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Abstract

The success of decoder-based evolutionary

algorithms (EAs) strongly depends on the

achieved locality of operators and decoders.

Most approaches to investigate locality prop-

erties are static and consider only parts of

the complex interactions within an EA, and

sometimes, these techniques give misleading

results. We suggest an explicit analysis of

the dynamic behavior, emphasizing the ef-

fects of locality on evolutionary search. The

impact of our methodology is twofold since it

con�rms previous statically obtained results

and allows to gain reliable additional insight

about the actual dynamics. The approach is

successfully applied to four EAs for the mul-

tidimensional knapsack problem, and it can

easily be adapted to other problems and EAs.

1 Introduction

Locality is an important prerequisite to prevent evo-

lutionary search resembling pure random search. Usu-

ally, locality is implicitly considered throughout a se-

rious design process of evolutionary algorithms (EAs)

in a rather intuitive fashion. Only few approaches are

known to characterize the achieved locality properties

in more detail. Several static investigations rely on �t-

ness landscapes, e.g. operator correlation (Manderick

et al. (1991)) and �tness distance correlation (Jones

and Forrest (1995)). However, these approaches may

be misleading since they do not consider the complete

dynamics of evolutionary search (Altenberg (1997)).

In particular decoder-based EAs are hard to analyze

in a theoretical way due to the complex interactions

of variation operators and the decoding procedure.

Therefore, we suggested in (Gottlieb and Raidl (1999))

a methodology based on random sampling and dis-

tance measures in genotype and phenotype space to

characterize locality properties without performing ac-

tual EA runs. For several EAs, this approach is able to

successfully predict bad performance due to weak lo-

cality and hence represents a useful method of a priori

analyzing static features of decoder-based EAs, leading

to hypotheses concerning the actual dynamic behavior.

Nevertheless, this approach does not consider aspects

like the used selection method, replacement strategy,

and population size. Locality properties of the vari-

ation operators highly depend on the distribution of

parental solutions in the population. Our previous

approach regarded di�erent population diversities by

arti�cially generating random solutions of certain dis-

tances, but obviously, this method is only a rough ap-

proximation of the conditions in a real population.

Due to the strong relation between locality and the

search dynamics, there is a need for tracing locality-

related properties continuously during real runs. We

propose statistical measures to allow an empirical in-

vestigation of the population dynamics. This paper

complements our previous study on locality by (i) ver-

ifying and supporting previous hypotheses based on a

priori measurements and (ii) gaining more reliable in-

sight about the actual e�ects of locality on the search

dynamics and hence the overall success of an EA.

Empirical results for selected decoder-based EAs for

the multidimensional knapsack problem (MKP) will be

presented. The MKP is stated as

maximize
X
j2J

pjxj (1)

subject to
X
j2J

rijxj � ci; i 2 I (2)

xj 2 f0; 1g; j 2 J (3)

with I = f1; : : : ;mg and J = f1; : : : ; ng denoting sets



of resources and items, respectively. Each resource i is

limited by its capacity ci > 0, and each item j yields a

pro�t pj > 0 and requires a certain amount rij � 0 of

each resource i. The goal is to �nd a subset of items

with maximum total pro�t that does not exceed the

resource capacities. As the MKP has a wide range of

applications (Martello and Toth (1990)) and is NP-

complete (Garey and Johnson (1979)), several heuris-

tics { and in particular EAs { were proposed, see (Chu

and Beasley (1998), Gottlieb (1999)) for comprehen-

sive surveys. Recently, Leguizam�on and Michalewicz

(1999) presented an ant system for this problem.

The decoder-based EAs we consider here are described

in Sect. 2. Section 3 proposes general statistical mea-

sures for tracing locality-related properties during an

EA run. Empirical results are presented and discussed

in Sect. 4, and conclusions are given in Sect. 5.

