
A Comparison of Cohort Genetic Algorithms with Canonical Serial
and Island-Model Distributed GA’s

Huafeng Pei Erik Goodman

Genetic Algorithms Research and Applications Group (GARAGe)
Case Center, Michigan State University, 2857 W. Jolly Road, Okemos, MI 48864

Email: goodman@egr.msu.edu

Abstract

This work considers the cohort genetic
algorithm, a new type of genetic algorithm
introduced by Holland. The cohort GA differs in
several ways from the traditional canonical serial
GA and island-model distributed GA. A key
motivation for its development was to reduce
“hitchhiking” – premature convergence of
currently low-significance loci located near loci
at which good building blocks are found early in
the search process. This work compares one
version of the cohort GA with canonical serial
and island-model distributed GA’s on the basis
of their abilities to reduce hitchhiking. The
comparison is done using two types of test
functions: the “royal road with potholes”
function and hyperplane-defined functions
(“HDF’s”). It is experimentally shown that even
though theoretically the cohort GA can reduce
hitchhiking, the particular version of the cohort
GA tested is prone to another form of premature
convergence, and it performed worse than the
other GA’s. It is also shown that a small change
in the placement of offspring among cohorts in
the cohort GA may dramatically improve its
performance. This suggests that further work on
the cohort GA may well be fruitful.

1 INTRODUCTION
The genetic algorithm (GA) is a family of search methods
introduced by Holland [1975]. Much research has been
done in order to understand how the GA works and how
to improve its performance.

The cohort GA is a new type of GA designed more
recently by Holland [1998] [2000]. It is aimed at reducing
the “hitchhiking” effect that occurs in the process of a
GA’s search. Hitchhiking is a form of premature

convergence that can hinder the GA or even make it
unlikely for the GA to find a good solution for a given
problem. Hitchhiking is most severe when the maximum
reproduction rate is relatively high – for example, if the
expected number of offspring of the best individual in the
population is on the order of two or more. Hitchhiking is
reduced when fitness is scaled so that the expected
number of copies of the most fit individual produced in
the next generation is 1.2 or fewer, but then, as Holland
points out, other problems arise: 1) exploitation of the
fitness difference is slowed, and 2) there is higher
variance in the sampling of the fitness distribution (many
times, individual with better-than-average fitness will be
lost from the population). This higher variance occurs
because GA’s typically use any fractional fitness excess
above 1.0 as a probability of creating a second copy of an
individual in the next generation. Thus the best
individual’s gain becomes uncertain. The cohort GA is
designed to allow a reduction in reproduction rates
without introducing this stochastic sampling problem.
Holland conjectured that the cohort GA’s mechanism,
with relatively low maximum scaled fitnesses, will reduce
hitchhiking, thus improving the performance of GA on
classes of problems in which hierarchical assembly of
building blocks is important to the solution trajectory.

In this work, we tested the hypothesis that a cohort GA
can reduce the hitchhiking effect and therefore improve
the performance of GA’s by comparing it with a
canonical serial GA and an island-model distributed GA
on two types of seemingly appropriate test functions. We
used a version of Holland’s cohort GA provided by
Belding [Holland, 1998], a student of Holland. We note
that Holland’s most recent publication on the cohort GA
[Holland, 2000] includes some new mechanisms he has
introduced to fight the convergence issues we (later)
found in our work with his earlier version of the cohort
GA; we have not yet experimented with his newer
formulation.

Section 1 introduces the hitchhiking effect and the cohort
GA. Section 2 presents the experimental design. Results
are given in Section 3, and conclusions in Section 4.

2 HITCHHIKING AND THE COHORT GA
Hitchhiking is the effect that when a building block
(short, high-fitness schema) is discovered, the alleles at
loci near but outside the building block spread through
the population almost as rapidly as the building block
itself [Holland, 1998] [Mitchell, et al., 1992] [Forrest &
Mitchell, 1992]. When the particular alleles at these
nearby loci make little or no contribution to the fitness,
their hitchhiking results in reducing exploration in the
parts next to the building block (due to premature
convergence at those loci). This often severely slows
discovery of building blocks near one already found.
Holland [1998] argues convincingly that hitchhiking is
made severe by high maximum reproduction rates. In
order to enable the building blocks that are presented in
the best individuals to spread through the population
quickly, exploiting the knowledge they bear, fitnesses are
often scaled to allow the best individual in the population
to produce 2 or more offspring in each generation. This
high maximum reproduction rate makes the hitchhiking
problem severe.

Of course, increasing the mutation rate while keeping the
maximum reproduction rate high can reduce hitchhiking.
However, a high mutation rate can reduce the ability of
the population to retain information about building blocks
that have already been discovered.

If the maximum reproduction rate is set to a low value,
such as 1.1 or 1.2, the mutation rate can be set low
enough to retain building blocks that have already been
discovered (with few crossovers and mutations in each
generation, most individuals survive unchanged). But the
number of generations until the second offspring of the
best individual occurs becomes uncertain, because the
second offspring is generated with probability much less
than 1 in each generation. Such a low reproduction rate
becomes a source of extreme variance. To control this
variance and reduce hitchhiking, Holland proposed the
cohort genetic algorithm.

