spread lowering the

population temperature. We prevent the modi�cation

by local-search of the best individual, hence the overall

best �tness is always maintained.

ApplyMove(indip):
Begin
/* This is a minimizing process */
prevFitness = �tness(indip);
Modify(indip);
nFitness = �tness(indip);
If (prevFitness > nFitness) Then
Accept con�guration;
Fi
Else
deltaE = nFitness� prevF itness;

threshold = e
�k� deltaE

temperature ;
If (random(0,1) < threshold) Then
Accept con�guration;
/* even if worse than the previous one */
Fi
Else
Reject changes;
Esle
Esle
End.

No parameter optimization was performed to set the

underlying GA or the local search. Analyses like those

surveyed in [4] for the Number Partitioning Problem

using Simulated Annealing[21] can be used to tune the

parameters of the local searcher to enhance its explo-

ration and exploitation capabilities within the MA.

3.2 Instantiation of the MA to the TSP

We have applied MA(...) , Local Search(...) and Apply-

Move(...) (described in section 3.1) to the TSP with

a modi�cation in the de�nition of the temperature

which was set to 1
jmaxFitness�averageF itnessj

to produce

a smoother dynamic. The Modify(...) procedure used

a two swap (TS) move. The two swap move selects

a sub-tour and inverts its cities. This produces a 4

links change in a given tour. It is called two swap be-

cause it changes two links of the original tour in favor

of two new links. Modify(...) selects a random num-

ber (between 1 and 10% of the instance size) which

specify how many chained applications of two swap(...)

will be applied to an individual. After applying the

moves the new individual will be accepted following a

Boltzmann distribution based on the current popula-

tion temperature.

The details of the MA are as follow:



We used a population of 50 individuals. Crossover,

mutation and local search were applied with proba-

bility 0.8, 0.05 and 1.0 respectively. These probabili-

ties were kept �xed during the whole run. No exahus-

tive parameter optimization was done, but rather they

were decided empirically based on a number of runs.

The k value was 0.01 in the (�; �) strategy and 0.001 in

the (�+�) strategy. Every individual performs a local

search/diversi�cation phase in each generation excep-

t the best individual. The mating selection strategy

was Tournament selection of size 2, the GA was, in

one case, a steady state GA with (50 + 50) replacing

strategy. In the other case a (50; 50) selection strategy

was used. The encoding used was an array of inte-

gers interpreted as follows: if position i has integer j

then the link connecting city i to j, (i; j), exists in

the tour. The crossover used receives two parents and

generates an o�spring starting from a random city. It

adds to the o�spring the shortest edge, not yet in the

tour, from either parents. If no edge from any parent

is available then a random edge is added. The muta-

tion was an application of the two swap operator. The

initialization of the population was random. The sim-

ulations were programmed in java using the Memetic

Algorithm Framework (MAFRA1)[17] and the simula-

tions' code is available from the authors.

4 Experimental Method and Results

In this section we present the methods used and results

obtained.

To test our approach we chose the instance eil76.tsp

from TSPLIB[25]. This instance is one of no partic-

ular diÆculty and it involves only 76 cities. We run

30 simulations under two di�erent selection strategies,

a (50; 50) and a (50 + 50) strategy. The former pro-

vides the weakest selection pressure and the later the

strongest. We tried these two scenarios because we

want to explore not only �nal tour length but also

population diversity. We wanted to compare how well

our self adaptive memetic algorithm performs under

these two extremes. We test our algorithms against

four other algorithms all of them sharing either of the

selection strategies:

A standard GA (GA) with no local search of any

kind, which constitutes the basis for constructing all

the other algorithms tested (see section 3.2 for detail-

s). A hill climber memetic algorithm (HC) which

used as local search the two swap(...) move but only

1MAFRA is a free package available to download from
the author's URL.