2 Decoder-Based EAs for the MKP

The best EAs for the MKP we are aware of em-

ploy direct encoding, heuristic repair, and local opti-

mization methods (Chu and Beasley (1998), Gottlieb

(1999), Raidl (1998)). However, several decoder-based

EAs are also capable of obtaining high-quality solu-

tions (Hinterding (1999)). Generally, the latter ap-

proaches are based on an individual's duality of geno-

type and phenotype, where an arbitrary genotypic

search space G is mapped into the phenotypic search

space P = f0; 1gn by some decoder; while the EA ex-

ploresG in an explicit fashion, P is explored implicitly.

The considered decoder-based EAs employ a common

general setup, namely a population of size 100, parent

selection via binary tournaments, producing one o�-

spring per generation by always performing crossover

and mutation, steady-state replacement (deleting the

worst individual), phenotypic duplicate elimination,

and an evaluation limit of 1 000 000 non-duplicate so-

lutions. Phenotypic duplicate elimination means that

an o�spring is rejected if its phenotype is already

represented by some genotype in the current popu-

lation (Raidl and Gottlieb (1999)). Obviously, this

mechanism enforces a minimum population diversity.

Overviews of four selected EAs are presented in the

following, together with results concerning �nal solu-

tion qualities and locality properties obtained from our

previous static studies (Gottlieb and Raidl (1999)).

2.1 Permutation Based EA

The permutation based EA (PBEA) has been proposed

by Hinterding (1994) for the unidimensional knapsack

problem and has also been applied to the MKP (Gott-

lieb (2000), Raidl (1998), Thiel and Voss (1994)). Per-

mutations � : J ! J of the items form the genotypic

search space and are decoded as follows. Starting with

the feasible solution x = (0; : : : ; 0), all variables xj are

traversed in the order determined by �, increasing each

variable from 0 to 1 if this does not violate any resource

constraint. We employ standard permutation opera-

tors, namely uniform order based crossover and swap

mutation, which randomly exchanges two di�erent po-

sitions. This operator setup was suggested by Hinter-

ding (1994) and con�rmed to be e�ective by Gottlieb

(2000).

2.2 Ordinal Representation Based EA

The ordinal representation based EA (OREA) has orig-

inally been examined in the context of the travel-

ing salesperson problem (TSP) (Grefenstette et al.

(1985)), but is easily adapted to the MKP. Solution

candidates for the MKP are represented by vectors v

with va 2 f1; : : : ; n � a + 1g for a 2 J = f1; : : : ; ng.

The decoder initially generates a list containing all

items in some prede�ned order and starts with the fea-

sible solution x = (0; : : : ; 0). The vector v is traversed

from the �rst to its last position, interpreting each en-

try va as a position in the current list. Such position

identi�es the next item j which is removed from the

list and then checked for inclusion in the current MKP

solution; the corresponding variable xj is increased if

the resource capacities are not exceeded. This repre-

sentation allows the use of classical one-point crossover

since the decoder ensures to generate feasible solutions

only. We employ a simple mutation operator which

randomly chooses a position a and then draws va uni-

formly from f1; : : : ; n�a+1g. OREA fails to achieve

a high degree of locality since some change in a sin-

gle position of v modi�es the meaning of all following

genes and, therefore, often leads to a huge phenotypic

change (Gottlieb and Raidl (1999)).

2.3 Surrogate Relaxation Based EA

The surrogate relaxation based EA (SREA) was sug-

gested by Raidl (1999). Solution candidates are rep-

resented by vectors of real-valued weights, which are

used to temporarily modify the pro�ts pj in the objec-

tive function (1) yielding a similar but slightly di�erent

MKP instance. This biased problem is solved by a sur-

rogate duality based heuristic that has originally been

proposed by Pirkul (1987). The heuristic starts with

the feasible solution x = (0; : : : ; 0) and traverses all

items according to decreasing pro�t/pseudo-resource

consumption ratio. Variables xj are increased if the

resource constraints remain satis�ed. Pseudo-resource



consumptions are determined via reasonable surrogate

multipliers obtained from the result of the linear pro-

gramming (LP) relaxed MKP. As the resource con-

straints (2) are not a�ected by the real-valued weights,

the decoded solution is feasible with respect to the

original constraints. Raidl (1999) proposed to deter-

mine the surrogate multipliers only once for the orig-

inal problem in a preprocessing step to decrease the

computational e�ort. SREA uses uniform crossover

and a mutation operator which modi�es three ran-

domly chosen weights by resetting them to new ran-

dom values. The results obtained for SREA are the

best among all decoder-based EAs for the MKP we

are aware of.

