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In many industrial applications of genetic algorithms

(GAs), there is a tradeo� between more and less accu-

rate functions. On one hand, more accurate yet more

expensive evaluations can be used, and on the other,

noisy, inexpensive evaluations are made. If compu-

tation time is expensive, a fast noisy �tness function

may be preferred over a slow, accurate �tness function

[1]. Some progress has been made in understanding

the tradeo�s in the noisy evaluations where the noise

is due to randomness or variance alone [2],[3]. Less

concern has been shown when the error cannot be av-

eraged out by sampling { where a good portion of the

error may be due to bias.

In this poster, we consider the general situation when

evaluation error is the result of a biased function surro-

gate. In particular, we consider �tness functions whose

cost and accuracy vary because of discretization errors

of integration. We assume that the building blocks

are exponentially scaled and that the GA experiences

domino convergence where the convergence time com-

plexity is linear in the number of building blocks [4].

The following time model can be used to describe a GA

with a sampling �tness function and can be extended

to describe a GA with an integration �tness function:

T = (�+ �n)GN (1)

Here, � is the overhead per individual per generation,

� is the time to calculate one sample, n is the number

of samples or grid points, G is the total number of

generations and N is the population size.

The choice of the number of grid points for the inte-

gration, n, is usually constant for the entire run of the

GA. This choice of n is too precise at the beginning

of the run, which wastes computation cycles early on.

In order to improve the computational eÆciency, the

number of grid points can be exponentially increased

throughout the duration of the run | it will take 2n

grid points to discriminate between two individuals

that are converging to the nth building block. In the

�rst few generations, the �rst, or most salient, bit is

being considered by the selection operator because its

contribution to the �tness is the greatest, and the other

bits are ignored.

Using a crude discretization in the early generations

introduces some noise into the GA which increases

the expected time of convergence [3]. Nevertheless,

the savings in computing the function evaluations out-

weighs the cost of making more total evaluations. The

expected speedup can thus be written as the quotient

of the time model in (1) and the time when using

the exponentially increasing grid points as described

above:

S =
(�+ �n)G

P
k

k=1
(�+ � � 2i)g

(2)

where g is the time for each bit to converge when con-

sidering the noisy model and k is the number of bits.

Our experiments consider a one-dimensional test func-

tion, and the observed speedup was 2.2.
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1 ABSTRACT

Our analysis of MAX-CSP landscape leads to an au-

toregressive model AR(1). The approximation of this

model on neighborhood relations shows that the au-

tocorrelation is not always suÆcient to predict their

di�erence for local search. In this case the interpre-

tation of mean and standard deviation values can be

helpful. The statistical analysis forecasts con�rm pre-

vious results on Simulated Annealing.

2 METHOD

Given a time series fftgt>0, the Box and Jenkins

methodology [1] allows to identify the nature of the

phenomenon represented by the sequence of obser-

vations. It consists in three stages: I) IDENTIFI-

CATION: An appropriate model within the class of

ARMA models is speci�ed. In the case of an AR(1)

model, the observations are described by the equation:

ft �E(ft) = a1(ft�1 �E(ft)) + �t, where E(ft) is the

mean of the time series fftgt>0, a1 is the AR coeÆcient

(and also the autocorrelation), �t is a white noise with

zero mean and �nite variance. All �t are independent

from each others. II) ESTIMATION: The model pa-

rameters are estimated. In the case of an AR(1) model

only a1 and E(ft) need to be estimated. The measure

R2 allows to appreciate the quality of �t. It takes its

value in the interval [0,1]. The higher R2, the better

the �t. III) MODEL EVALUATION: There should be

no serial dependency between residuals �t.