Algorithms GA HC BHC LMA MA

GA - + + +*

HC + + + +*

BHC - - + +*

LMA - - - +*

MA -* -* -* -*

Table 1: Summary of statistical analysis for tour length
under the (50; 50) strategy: + denotes that the algorithm
that names the row achieves a longer tour that the one that
names the column, - denotes that the algorithm that names
the row achieves a shorter tour that the one that names the
column, - or + with * denotes statistical signi�cant up to
at least a p-value of 0.01

accepts improvements. A boltzmann hill climber

memetic algorithm (BHC) which used the same

decision procedures as the self adaptive memetic algo-

rithm but with a �xed temperature. The temperature

was set to be the average temperature employed by

the self adaptive MA in one of its runs. A linear

annealing memetic algorithm (LMA) which used

the boltzmann criteria to accept/reject moves. In this

case the temperature was set at the beginning of the

run to a value that was linearly annealed during the

run. And �nally the self adaptive memetic algo-

rithm (MA) as described in 3.1.

Each algorithm was run for 2000 generations, except

the GA which was given 6000 generations. With this

amount of generations the GA employed more �tness

evaluations that all the other MAs. To compare the

quality of our MA against the other four alternatives

we look at two measures, the quality of the best indi-

vidual at the end of the run and the diversity of the

population at that time. The quality was equivalen-

t to the tour length and the diversity the number of

di�erent �tnesses found in the population divided by

the population size. We performed ANOVA and t-test

analysis on the averages of these parameters over the

30 runs for the 5 algorithms. A total of 300 runs were

analyzed 2.

Tables 1,2,3 and 4 summarize the results obtained.

From table 1 we can see that the proposed MA achieves

better �nal tour length than the standard GA, the

GA with a Hill climber (HC) the GA with a Boltz-

mann Hill Climber(BHC) and the linear annealed MA.

These anova results are of statistical signi�cance with

a p-value of at most 0:01. If we turn our attention

to the diversity table in 2 we see that the self adap-

tive approach is capable of maintaining the diversity

230 runs per each one of the 5 algorithms per each one
of the two selection strategies.



Algorithms GA HC BHC LMA MA

GA + -* + -*

HC + -* - -*

BHC +* +* +* -*

LMA - - -* -*

MA +* +* +* +*

Table 2: Summary of statistical analysis for population
diversity under the (50; 50) strategy: + denotes that the
algorithm that names the row keeps a higher diversity at
the end of the run that the one that names the column, -
denotes that the algorithm that names the row maintains
a lower diversity that the one that names the column, - or
+ with * denotes statistical signi�cant up to a p-value of
0.05

Algorithms GA HC BHC LMA MA

GA - +* +* +*

HC + +* +* +*

BHC -* -* -* -

LMA -* -* +* +*

MA -* -* + -*

Table 3: Summary of statistical analysis for tour length
under the (50+50) strategy: + denotes that the algorithm
that names the row achieves a longer tour that the one that
names the column, - denotes that the algorithm that names
the row achieves a shorter tour that the one that names the
column, - or + with * denotes statistical signi�cant up to
a p-value of 0.05

Algorithms GA HC BHC LMA MA

GA = -* = -*

HC = -* = -*

BHC +* +* +* +*

LMA = = -* -*

MA +* +* -* +*

Table 4: Summary of statistical analysis for population
diversity under the (50 + 50) strategy: + denotes that the
algorithm that names the row keeps a higher diversity at
the end of the run that the one that names the column, -
denotes that the algorithm that names the row maintains
a lower diversity that the one that names the column, - or
+ with * denotes statistical signi�cant up to a p-value of
0.0007, = denotes equal diversity

of the population on higher values than the other four

algorithms. The di�erences are again of statistical sig-

ni�cance. This is saying that our method shows an

important di�erence from the others when used under

this particular selection strategy.

If we consider the +-strategy (tables 3 and 4) where

the selection pressure is higher, the bene�ts of the self

adaptive MA are evident. It obtains better �nal tour

length values and sustains a higher diversity in the

population than three of the four competitors. The

boltzmann hill climber achieves a better �nal mean

tour length than the adaptive MA, however the dif-

ference was not statistically signi�cant. It is very in-

teresting to note that the boltzmann hill climber was

set up with a �xed temperature. This temperature

was the mean temperature obtained from a run done

by the adaptive MA. The boltzmann hill climber MA

achieves the same quality results than the self adaptive

one by maintaining a very high diversity in the pop-

ulation. Its diversity is statistically signi�cant higher

than all the other algorithms. The temperature with

which the algorithms achieves its results is not known

a priori and depends on the instance been solved, the

operators, etc. The advantage of the self adapting ver-

sion is that it will set itself in a regime where the tem-

perature will oscillate around this mean value.