2.4 Lagrangian Relaxation Based EA

The Lagrangian relaxation based EA (LREA) was also

proposed by Raidl (1999) and employs the same repre-

sentation and variation operators as SREA. However,

LREA employs a di�erent heuristic to generate a so-

lution for the biased problem, namely the Lagrangian

relaxation based procedure introduced by Magazine

and Oguz (1984). As exact Lagrange multipliers are

diÆcult to obtain, some reasonable (but usually sub-

optimal) multipliers are calculated by a simple heuris-

tic. Each obtained solution is then locally improved by

traversing the variables according to decreasing pro�t

and increasing them if feasibility can be maintained.

2.5 Comparison of the EAs

We compared the considered decoder-based EAs on

selected problems of Chu's test suite of MKP bench-

marks introduced in (Chu and Beasley (1998)) and

available from the OR-Library1. Ten runs were per-

formed for the �rst problem instances of sizes m 2

f5; 10; 30g, n 2 f100; 250; 500g and tightness ra-

tios � 2 f0:25; 0:5; 0:75g (which means that ci =

�
P

j2J rij for all i 2 I). The solution quality is

measured by the relative gap of the objective value

to the optimal value of the LP-relaxed problem, i.e.

1�max
EA

=opt
LP with max

EA and opt
LP denoting the

best objective value found by the EA and the optimal

value of the LP relaxation of MKP, respectively. The

duplicate ratio represents the ratio of rejected dupli-

cates among all generated solutions.

Table 1 presents obtained average results. In partic-

ular SREA yielded most of the time the best results.

The solution qualities achieved by OREA are signi�-

cantly worse than those of the other EAs. As discussed

in the empirical studies in Sect. 4, a major reason for

1http://mscmga.ms.ic.ac.uk/info.html

Table 1: Obtained average gaps and duplicate ratios

for the EAs on Chu's benchmark suite

PBEA OREA SREA LREA

gap [%] 0.74 2.65 0.58 0.62

duplicate ratio [%] 5.74 36.24 6.65 3.27

the di�erence of an order of magnitude between OREA

and the other EAs is the weak locality of OREA, which

does not allow a meaningful exploration of the search

space, see also (Gottlieb and Raidl (1999)). Further-

more, it will be shown that OREA also su�ers from a

lack of eÆciency since many duplicates are produced

due to missing innovation capabilities of the variation

operators. The remaining sections of this work explic-

itly focus on the search dynamics to analyze the e�ects

of locality and related concepts such as innovation in

greater detail.

3 Statistical Measures

In the following, several statistical measures are pro-

posed that describe locality-related properties of bi-

nary crossover and mutation. These measures are sup-

posed to be continuously traced over the generations

of an evolutionary search in order to gather informa-

tion about the search dynamics. As will be shown in

Sect. 4, important strengths and weaknesses of speci�c

encodings and evolutionary operators can be revealed

and moreover, typical behaviors of decoder-based evo-

lutionary search can be explained with these data.

For the purpose of quantifying the similarity of two

di�erent solutions, a problem-dependent distance mea-

sure is needed. For the MKP, the de�nition of the

phenotypic distance metric

d(x; y) :=
X
j2J

jxj � yj j for x; y 2 P

is straightforward. The Hamming distance counts the

number of variables with di�erent values { i.e. pheno-

typic properties { in the two solutions. This de�nition

of d(x; y) satis�es the metric conditions, namely iden-

tity, symmetry, and the triangular inequality.