The cohort GA is intended to reduce hitchhiking by
lowering the reproduction rate without using random
numbers and probabilities to control the number of
offspring produced [Holland, 1998]. In the cohort GA, the
population is divided into an ordered set of
subpopulations. These subpopulations are called cohorts.
The initial population is generated randomly, and
distributed evenly among cohorts. Individuals in cohort 1
will produce offspring first. Then the individuals in the
successive cohorts will have chances to produce. When
the last cohort is reached, the process begins again with
cohort 1. Reproduction is thus carried out by cycling
through the cohorts. When it is time for an individual in a
cohort to reproduce, the individual crosses over with
another individual in the same cohort, then the offspring
undergo mutation probabilistically. The fitness of an
offspring determines the cohort into which the offspring is
put, which determines when its turn is to produce

offspring. In this way, a string with high fitness will
produce offspring sooner than a string with low fitness.
Over an extended interval, the string with higher fitness
will produce more offspring than the string with lower
fitness, and in a deterministic manner.

All strings in the population can produce a fixed number
of offspring when it is their turn to reproduce, no matter
what their fitness values are. This method lowers the
reproduction rate. Theoretically, this method can reduce
hitchhiking. In order to verify this idea, we conducted a
comparison study of a cohort GA with a canonical serial
GA and an island-model distributed GA, which we will
describe in Sections 3 and 4.

3 EXPERIMENTAL DESIGN
The main purpose of this work is to test whether or not a
cohort GA can reduce the hitchhiking effect. By
comparing a cohort GA with a canonical serial GA and an
island model distributed GA, we also tested whether a
cohort GA is more efficient than other GA’s. Another
objective of this work is to test how some factors affect a
cohort GA’s performance.

3.1 TESTBEDS – ROYAL ROAD AND HDF

3.1.1 Royal Road Function

The hitchhiking phenomenon was noted by Holland while
using his original RR functions to test the building block
hypothesis. Thus it is natural to use the RR function as a
testbed to compare the cohort GA’s performance with
other GA’s. The Royal Road (RR) function used in this
work is Holland’s revised version of the RR function.1

We also took Holland’s default setting for the parameters
of the RR. The characteristics of the RR function, such as
known building blocks, known fitness and a hierarchical
structure of building blocks, should enable us to track the
GA’s performance over time. The revised RR function is
especially good for testing because it incorporates the idea
of “deception” or a fitness valley that the GA must cross
to find a global optimal solution.

3.1.2 HDF’s

Hyperplane-defined functions (HDFs) are a set of
randomly generated functions. They are designed to allow
a large number of building blocks to be combined in a
variety of ways. They also incorporate the idea of “pot
holes”, which refers to the fitness valleys that must be
crossed in order to reach the global optimum. The
interactions among the building blocks are more dramatic
in HDFs than in RR. The HDF used in this work is
generated by the code provided by Holland in [1998] with

1 Holland presented this version of RR at the Fifth International

Conference on Genetic Algorithms in 1993, then posted it to the Internet
“GA Digest” mailing list. We take Jones’s [1995] description as a
reference.

the following parameter settings: chrl = 80, nelt = 8, minl
= 6, maxl = 12, npr = 2 and nocom = 5.

The advantages of HDFs are they are easy to generate,
hard to reverse-engineer (so not easy for the GA-designer
to “cheat” on), and easy to analyze after the fact – i.e.,
very suitable for testing GA’s [Holland, 1998].

3.2 PERFORMANCE CRITERIA

Based on the different nature of the two test functions, we
chose different criteria to measure the GA’s performance
on them. The RR function has explicit levels. Therefore,
for the RR, we measured the number of function
evaluations required to achieve a certain RR level. For the
HDF, in order to measure the degree of convergence in
the intron part of the chromosome, we generated a
relatively short chromosome (length 80). For each intron
locus, we measured the difference between the total
number of ones and the total number of zeros of all
chromosomes in the population and used the absolute
value of their difference as a criterion. We also measured
the maximum fitness value that the various GA’s
achieved given a fixed number of function evaluations.

3.3 COHORT GA IMPLEMENTATION DETAILS

There are many ways to implement the cohort GA’s
central idea. We used Holland’s [1998] version as a
starting point and also made some modifications for some
of our tests.

Several factors may affect a cohort GA’s performance,
such as population size, offspring placement strategy,
deletion strategy and crossover candidates chosen. These
factors are considered during the tests, corresponding
changes are made to the original implementation, and
repeated tests are done with different settings and
implementations.

3.3.1 Population Size

The cohort GA must be given the relationship between
the number of cohorts, nocoh, and the size of each
(lencoh). Holland’s default setting is nocoh = 20 and
lencoh = 20; thus population size is 400. We chose
various values for nocoh and lencoh and different
combinations of these values to perform the tests in an
attempt to see how these two parameters affect the cohort
GA’s performance.

3.3.2 Offspring Placement Strategy

The offspring placement strategy specifies which cohort
an offspring with a certain fitness will be placed in. It will
affect selection pressure as well as interactions between
cohorts. In Holland’s original implementation, an
offspring with fitness u is placed in cohort d, where d is
determined by the equation:

 d = mod(t + doub, nocoh),

where t is the current cohort number and

doub = 2 × umax / u ,

where umax is maximum fitness value found so far.
(Holland has used more sophisticated strategies in his
later-reported work.)