As mentioned in the introduction, the use of local

search within a GA usually causes a premature conver-

gence in the search space, hence maintaining a diverse

population is crucial3. It can be seen from the low-

er/upper diagonal of tables 1,2 and 3,4 that in most

cases, when an algorithm beats another in one table

it beats (or is at least equivalent) the same one in the

other table as well.

In a subsequent experiment we changed the encoding

from the one described in 3.2 to a permutation encod-

ing and used a PMX crossover keeping all the other

parts of the 5 algorithms unmodi�ed. Again, 30 run-

s of each algorithms under the two selection schemes

were executed for 2000 (6000 in the GA case) genera-

tions.The results obtained were consistent with those

shown above. The self adaptive MA is better in both

�nal tour length and diversity of the �nal population

with a statistical signi�cant di�erence (not shown).

5 Application of the Approach to the

Protein Folding Problem

We have also investigated the power of our approach

on a di�erent combinatorial optimization problem. It

3This is of particular importance on MA applied to dy-
namic optimization.



has been recognized in Boese's Ph.D Thesis [5] that

the TSP shares with other commonly studied NP-Hard

combinatorial optimization problems a globally con-

vex structure of the set of local minima, where the

local minima are points in the landscapes de�ned by

k-Opt(...) , Lin-Kernighan(...) , etc. This is known as

the \big valley" solution space structure. The author

shows that tours found by better heuristics are on av-

erage closer to each other in terms of distance to the

optimal solution. Those are very convenient features

for the searching heuristics. We then decided to run

some experiments on a problem where apparently the

optima are not distributed following the\big valley"

picture, no equivalent to the powerful k-Opt(...) , Lin-

Kernighan(...) , etc, heuristics are available. We choose

the Protein Folding problem.

5.1 PFP: Problem De�nition

Protein Folding is one the most exciting problems that

computational biology faces today. In words of John

Maynard Smith[26]:

\ Although we understand how genes speci-

fy the sequence of amino acids in a protein,

there remains the problem of how the one-

dimensional string of amino acids folds up to

form a three-dimensional protein... it would

be extremely useful to be able to deduce the

three-dimensional form of a protein from the

base sequence of the genes coding for it; but

this is still beyond us."

Because an \all-atom" simulations is extremely expen-

sive researchers resort to simpli�ed model of the Pro-

tein Folding Problem.

One of the most studied simple protein models is the

hydrophobic-hydrophilic model (HP model) proposed

by Dill [8]. The PFP in the HP model is de�ned by

Maximum Protein Folding

Instance: A protein, i.e. a string over the alpha-

bet fH;Pg (s 2 fH;Pg�).

Solution: A self avoiding embedding of s into a

two(three) dimensional square(triangular) lattice

(i.e. Z2)

Measure: The number of Hs that are topologi-

cal neighbors in the embedding (neighbors in the

lattice but not consecutive in s)

.

It has been shown to be NP-Hard for a number of for-

mulations and models. See for example [3],[6],[2]. For

space limitations we will not give a detailed discussion

of PFP here. The reader is referred to [14].

In our experiment we use the self adaptive MA as de-

scribed in 3.1, but tailored with protein folding en-

coding and operators. The design criteria to tailor

the MA to this problem were those analysed in [14]:

Two-point mutation was used to change two consecu-

tive values in a relative encoding of solutions with a

probability 0.3 . One-Point, Two-Point and Uniform

crossover operators were used with probability of 0.8.

The probability of local search was set to 1. Further-

more, every pair of amino acids mapped to the same

lattice position was penalized with a constant penal-

ty, C, dependent on the length of the instance. In

this MA a (500 + 500) selection strategy was used to-

gether with �tness proportional mating selection. The

ApplyMove(...) applied a move (drawn from a set of

operators) in each portion of a protein that was fold-

ed accordingly to certain pattern. If the pattern was

found, then it was changed as the operator indicates:

� pivot moves

� unfold of substructure

� random macro-mutation of substructure

� reection of substructure

these transformation were chosen based on [15],[14]

and [24]. Each run of the MA consisted of 200 gen-

erations. As test cases we used twenty polymer se-

quences which have a relatively short length (less than

50 monomers). The instances[13] used are shown in

table 5.