For other combinatorial optimization problems, a phe-

notypic distance usually needs to be de�ned in a dif-

ferent, meaningful way, which might not always be as

obvious as for the MKP. E.g. in case of the TSP, the to-

tal number of di�erent edges might be an appropriate

measure since edges can be seen as the most important

phenotypic properties of TSP solutions (Grefenstette

et al. (1985)).

In the following, we propose several measures dealing



with binary crossover. Let xp1 ; xp2 2 P be the selected

parent solutions that undergo crossover to generate an

o�spring x
c 2 P .

3.1 Parent Distance PD
t

The behavior and locality properties of crossover are

in general strongly in
uenced by the similarity of the

two selected parents. We therefore de�ne the parent

distance as

PD
t := d(xp1 ; xp2)

and regard it as random variable which depends on the

EA's population at generation t (especially its diver-

sity) and the used selection technique.

In the special case x
p1 = x

p2 , i.e. the same solution

is selected twice, crossover is usually not able to cre-

ate a new, meaningful solution di�erent to its parents

or degenerates to some kind of mutation. We denote

the probability of this unwanted case as P (PD t = 0),

and high values thereof obviously indicate premature

convergence or selection pressure that is too high. For

avoiding a bias of other measures by this ine�ective

case, we consider in the following the meaningful case

x
p1 6= x

p2 , i.e. PD t
> 0, only. The expected value

E(PD t jPD t
> 0), which again depends on the popu-

lation at generation t, is then a measure for the degree

of population diversity from the crossover viewpoint.

In a typical evolutionary search, E(PD t jPD t
> 0) is

high at the beginning of a run and decreases over time.

3.2 Crossover Innovation CI
t

For PD t
> 0 we de�ne the crossover innovation

CI
t := min(d(xc; xp1); d(xc; xp2))

as the phenotypic distance of the o�spring x
c to its

closer parent. CI
t is viewed as random variable de-

pending on the selected parents { therefore strongly

on PD
t { and the crossover operator. Obviously, CI t

is 0 if either xc = x
p1 or xc = x

p2 . Letting P (CI t = 0)

be the likelihood for crossover generating an o�spring

that is phenotypicly identical to one of its parents, we

expect P (CI t = 0) to be small when E(PD t jPD t
> 0)

is high. Obviously, high values for P (CI t = 0) de-

grade performance. A high P (CI t = 0) for an at least

moderate E(PD t jPD t
> 0) indicates that crossover

either does not mix the two parental genotypes well

enough or there is a high degree of redundancy in the

genotype space G. There are two possible reasons for

such high redundancy: Firstly, jGj might be signi�-

cantly larger than jP j. Often such a representation

redundancy decreases performance, but sometimes it

may also be bene�cial and lead to better �nal results

(Ronald (1997)). Secondly, the decoder might contain

local improvement techniques or heuristics that always

or mostly map genotypes to preferred phenotypes in a

restricted subset P 0 � P . We call this e�ect heuris-

tic bias. In this case, solutions x 2 P n P 0 cannot be

represented or have substantially smaller probabilities

to be generated. While such a restriction of P might

sometimes be advantageous, it must be ensured that

promising areas and particularly the global optima are

covered (Ronald (1997)). The four EAs of Sect. 2 work

with such heuristic bias since they restrict the search

space to the boundary of the feasible region.

Considering only the case of crossover actually pro-

ducing new, distinct solutions, i.e. CI t
> 0, the ex-

pectation E(CI t jCI t
> 0) and corresponding stan-

dard deviation �(CI t jCI t
> 0) are indicators for lo-

cality during crossover: In case of strong locality,

E(CI t jCI t
> 0) should be relatively large for large

PD
t and become increasingly smaller for smaller PD t .

In particular when PD t is small, large values for both,

E(CI t jCI t
> 0) and �(CI t jCI t

> 0), imply weak lo-

cality.