In this way, an individual with fitness umax is placed in
the cohort next to the current cohort. Another individual is
placed in a cohort based on the ratio of umax and its
fitness value. An individual with higher fitness value will
be put nearer the current cohort, and vice-versa.

During the experiments in RR, we found out that with this
implementation, the individuals tend to accumulate in a
small number of cohorts. In order to spread the
individuals among all the cohorts and keep the cohort GA
working as intended, we tried a new placement strategy
with

 doub = (nocoh – 1)
 + (u – umin) × (2 – nocoh +1) / (umax – umin)
and umin is the minimum fitness found so far. In this way,
a chromosome with the fitness umin will be placed in the
cohort nocoh –1 from the current cohort (which is the
farthest cohort from the current cohort) and a
chromosome with the fitness umax will be placed in the
cohort next to the current cohort. Other individuals will be
placed in cohorts between 2 and nocoh – 1 steps removed
from the current cohort, where the doub value is
proportional to the individual’s fitness value.

The above strategy is deterministic. We also tried putting
the offspring in a randomly selected cohort subject to
some probability distribution, in order to produce more
migration effect by providing the opportunity for inter-
cohort mating. But, of course, this introduces just the sort
of stochastic variability that Holland is seeking to
minimize with the cohort GA.

3.3.3 Deletion Strategy

Each pair of individuals produces four offspring. To keep
the population size constant, the parents are deleted and
two other chromosomes randomly selected from two
other cohorts are also deleted. The cohorts that are the
source of chromosomes for deletion are also randomly
selected. The deletion of random chromosomes from
random cohorts affects the cohort GA’s ability to keep the
good individuals found so far; it also affects selection
pressure. (In fact, one might look at it as re-introducing
stochastic variation in effective fitness-proportional
reproduction that the cohort GA was trying to reduce.) In
the original implementation, the source cohorts from
which to delete chromosomes are randomly selected from
cohort positions nocoh/2 to nocoh-1 relative to the current
cohort; that is, the distant half of the cohorts. We also
tried deleting chromosomes randomly from 2 to nocoh –1

relative to the current cohort to lower selection pressure.

3.3.4 Crossover Candidates

In the original implementation, both parents are selected
from the current cohort. In addition to this, we also tested
having the one parent selected from the current cohort and
with some probability, another parent randomly selected
from another cohort. This strategy was also an attempt to
provide inter-cohort mating and avert the “clustering”
found in the original cohort GA.

3.4 DETAILS OF CANONICAL SERIAL GA AND
ISLAND-MODEL DISTRIBUTED GA

Though the architecture of a typical GA is well known,
implementation details vary from system to system. Even
very small differences in implementation may result in
significant changes. The canonical serial GA and island-
model distributed GA software used was “GALOPPS”
(The “Genetic Algorithm Optimized for Portability and
Parallelism” System) [Goodman, 1996].

3.4.1 Implementation of Canonical Serial GA

1) Make initial population with uniform random bits.

2) Evaluate fitness of each new individual in current
generation, fitness statistics.

3) Terminate the program if stopping criterion met.

4) Select survivors and parents for next generation,
using “stochastic universal sampling” method to
pick a list of chromosomes that will be the parents
or the survivors for next generation, sampling with
replacement; list size = population size.

5) Reproduce in one of two ways: “standard”
canonical serial GA, or allowing niching of the
population by using crowding and incest reduction.
Niching is used to try to reduce premature
population convergence. Use of this method helped
us to see where the cohort GA stands in comparison
to other ways of reducing premature convergence.

In a “standard” serial GA, both parents are uniform
randomly selected from the list generated in step 4.
One-point crossover and single-bit mutation or
multi-bit mutation are performed according to the
crossover rate and mutation rate. The offspring
then replace the parents.

The niching technique included two mechanisms:
DeJong crowding and incest reduction [Goodman,
1996]. With incest reduction, pairs for crossover
are picked by choosing the first parent at uniform
random from the above list, then uniform randomly
choosing several candidates for the other parent
(here, 3 candidates). Among these candidates, the
one with the greatest Hamming distance from the
first parent is picked as the second parent, helping

to reduce, for example, crossover between
individuals which are identical or nearly so. After
crossover (and any mutations) are done, for each
child, “crowding-factor” (here, three) members of
the above list are selected (at uniform random).
Among the three candidates, the one with smallest
Hamming distance from the child is replaced.

The list generated by step 4 is not altered in this
process. All individuals in this list are used in some
crossover and/or mutation operation, or else
survive unaltered into the next generation.

6) Go to step 2.

3.4.2 Implementation of Island-Model Distributed GA

The island-model distributed GA divides the whole
population into several subpopulations. It provides a
chance for parallel execution by allowing use of several
processors or computers. In our experiments, we used one
workstation to serially simulate parallel execution. In that
approach, we take advantage only of the distributed GA’s
ability to reduce premature convergence, but not its
capability for parallel execution.