3 EXPERIMENTS AND RESULTS

This section aims to apply time series analysis to

random MAX-CSP landscapes. The families of ins-

tances (F.I) are generated by the standard model

< n; d; p1; p2 >, where n is the number of va-

riables, d the number of values per variable, p1 the

density and p2 the tightness [3]. The families are

A =< 100; 10; 8%; 25% >, B =< 100; 10; 15%; 25%>,

C =< 100; 10; 50%; 25% >. For each family, two

Table 1: AR(1) parameters for MAX-CSP landscapes

obtained with neighborhoods N1 and N2.
Neighborhood Relation N1

F:I Ê(ft) â1 �̂(�t) R
2

A 99:02� :31 :979� 10�3 1:72� 10�2 :960� 10�3

B 185:52� :20 :979� 10�3 2:362� 10�2 :959� 10�3

C 618:58� :79 :979� 10�3 4:32� 10�2 :960� 10�3

Neighborhood Relation N2

F:I Ê(ft) â1 �̂(�t) R
2

A 78:50� :37 :979� 10�3 1:65� 10�2 :968� 10�3

B 180:66� :23 :979� 10�3 2:33� 10�2 :960� 10�3

C 618:72� :50 :979� 10�3 4:32� 10�2 :960� 10�3

neighborhood relations N1 and N2 are used. N1: two

con�gurations are neighbors if they di�er by one va-

riable value. N2: two con�gurations are neighbors if

they di�er at the value of a single con
icting variable.

A variable is said con
icting if it is involved in some

unsatis�ed constraints. Table 1 shows the results of

the analysis of costs generated by 100 random walks of

length 100:000. The main results are: 1) As con�rmed

by R2 � 96%, the studied MAX-CSP landscapes are

AR(1), 2) The AR coeÆcient a1 is close to one indica-

ting that these landscapes are smooth and rather easy

to search, 3) Neighborhoods N1 and N2 have the same

coeÆcient a1. N2 costs are smaller than N1 costs as

shown by the mean E(ft) and the standard deviation

�(�t). These remarks, lead us to expect that N2 is bet-

ter than N1 for local search. The forecast is con�rmed

by previous results on Simulated Annealing [2].

4 CONCLUSIONS

The statistical study shows that random MAX-CSP

landscapes follow in good approximation an AR(1)

model. If the autocorrelation is not signi�cantly dif-

ferent, the mean and standard deviation may help to

compare neighborhoods. In future work, it would be

interesting to study structured MAX-CSP landscapes.
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We are interested in speeding up Genetic Algorithms

when applied to Concept Learning from examples

stored in a database. In this context, the cost for com-

puting the �tness function can be very high and thus

considerably slow down the algorithm. We have al-

ready studied a parallel algorithm in which the popula-

tion is distributed among processors, but still behaves

like a single panmictic one [Braud & Vrain, 1999]. In

that case, the database is duplicated on processors,

which is not realistic when it is large. In this poster

paper, we study another parallel approach which al-

lows the treatment of databases that cannot be stored

on a single processor, and to decrease the cost of the

evaluation of individuals. A subset of the learning

set is associated to each processor at the beginning

of the learning process. The population evolves on a

single processor and the algorithm is similar to the se-

quential one, except for the evaluation step which is

done is parallel. Each time the population must be

evaluated, the processors evaluate all the individuals

on their subsets of examples; then all the results are

gathered on a processor to obtain the individuals quali-

ties. An individual represents a disjunction of conjunc-

tive hypotheses, expressed in an attribute-value re-

presentation, following the coding proposed in GABIL

[DeJong et al. , 1993].

The evaluation step is decomposed as described below

(we call Processor 1, the processor where all the treat-

ments, except the evaluation step, are computed):

1 - Processor 1 sends all the individuals of the popu-

lation to the other processors;

2 - each processor computes, for each individual, the

number of examples of the local database this indi-

vidual covers and the number of counter-examples it

rejects;

3 - each processor sends its results to Processor 1;

4 - Processor 1 merges the results received and thus

obtains the qualities of the individuals on the whole

database.

This algorithm has been studied both from a theoreti-

cal and an experimental point of view. The theoretical

study has been modeled using the BSP [Valiant, 1990]

paradigm, that allows developers to predict perfor-

mance of their program on a given architecture. This

has enabled us to predict that under some conditions,

the speedup obtained will be interesting and our al-

gorithm will be scalable. Experiments performed on

a biprocessor Sun Ultra Sparc 2 with increasing sizes

for the database show that the parallel algorithm is

quite twice quicker than the sequential one for the

largest databases. Tests have also been performed on

a CRAY T3E-1200, using up to 32 processors. They

show that when the size of the population or the size

of the database is large enough, we obtain an increase

in speedup that is about 2�log(p).