3.3 Crossover Loss CLt

In addition to the ability to generate new solutions

with adequate distances to the parents, another impor-

tant aspect of crossover is that an o�spring mainly con-

sists of phenotypic properties inherited from its par-

ents; only few new properties should be introduced.

Only under this condition, meaningful building blocks

can emerge as described by the building-block hypo-

thesis (Holland (1975)). To consider this aspect, we

de�ne for PD t
> 0 the crossover loss CL

t in general

as the number of phenotypic properties of the o�spring

x
c that are newly introduced and not inherited from

either of the parents xp1 or xp2 . In the case of MKP,

CL
t :=

X
j2J

Æ(xcj ; x
p1
j ; x

p2
j )

with Æ(xcj ; x
p1
j ; x

p2
j ) =

�
0 if xcj = x

p1
j or xcj = x

p2
j

1 otherwise.

Using the proposed phenotypic distance metric, we can

rewrite the crossover loss alternatively as

CL
t :=

1

2
(d(xc; xp1) + d(xc; xp2 )� d(xp1 ; xp2)) :

Note that CI t = 0 implies CL
t = 0. To prevent a

bias by that case in which crossover is not able to pro-

duce a new, distinct solution, we actually consider the

expected value E(CLt
jCI

t
> 0) only. Large values

immediately indicate weak locality.



3.4 Mutation Innovation MI
t

In order to analyze the e�ects of the mutation opera-

tor, xm is assumed to be the solution resulting from

mutating solution x. We de�ne the mutation innova-

tion as the phenotypic distance between x and x
m,

MI
t := d(x; xm) :

This random variable describes how much phenotypic

\innovation" is introduced by the mutation and im-

mediately re
ects several important aspects concern-

ing locality of mutation. Similarly to the crossover

innovation, we consider the measures P (MI
t = 0),

E(MI
t jMI

t
> 0), and �(MI

t jMI
t
> 0). Large val-

ues of P (MI
t = 0) indicate that either mutation of-

ten does not change any genotypic properties or that

the mapping G ! P induces a high degree of re-

dundancy (see Sect. 3.2). Large values for the ex-

pectation E(MI
t jMI

t
> 0) or the standard deviation

�(MI
t jMI

t
> 0) indicate weak locality for mutation.

3.5 Duplicate Probability P
t
dup

We further consider the duplicate probability P
t
dup

that a solution newly generated by the evolutionary

operators is phenotypicly identical to any other solu-

tion already contained in the population. P
t
dup de-

pends mainly on P (CI t = 0), P (MI
t = 0), and the

crossover and mutation probabilities. Clearly, a high

duplicate probability immediately implies weak eÆ-

ciency of the EA. Note that the average duplicate

probability throughout the evolutionary search equals

the duplicate ratio which was introduced in Sect. 2.5.

4 Empirical Analysis

The statistical measures introduced in Sect. 3 strongly

depend on the current population characteristics and

are therefore considered as functions of the genera-

tion number t. We apply an eÆcient empirical ap-

proach to obtain estimations for the considered mea-

sures P (PD t = 0), E(PD t jPD t
> 0), P (CI t = 0),

E(CI t jCI t
> 0), �(CI t jCI t

> 0), E(CLt jCI t
> 0),

P (MI
t = 0), E(MI

t jMI
t
> 0), �(CLt jCI t

> 0), and

P
t
dup during an actual EA run. At each generation

sample values for the basic random variables PD t , CI t ,

CL
t and MI

t are determined when applying crossover

and mutation, respectively. The complete dynamics

of the measures are approximated by dividing a run

into consecutive intervals of generations and determin-

ing estimations of the measures independently within

each interval. Since the population dynamics usually

change faster in early phases of a run, we increase the

size of the generation intervals over time. In the empir-

ical analysis of the EAs we consider here, we start with

intervals of size 10 and multiply the size by the factor

10 after the generations 100, 1 000, 10 000, and 100 000.