In this case, each subpopulation is simulated for some
number of generations (a “cycle”). Each population
receives one turn per cycle. At the beginning of each
population’s turn, it reads one or more individuals from
each of its declared neighboring subpopulations according
to a migration table. Migrants are duplicated, not removed
from the source population. In addition to defining
neighbors, the migration table also says how many
individuals are to migrate in from each neighbor each
cycle, whether these migrants include the best individual
and/or some number of randomly selected individuals,
and which strategy is to be used for replacing existing
individuals by migrants. The migration incest reduction
and migration crowding parameters are used to direct the
donating and receiving process. When a migrant is to be
selected randomly and migration incest reduction is
specified (non-zero), that number of candidates is first
randomly chosen. The one with the farthest Hamming
distance from the best individual of the receiving
subpopulation is selected. Migration crowding means the
random choice of k candidates for replacement in the
receiving subpopulation and picking for replacement the
one that is closest in Hamming distance to the migrant.
Then the run of each subpopulation follows the canonical
serial GA with crowding and incest reduction.

4 RESULTS
These experiments investigate the cohort GA by
comparing it with a canonical serial GA and island-model
distributed GA, and by studying issues involved in
implementing the cohort GA. Each of these results on the
RR function and the HDF was an average of 20 runs.

4.1 COMPARISON OF RESULTS ON RR

4.1.1 Initial Experiments

The first set of experiments investigated the performance
of five different GA’s on the RR function. The GA’s
included: original cohort GA, cohort GA with new
placement implementation, the island-model distributed
GA, the canonical serial GA and the canonical serial GA
with niching.

 The original cohort GA settings were as follows:

 Number of cohorts: 20
 Initial size of each cohort: 20 (population size: 400)
 Offspring placement strategy:
 doub = 2 × umax / u
 (note that d’s calculation is always the same)
 Deletion strategy: nocoh/2 to nocoh –1
 Crossover: within the same cohort
 Stopping criterion: function evaluations > 300,000

We also ran the cohort GA with a new offspring
placement strategy:

doub = (nocoh – 1) + (u – umin) × (2 –
nocoh +1) / (umax – umin)

The tests on canonical serial GA’s and island-model
distributed GA were done with population size 400 and:

 Canonical serial GA:

Crossover rate: 0.15 (one point crossover)
Mutation rate: 0.0002/bit (0.048/chromosome)
Linear scaling, with best fitness/mean fitness = 1.25
Stopping criterion: generation when function

evaluations > 300,000

 When niching was used:

 Parameters are the same as canonical serial GA, plus:
 Crowding factor: 3; Incest reduction: 3

 Island-model distributed GA: 8 subpopulations, 50 each

The settings of each subpopulation were the same as for
the canonical GA with crowding and incest reduction.

 Number of cycles: 10
 Neighbors of each subpopulation: 2 adjacent in a ring
 Number of migrants: 2 (one is the best, one is random)
 Migration incest reduction: 3
 Migration crowding factor: 4

The parameter settings above are the defaults. In the
following experiments we report only the exceptions.

Table 1 lists the results on the RR function, of five GA’s
with population size of 400. (In Tables 1-7, an average
number shown without a parenthesized number means
100% of runs achieved that level; blank means that the
level was never achieved in 300,000 function
evaluations.) Surprisingly, the cohort GA performed the
worst. In a total of 20 runs at this setting, the cohort GA

achieved only level 1 and only in 5 runs. The results with
the new placement implementation were much better. All
runs reached level 1 and 70% of the runs reached level 2.
The other GA’s achieved levels 1 and 2 with fewer
function evaluations, but only in a smaller percentage of
the runs. They usually did not reach level 2 within the
number of function evaluations allowed.

Table 1: Function evaluations until a RR level is achieved
and (% of runs in which GA achieved that level – 100%

when not specified, unless cell is blank, which means that
level was not achieved in any run).

level 1 level 2 level 3

average 61326
(25%)

original cohort
GA

std. dev 60606

average 1786 28779
(7%)

cohort GA with
new placement
implementation

std. dev 923 41898

average 11344 59046
(65%)

Island-model
distributed GA

std. dev 8975 24390

average 1927 5552
(45%)

Canonical Serial
GA

std. dev 853 1572

average 1885 5306
(35%)

Canonical Serial
GA with niching

std. dev 720 678

Traditional GA’s have been found to work better on RR
when the population size is relatively large. In that case,
the initial population typically contains most or all of the
basic building blocks needed to get to further levels
through crossover. Otherwise, it can take a GA a long
time to make the basic building blocks through mutation,
especially because of the “potholes” (deception in the
fitness function). Therefore, larger population sizes were
used in the rest of the experiments on RR.

4.1.2 Varying Cohort Numbers and Initial Sizes

To test the effect of population size on the cohort GA, we
ran the cohort GA’s with different numbers of cohorts
(20, 35, and 50) and different initial sizes of each cohort
(20, 40, and 80). Thus, the population sizes varied from
400 to 4000. The results are listed in Tables 2 to 5.