In all except instances 16,18,19 (for which 24 bond

solutions where found) and for the 20th instance( for

which solutions of 26 bond were found) the approach

was able to reach optimal con�gurations. We run the

same experiments with a GA without local search.

Even though the GA was given the same amount of

�tness evaluations it never reached optimal conforma-

tions for any of the instances studied. A Hill Climber

MA using the same basic local search but without the

self-adapting criteria su�ered from an extremely fast

lost of diversity which prevented the global search from

achieving any optimal conformation.

6 Conclusions

In this work we have introduced what appears to be

a promising hybridization scheme for a MA. Our ap-

proach blends a local searcher with a GA in such a



Seq. Nro Sequence Length Opt.

1 HHPHPHPHPHPH 12 11

2 HHPPHPHPHPHPHP 14 11

3 HHPPHPPHPHPHPH 14 11

4 HHPHPPHPPHPPHPPH 16 11

5 HHPPHPPHPHPHPPHP 16 11

6 HHPPHPPHPPHPPHPPH 17 11

7 HHPHPHPHPHPHPHPHH 17 17

8 HHPPHPPHPHPHPPHPHPHH 20 17

9 HHPHPHPHPHPPHPPHPPHH 20 17

10 HHPPHPPHPHPPHPHPPHPHH 21 17

11 HHPHPPHPPHPHPHPPHPPHH 21 17

12 HHPPHPHPHPPHPHPPHPPHH 21 17

13 HHPPHPPHPHPHPPHPPHPPHH 22 17

14 HHHPHPHPHPHPHPHPHPHPHHH 23 25

15 HHPPHPPHPPHPPHPPHPPHPPHH 24 17

16 HHHPHPHPPHPHPHPHPHPHPHHH 24 25

17 HHHPHPHPHPPHPHPHPHPHPHHH 24 25

18 HHHPPHPPHPPHPPHPHPPHPHPPHPPHHH 30 25

19 HHHPPHPPHPPHPHPPHPHPPHPPHPPHHH 30 25

20 HHHPPHPPHPPHPHPHPPHPPHPPHPPPPPHPHPHHH 37 29

Table 5: Two dimensional triangular lattice HP instances, length and optimal energy value

way that they are coupled through an observable mea-

surement of the population. Here it was the temper-

ature of a Monte-Carlo like local search which was a

function of the spread of �tnesses within the under-

lying GA's population. Other observables might be

de�ned. With this approach we were able to obtain

the bene�ts of the exploitation/exploration capabili-

ties of MAs but avoiding their drawback of premature

convergence and diversity crisis. For further analysis

of this approach see [16].Our approach was found to

meet two goals: �ne tuning the global search and di-

versifying the population. We tried the approach on

two NP-Hard problems, TSP and PFP. For the PF-

P we were able to obtain optimal and near optimal

molecular conformations using our MA. The same ex-

periments switching o� either the local search (stan-

dard GA) or the self-adapting feature (Hill Climber

MA) never found a global optima on a set of prelim-

inary experiments. Regarding the TSP experiments,

we chose a small not extremely diÆcult instance of

TSPLIB to conduct a series of experiments. Because

our goal was to see the bene�ts of our approach, no in-

telligent operators (crossover, mutation, local search)

were used, but rather simple ones. We were able to

verify that the global search performed by our MA

was following the intended behavior.

We can conclude that the approach is a promising av-

enue of research with the potential to obtain better

results than a GA without needing any other mecha-

nism to maintain diversity in the population.

7 Future Work

Much more experimentation and data analysis should

be applied, not only with di�erent size and complex-

ity of instances of TSP and PFP but also with other

problems. Special attention should be given to the be-

havior of our MA in the presence of instances that lie

on the phase transition region of the instance space.

The application of the approach with specially de-

signed operators and encodings will be explored.

A natural variation of the scheme presented above is

one where every individual in the population has its

own temperature and the local search/diversi�cation

process is applied according to it. Results will be pub-

lished elsewhere.
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