Note that the obtained approximations are more con-

�dent for higher generation numbers due to these dif-

ferent interval sizes. In order to increase the overall

approximation con�dence, we use data collected from

10 independent runs instead of just one single run.

Figure 1 shows resulting plots for an MKP instance

with m = 10, n = 250, and � = 0:5, namely the �rst

problem of Chu's test suite with these parameters. Al-

though di�erent absolute values have been obtained as

results for other instances, this speci�c problem is rep-

resentative in the sense that the same basic tendencies

have been observed for all other instances, too.

Due to the duplicate elimination strategy and tourna-

ment selection being used in all four EAs, the proba-

bility P (PD t = 0) of selecting two identical parents for

crossover is constant (�1:3%). It depends only on the

population size and group size of tournament selection

and is therefore not shown in the �gure.

The dynamics of E(PD t jPD t
> 0) are more inter-

esting since they are good indicators for the diver-

sity in the population. PBEA and OREA start with

the largest values and therefore have a signi�cantly

higher diversity in their early populations. An ob-

vious reason for the lower diversity of LREA and in

particular SREA is their stronger heuristic bias inside

the decoder; this heuristic bias focuses the search on

high-quality regions of P already from the beginning.

After about 10 000 generations, all four curves meet

at a lower bound (� 12). Obviously, the duplicate

elimination avoids smaller values and the total loss of

diversity. After reaching a minimal value at about

generation 20 000 in the case of PBEA, SREA, and

LREA, E(PD t jPD t
> 0) and hence the population

diversity increase slightly but consequently again. A

reason for this behavior seems to be that the popula-

tion has already converged in highly �t regions of the

search space in this phase of a run. The neighborhoods

of identi�ed local optima have already been searched,

and the best solutions of these regions are contained

in the population. New solutions will only remain in

the population for a longer time if they are at least

as good as the other solutions in the population. This

implies that such solutions usually do not lie in those

regions that have already been searched intensively.

Thus, these solutions have a higher distance from the

current population, leading to an increase in popu-

lation diversity. We call this e�ect post-convergence

diversity increase. This phenomenon is an immediate
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Figure 1: Empirical results for PBEA, OREA, SREA, and LREA applied to an MKP instance with 250 items



consequence of phenotypic duplicate elimination.

The duplicate probability P
t
dup re
ects population di-

versity, too. While P t
dup is relatively low as long as the

diversity is high, more duplicates are produced when

the population has converged and diversity is low. Be-

cause of the post-convergence diversity increase, P t
dup

decreases again in late stages of the run.

Looking at the probability P (CI t = 0) for crossover

generating a solution which is identical to one of its

parents, it is striking that OREA always yields large

values from about 40% up to 65%, while the other EAs

yield small values below 10% during the whole run.

The reason is that OREA uses one-point crossover,

which might frequently exchange genes having no ef-

fect on the decoded phenotype, because the phenotypic

properties are mainly determined by the �rst genes.

Note that the high P (CI t = 0) of OREA also implies

a high duplicate ratio P
t
dup.

For each EA, P (CI t = 0) is relatively small at the be-

ginning and increases due to the decreasing population

diversity until the population has converged. During

the post-convergence diversity increase, P (CI t = 0)

slightly decreases again.

The dynamics of E(CI t jCI t
> 0), the distance of

a crossover-o�spring to its nearer parent, are always

strongly correlated to the expected parent distance:

E(CI t jCI t
> 0) � E(PD t jPD t

> 0)=2. Contrary to

what might have been expected, E(CI t jCI t
> 0) gives

no indication of poor locality of any EA here. But the

partly very large standard deviation �(CI t jCI t
> 0)

of OREA reveals missing robustness, i.e. beside o�-

springs with small distances to one parent, o�springs

with large distances to both parents are also gener-

ated frequently, which implies weak locality for the

crossover of OREA. In comparison to OREA, stan-

dard deviations of the other EAs are always relatively

low, and therefore we can expect stronger locality.