Table 2 shows that with the original cohort GA, the
average number of function evaluations used to achieve
level 1 was relatively small with the number of cohorts
equal to 20 and the cohort sizes at 40 or 80. With a cohort
size of 80 and the number of cohorts at 35 or 50, most of

the runs reached level 1, but needed many more function
evaluations. This could be because the population sizes
were much bigger in these two cases. The initial
population is more likely to contain instances of level 1
building blocks or schemata similar to them. In the latter
case, after a long period of search, mutation led the RR to
reach level 1. This confirmed that we need a bigger
population size for RR. However, even though the
number of cohorts, the cohort size and their ratio had
some impact on the original cohort GA, it never achieved
RR level 2 in any of the runs we tried, due to the rapid
accumulation of individuals in only few cohorts.

Table 2. For original cohort GA, average number of
function evaluations to achieve level 1

cohort size # cohorts
20

cohorts
35

cohorts
50

20 average 61327
(25%)

38282
(40%)

60356
(45%)

std. dev 60606 33704 49227

40 average 6093
(45%)

9124
(60%)

34577
(60%)

std. dev 15062 19969 62927

80 average 16136
(50%)

139569
(80%)

151198

std. dev 45328 157056 171798

 With the new offspring placement implementation, most
cohort GA runs reached RR level 2, and some reached RR
level 3, as shown in Tables 4 and 5. This shows that the
new offspring placement implementation improved the
performance of the cohort GA. The new offspring
placement implementation was used for all remaining
runs reported. The cohort GA’s performance didn’t
change linearly with changing of the number of cohorts,
cohort size or population size. But with number of cohorts
at 20, the cohort GA performed better, especially with
initial cohort size of 80.

Table 3: For cohort GA with new placement
implementation – function evaluations to reach level 1

cohort size # cohorts
20

cohorts
35

cohorts
50

average 1786 2854 321520

std. dev 923 1063 1970

average 3352 3697 439240

std. dev 1412 2295 2962

average 5151 4727 654180

std. dev 2093 3288 4430

Based on this observation, we proceeded with tests with
the number of cohorts equal to 20 and 35 and the cohort
size varying from 20 to 200, in an attempt to see whether
the ratio of the cohort size and the number of cohorts
really has some effect on the cohort GA’s performance.
The results of 20 cohorts are listed in Table 6.

Table 4: For cohort GA with new placement
implementation -- function evaluations to reach level 2

cohort size # cohorts
20

cohorts
35

cohorts
50

average 28779
(70%)

37431
(80%)

44014
(55%)

20

std. dev 41898 17337 27720

average 49627
(80%)

52819
(75%)

46973
(75%)

40

std. dev 43897 26108 36142

average 35433
(95%)

59598
(80%)

64613
(85%)

80

std. dev 18686 32518 41379

While setting the number of cohorts at 20 still gave
overall better performance, the performance did not
improve linearly with an increase in the initial cohort size.
The ratio of the cohort size and the number of cohorts
does not seem to determine the cohort GA’s performance.

The island-model distributed GA and canonical serial
GA’s were tested on population sizes of 1600 and 4000.
These population sizes are those that gave better
performance using the cohort GA. Table 7 lists the
comparison results for population size of 4000.

Table 5: For cohort GA with new placement
implementation, function evaluations to achieve level 3

cohort size # cohorts
20

cohorts
35

cohorts
50

average 65647
(15%)

73216
(10%)

20

std. dev 14330 11677

average 148545
(10%)

165175
(15%)

40

std. dev 14332 61756

average 107102
(30%)

316671
(5%)

80

std. dev 7142

The results show that among the four GA’s, the island-
model distributed GA and the two canonical serial GA’s

gave significantly better results than the cohort GA. This
may indicate a defect in the implementation of the cohort
GA or weaknesses in relation to the RR’s challenges.

Table 6: Function evaluations to reach each level, with 20
cohorts. Stopping criterion = 500,000 evaluations.

cohort size level 1 level 2 level 3 level 4

average 1786 28779
(70%)

20

std. dev 923 41898

average 3352 49627
(80%)

148545
(10%)

40

std. dev 1412 43897 14332

average 5151 35433
(95%)

107102
(30%)

80

std. dev 2093 18686 7142

average 5586 43111
(85%)

165575
(40%)

120

std. dev 2981 20938 61669

average 7800 56257
(90%)

172955
(35%)

160

std. dev 4351 26904 50264

average 6577 49952
(80%)

193042
(20%)

420068
(5%)

200

std. dev 4412 25705 71593

The new offspring placement implementation obviously
improves the cohort GA performance, but during the
experiments we can still see that the individuals tend to
accumulate in a small number of cohorts instead of
spreading among all the cohorts, after a certain number of
cycles. Tables 8 and 9 illustrate the degree of
accumulation using the original and new offspring
placement implementations, respectively. The number of
cohorts here is 20 and initial cohort sizes are 20. With the
original offspring placement, after only 20 cycles and
about 1000 function evaluations, the population has
prematurely converged with the maximum fitness 1.86,
RR level 0. The individuals have accumulated in 10
cohorts instead of being spread among 20 cohorts. With
the new offspring placement, after 160 cycles and 8000
function evaluations, the population has converged with
the maximum fitness 4.3, RR level 1.

The result of this accumulating is a kind of premature
convergence. A large number of individuals tend to gather
within a few cohorts, indicating that their fitness values
are similar to the degree that they could not be separated
by the current offspring placement strategy.

4.1.3 Varying Crossover Candidate and Offspring
Placement

To give a better chance for the individuals with less
similar structures to mate, we tried two strategies that will
enable inter-cohort crossover: choosing different
crossover candidates and non-deterministic placement of
the offspring.

Table 7: Function evaluations to reach a level, with
population size 4000. Island models used 8

subpopulations of 200 each.

GA type level 1 level 2 level 3

average 6577 49952
(80%)

193042
(20%)

cohort GA with
new placement
implementation

std. dev 4412 25705 71593

average 3353 36117 76048Island-model
distributed GA

std. dev 185 5782 16013

average 8210 38561 79776Canonical Serial
GA

std. dev 5458 8578 13681

average 8125 39345 84292Canonical Serial
GA with niching

std. dev 5279 7854 17292

To change the crossover candidate, one candidate is still
selected from the current cohort, but with probability 0.1,
the other candidate is chosen from another randomly
chosen cohort. In another words, one-tenth of the second
candidates do not come from the current cohort.

In non-deterministic offspring placement, the offspring
may be placed in a randomly selected cohort, rather than
using the calculation of d. The probability of this random
placement was also set to 0.1.

The results showed that, with these settings, the cohort
GA needs more function evaluations to achieve a certain
level. They showed that employing a form of inter-cohort
crossover did not improve the cohort GA’s performance.
This might be due to a potential defect of the
implementation of inter-cohort crossover. It might also be
due to the fact that the RR’s saturation effect is too strong
to be overcome by the cohort GA.

In an attempt to alleviate the premature convergence, we
also tried to reduce the selection pressure by changing the
implementation of deletion from being delete from second
half of the cohorts to being delete from all cohorts except
the current cohort. With this change, the performance of
the cohort GA went down. This showed that the selection
pressure alone is not a big factor in causing premature
convergence of the cohort GA on RR.

4.1.4 Summary

The experiments described in this section investigate the

cohort GA’s performance on the RR function, Several
parameters and implementations were changed in order to
test their effects on the cohort GA’s performance.

The results of these experiments indicated that the number
of cohorts and the offspring placement have the most
effect on cohort GA performance on RR. Twenty cohorts
gave the best overall performance, especially when the
initial cohort size was 80. But this ratio of cohort size and
the number of cohorts was not found to be generalizable.
A new implementation of offspring placement in an
attempt to spread all the individuals among all the cohorts
yielded a great improvement in the cohort GA. But
compared with an island-model distributed GA and two
canonical serial GA’s, the best cohort GA’s performance
remained worse. The RR function’s drawbacks might
cause this version of the cohort GA to fail. But there
might be some practical problems that also have the
characteristics of the RR function. So there is a need to
find another way to implement the cohort GA’s central
idea and avoid the problems found here (a candidate
perhaps being [Holland, 2000])

Table 8: Maximum fitness values and cohort sizes
recorded in a cohort GA at various numbers of cycles --

original offspring placement implementation.

Number
of
Cycles

Max.
Fitness
Value

Cohort Sizes

0 (Initial cohort
sizes)

{all at 20}

5 1.84 {0, 0, 0, 0, 0, 43, 35,
42, 53, 45, 44, 30, 22,
16, 22, 10, 5, 8, 6, 19}

10 1.84 {1, 0, 0, 0, 0, 0, 0, 0,
0, 0, 70, 61, 57, 59, 58,
51, 22, 15, 5, 1}

20 1.86 {80, 56, 60, 56, 51, 41,
28, 19, 7, 1, 1, 0, 0, 0,
0, 0, 0, 0, 0, 0}

30 1.86 {0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 61, 58, 62, 57, 51,
44, 44, 17, 3, 3}

40 1.86 {65, 50, 65, 57, 64, 43,
34, 14, 8, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0}

80 1.86 {48, 67, 66, 61, 48, 40,
28, 20, 15, 6, 1, 0, 0,
0, 0, 0, 0, 0, 0, 0}

160 1.86 {45, 53, 63, 56, 64, 44,
39, 29, 6, 1, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0}

Table 9: Maximum fitness values and cohort sizes, cohort
GA run, vs. number of cycles through cohort, using new

offspring placement method.

Number
of
Cycles

Max.
Fitness
Value

Cohort Sizes

0 (Initial cohort
sizes)

{all at 20}

5 1.84 {6, 2, 5, 1, 0, 19, 17, 17,
20, 15, 11, 13, 18, 28, 31,
29, 39, 41, 52, 35}

10 1.96 {23, 17, 27, 15, 16, 12, 3,
3, 2, 0, 8, 12, 15, 27, 30,
26, 35, 41, 51, 36}

20 2.02 {14, 9, 23, 6, 35, 10, 18,
15, 8, 15, 32, 33, 49, 44,
33, 25, 15, 10, 5, 0}

30 2.26 {17, 13, 7, 5, 2, 5, 3, 0,
0, 0, 57, 35, 59, 56, 44,
34, 21, 17, 14, 10}

40 2.34 {30, 44, 24, 30, 20, 12,
46, 27, 43, 39, 42, 8, 10,
16, 6, 1, 1, 0, 0, 0}