The plots for the crossover loss E(CLt jCI t
> 0) vi-

sualize more locality properties of crossover. PBEA,

SREA, and LREA always yield relatively low values,

i.e. o�springs consist mainly of properties inherited

from the parents. For OREA, E(CLt jCI t
> 0) is

very high, in particular at the beginning, which in-

dicates weak locality. When the population has con-

verged, i.e. PD t is low, all EAs exhibit small values for

E(CLt jCI t
> 0). Since SREA nearly always yields the

smallest values for E(CI t jCI t
> 0), �(CI t jCI t

> 0),

and E(CLt jCI t
> 0), we claim that this best perform-

ing EA provides also the strongest crossover-locality.

Regarding mutation, we can observe for all EAs ex-

cept LREA nearly constant probabilities P (MI
t = 0)

of the case that mutation leaves the phenotype un-

modi�ed. These probabilities are surprisingly high

(SREA: � 70%, PBEA and OREA: � 50%, LREA:

� 15% to 30%) and can be explained by the high de-

gree of decoding redundancy because of heuristic bias

(see Sect. 3.2). In the case of LREA, P (MI
t = 0) is

initially small and increases during the run; hence it

is more diÆcult for mutation to produce distinct solu-

tions from phenotypes of a converged population than

from those appearing in early generations.

Regarding E(MI
t jMI

t
> 0) and �(MI

t jMI
t
> 0)

(which is not depicted here), we observe constantly

large values for OREA indicating poor locality. PBEA,

SREA, and LREA always exhibit nearly the same

small E(MI
t jMI

t
> 0) below 7 and �(MI

t jMI
t
> 0)

below 3, and thus, these EAs provide stronger locality.

5 Conclusions

We proposed a new technique for analyzing the dy-

namics of decoder-based evolutionary search with par-

ticular emphasis on the e�ects of locality. In con-

trast to previous approaches for characterizing locality

properties, the suggested statistical measures allow to

investigate all the dynamic interactions between the

variation operators, namely binary crossover and mu-

tation, and the population with its selection and re-

placement strategies on phenotypic level. Thus, en-

codings and operators of weak locality can be identi-

�ed more reliably, provided that a suitable problem-

dependent phenotypic distance measure is de�ned.

The methodology of tracing several EA runs and con-

sidering samples of subsequent generations provides a

simple yet e�ective way to obtain good approximations

for the measures.

Empirical results were presented for four EAs applied

to the multidimensional knapsack problem. These re-

sults con�rm several hypotheses about dynamic be-

haviors of these EAs raised in our previous study

that is based on random sampling (Gottlieb and Raidl

(1999)). Most essentially, locality proved once again to

be a crucial requirement for any e�ective evolutionary

search. Moreover, the explicit analysis of the dynamics

revealed new aspects of the considered EAs. Of par-

ticular interest is the phenomenon which we called the

post-convergence diversity increase: The population

diversity decreases relatively fast due to the heuristic

bias, which also introduces a high redundancy in the

mapping G! P . Because of the phenotypic duplicate

elimination strategy, the diversity is lower-bounded

and increases slightly again during the remaining gen-

erations. The proposed statistical measures clearly

indicate reasons for the poor performance of OREA:



Besides weak locality, OREA tends to produce an o�-

spring phenotypicly identical to one of its parents or

an o�spring that does not share many similarities with

its parents. Thus, OREA cannot perform a meaningful

search. The other three EAs were con�rmed to achieve

the desired level of locality that enables them to per-

form a meaningful search. SREA, which performed

best, also provides the strongest locality.

In general, this work complements our previous static

analysis concerning locality. Both studies together

provide a very useful methodology to analyze decoder-

based EAs. We expect our approach to be helpful

in the design of decoder-based EAs for other problem

domains, too. Recent (but yet unpublished) results

obtained by the �rst author for the �xed charge trans-

portation problem con�rm this expectation.
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