80 3.52 {1, 39, 52, 57, 30, 54, 69,
33, 37, 16, 9, 0, 1, 0, 0,
1, 0, 0, 0, 0}

160 4.3 {6, 62, 82, 74, 77, 47, 43,
7, 0, 0, 0, 1, 0, 0, 0, 0,
0, 0, 0, 0}

180 4.3 {21, 0, 0, 0, 0, 0, 0, 0,
0, 119, 111, 78, 48, 20, 2,
0, 0, 0, 0, 0}

4.2 COMPARISON RESULTS ON HDF

To use HDF as a direct tool to verify the cohort GA’s
effect on hitchhiking, we generated a small HDF with
chromosome size equal to 80. It is easier to look directly
at the intron loci when the chromosome size is small. The
measurement we used was to calculate the total number of
zeroes and the total number of ones at each intron locus in
the whole population. Then the sum of their absolute
differences should indicate the degree of convergence of
intron loci.

Because HDF’s do not have an explicit concept of level,
we measured maximum fitness values that the different
GA’s achieved with the number of function evaluations at
2500 and 6000. We chose the maximum number of 6000
because the GA’s likely either have already found the
optimum solution or have prematurely converged by that
time. In these experiments, we only compared cohort GA,
canonical serial GA and canonical serial GA with niching.

4.2.1 Varying population size

In the initial experiments we used Holland’s original
implementation for the cohort GA. The population sizes
were 200, 400 and 800. The number of cohorts was 20
and the cohort sizes were 10, 20 and 40. Table 10 lists the
results for population size 200. Since the results were
quite similar, we did a t-test for significance of the
differences in the data from the 20 runs of each type.

The results after 6000 function evaluations are similar to
those after 2500. This showed that at both times, the
canonical serial GA with niching yielded better results.
Especially for the sum of differences of the intron parts,
the canonical serial GA with niching did significantly
better than without niching. (when niching was used, the
convergence of the intron part was greatly reduced). Even
though the convergence of the intron part of the cohort
GA was at about the same level as that of the canonical
serial GA with niching, its maximum fitness level was
significantly lower than those of the other two GA’s, so
its lower convergence should not be given much weight.

The results for population sizes 400 and 800 are similar to
those for 200, except that they show little difference when
the number of function evaluations was only 2500,
because when population sizes are larger, it takes more
evaluations to initialize the starting populations. But later,
the same pattern appeared as with population size 200.

Table 10: Max fitnesses and sum of differences in intron
parts after 2500 evaluations. Population size = 200.

Below: t-tests of significance. (1, 2) compares canonical
serial GA and canonical serial GA with niching. Bolded
numbers indicate difference was significant at p < 0.05.

(1) Canonical
Serial GA

(2) Canon. Serial
GA with Niching

(3) Cohort GA

max.
fitness

sum of
diff.

max.
fitness

sum of
diff.

max.
fitness

sum of
diff.

avg. 13.90 3896.60 14.30 2404.80 8.90 1982.50

std.
dev

3.34 759.90 2.74 486.19 1.71 327.59

t-test on maximum
fitness

t-test on sum of
differences

(1,2) 0.597465326 2.02091E-06

(1,3) 1.59564E-05 4.27796E-08

(2,3) 3.67275E-07 0.003991985

In these HDF tests, the cohort GA always showed earlier
convergence, and the phenomenon of individuals
accumulating in a small number of cohorts existed, as
with the RR function. Thus, below, we applied the new
implementation of offspring placement for the HDF.

4.2.2 Varying Offspring Placement Implementation

The new offspring placement implementation (as used
for RR) was tried for HDF. Thus, for calculation of the
cohort into which the offspring would be placed, we used

doub = (nocoh – 1)
 + (u – umin) × (2 – nocoh +1) / (umax – umin)

instead of

doub = 2 × umax / u.

Table 11 lists the comparison between the original cohort
GA and the cohort GA with the new implementation. The
population size was 400. The t-tests on the two paired
data sets indicated no significant difference between the
two implementations. From observing of the experiments
we found that the new implementation of offspring
placement in HDF did not alleviate the large amount of
accumulation of individuals in a small number of cohorts.
Population size 800 yielded similar results. These results
indicate that we cannot necessarily generalize the effect of
the new implementation on RR to other test functions or
practical problems while using the cohort GA.

Table 11: Comparison of maximum fitness reached by
two cohort GA’s after 2500 function evaluations and the

sum of the differences in intron part.

original
cohort GA

cohort GA with
new placement

max. fitness sum of
the diff.

max.
fitness

sum of
the diff.

average 9.05 2974.4 8.45 2847.4

std. dev 1.57 286.94 1.36 831.20

In addition to the experiments above, we also tested the
relationship between the number of cohorts and the cohort
size by conducting paired experiments. The pairs included
10/20 versus 20/10, 10/40 versus 20/20, and 10/80 versus
20/40 (x/y, x representing the number of cohorts and y,
the cohort size). Each pair had the same population size.
The results of these experiments showed that the ratios
did not have a significant impact on the performance of
the cohort GA.

5 SUMMARY AND DISCUSSION
The results of the experiments on HDF showed that the
canonical serial GA with niching could dramatically
reduce the convergence of the intron part. This means that
crowding and incest reduction did maintain the population
diversity and reduce premature convergence. The results
also indicated that the implementation of the cohort GA
we used might have some defects in comparison to the
implementation used by Holland, particularly with the
improvements discussed in [Holland, 2000].

One particular parameter setting (mutation rate) may have

had a negative effect on the HDF runs reported here for
the non-cohort GA runs. In contrast with the cohort GA,
which did one or more mutations on each individual in the
current cohort with probability ½, the non-cohort GA
rates were set lower. We used the same mutation rate per
bit (0.0002) as we used on RR. It gave a relatively low
mutation rate (0.016) per chromosome. Another way of
viewing the difference is that in the cohort GA, nearly all
new individuals were generated by crossover, and half
were also subject to mutation, whereas in these non-
cohort GA runs on RR, about ¾ of the new individuals
resulted from crossover and ¼ from mutation. However,
for HDF, about 90% of new individuals resulted from
crossover and only about 10% from mutation. With an
increased rate, the non-cohort GA’s might give even
better performance, and this could be explored further.

6 CONCLUSIONS
The cohort genetic algorithm is designed as a means of
reducing premature convergence -- specifically,
hitchhiking. In this work, we investigated the
performance of one version of the cohort GA on the RR
function and the HDF and compared the cohort GA with a
canonical serial GA and an island-model distributed GA
in order to see how well the cohort GA works in
comparison with other techniques for reducing
hitchhiking. The experiments showed that even though
theoretically the cohort GA should work well in dealing
with hitchhiking and be more efficient, the
implementation affects its performance very much. This
version of the cohort GA didn’t perform better in any of
the comparison tests due to another form of premature
convergence, in which the individuals tended to
accumulate in a few cohorts instead of spreading among
all the cohorts.

Besides using the original implementation, we also tested
different settings and implementations in order to see how
various factors affect a cohort GA’s performance. The
factors included population size, offspring placement
strategy, deletion strategy, and inter-cohort crossover.
Among these factors, population size, which also includes
the relationship between the number of cohorts and cohort
size and the offspring placement strategy, had the most
significant effect on its performance. In particular, a new
implementation of offspring placement in an attempt to
spread all the individuals among all the cohorts yielded a
great improvement in the cohort GA on RR.

The experiments also showed that crowding and incest
reduction performed very well in preventing premature
convergence. The degree of intron convergence was
greatly reduced after using these niching techniques.

The comparison results indicated that there appear to be
(possibly remediable) defects in this version of the cohort
GA, and the fact that a small change in placement of
offspring among cohorts greatly improved the cohort
GA’s performance also suggests that further work on the

cohort GA may be fruitful.

7 FUTURE WORK
Here are two suggestions for future work:

1) Set an upper limit on the cohort size during the run
according to the initial cohort size, For example, if the
initial cohort size is 20, the maximum cohort size
during the run could be set to 35. In this way, the
individuals are forced to spread among the cohorts.
The calculation of which cohort an offspring is to be
placed in could be done as usual, but if its cohort size
has already reach the upper limit, the offspring could
be placed in another cohort that has fewer individuals.
The new receiving cohort could be calculated
deterministically or probabilistically.

2) Use the mean fitness value (umean) in the offspring
placement strategy. Place the individuals with fitness
values between umin and umean into the first half of
the cohorts and place the individuals with fitness value
between umean and umax into the second half of the
cohorts. Also follow the principle that the individual
with higher fitness value should be put nearer the
current cohort.

The detailed implementation issues regarding those
changes need to be considered carefully. However,
further work seems likely to advance the cohort GA.

References

Forrest, S. and M. Mitchell, 1992. “Relative Building-
Block Fitness and the Building-Block Hypothesis” In
Whitley, L. D. (Ed.) Foundations of Genetic Algorithms 2,
pp. 109-126, San Mateo.

Goodman, E., 1996. “An Intro. to GALOPPS, ‘Genetic
Algorithm Optimized for Portability and Parallelism’
System,” http://GARAGe.cse.msu.edu/software.

Holland, J. H., 1975. Adaptation in Natural and Artificial
Systems, University of Michigan Press, Ann Arbor.

Holland, J. H., 2000, “Cohort GAs and Hyperplane-
Defined Functions,” Evolutionary Computation, 8(4), pp.
372-391.

Holland, J. H., 1998. “Cohort Genetic Algorithms (CGA)
and Hyperplane-Defined Functions (HDFs),” Version 1.0,
Mathematica 3.0 package, edited and packaged by
Theodore C. Belding, [Online] Available http://www-
personal.umich.edu/~streak/software/jhh-hdf-1.0.tar.gz.

Jones, T., 1995. “A Description of Holland’s Royal Road
Function,” Evolutionary Computation, 2(4), pp. 411-417.

Mitchell, M., S. Forrest, and J. H. Holland, 1992. “The
Royal Road for Genetic Algorithms: Fitness Landscapes
and GA Performance,” In Towards a Practice of
Autonomous Systems: Proceedings of the First European
Conference on Artificial Life, pp. 245-254.