This parallelization study is devoted to Data Mining

tasks, as the underlying algorithm exploits the dis-

tribution of the database to speed up the computa-

tion of the �tness function. It is simple, but the cost

study and then the experimentations have shown that

it really decreases computation costs and its simpli-

city confers it a large 
exibility to be extended and

enhanced.
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This abstract describes work with an application of ge-
netic algorithms to a speci�c task from biology (phy-
logenetic tree construction) [1]. Immigration and an
alternative approach for addressing the premature con-
vergence problem are compared: The new method is
comparable to immigration, but its patterns of discov-
ery are di�erent, suggesting that this approach war-
rants further study.

The alternative approach (A) is similar to immigra-
tion (I) in that the population is divided into sub-
populations that in general remain distinct from each
other (crossovers happen only within a given subpop-
ulation). At speci�ed generations, the following hap-
pens: 1. The populations are combined into one large
population. 2. The large population is sorted by �t-
ness, and canonical duplicates are removed. 3. For
each population, n trees from each of m of the best
�tnesses are selected at random to seed a new popula-
tion. 4. The remainder of each population is �lled in
with randomly generated trees.

As an initial comparison, several runs were done with
the task described in [1]. All runs used population sizes
of 5000, split into 10 subpopulations of 500 each, 2000
generations, and immigration or destruction events
happening every 500 generations (these events do not
happen following the last generation, so this consti-
tutes 3 events per run). Other parameters include an
elitism rate of 25%, �rst mutation rate of 10%, second
mutation rate of 100%, and crossover rate of 70%. For
A, n and m were varied to save either the 10 or the
20 best �tnesses and to save either one or two random
trees of each of these �tnesses. For I, rates of 5%, 10%,
and 20% were run. An eighth set of four experiments
was run (D runs) with the parameters described above
(including 10 distinct populations with subpopulations
kept distinct). For each distinct variation, four exper-
iments (with di�erent random seeds) were completed
for a total of 16 A runs 12 I runs, and 4 D runs.

In terms of being able to locate trees of the best �t-
ness, A slightly outperforms I, �nding trees of the best

known �tness in 7/16 runs (43.75%), while I discovers
the 279 trees in 5/12 runs (41.7%). The D runs are
unable to �nd trees of �tness 279. If one plots the av-
erage generation taken to �nd each �tness from 284 to
the known best of 279, the trajectories of the A runs
and the I runs are similar, and the two are compara-
ble in terms of the average generation to reach 279.
The progress of the A runs is marked by a \punctu-
ated equilibrium" dynamic: The e�ects of mixing the

populations is more likely to be immediate than with
I. When improved �tnesses are discovered in the 284-
279 �tness range, they happen within 100 generations
of an A migration 50% of the time. In contrast, these
improvements happen within 100 generations of an I
immigration 38.8% of the time.

The e�ect of the immigration process is to intro-
duce new genetic material into a converging popula-
tion, possibly providing variation within the popula-
tion that might prove useful for crossovers. On the
other hand, the e�ect of the process in A is a mass ex-
tinction of solutions, in which only a handful of promis-
ing solutions are saved. After a destruction event, each
population will in general contain a sampling of the
best solutions from across all populations. This di�ers
from immigration, in which each subpopulation tends
to retain the bulk of its genetic material. In addition to
the melding of information from subpopulations, the
A process is also marked by extremely high infusion of
random individuals.

While the punctuated equilibrium dynamic of method
A is intriguing, clearly more runs and more variations
on parameter settings need to be explored.
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Abstract 
 

 

We present in this paper an application of the 
Constructive Genetic Algorithm (CGA)  to the 
Linear Gate Assignment Problem (LGAP). The 
LGAP happen in very large scaling integration 
(VLSI) design, and can be described as a 
problem of assigning a set of circuit nodes 
(gates) in an optimal sequence, such that the 
layout area is minimized, as a consequence of 
optimizing the number of tracks necessary to 
cover the gates interconnection. The CGA 
evolves a dynamic population composed of 
schemata and structures and uses  heuristics in 
fitness function definitions.  

1 CGA APPLICATION TO LGAP 
The Constructive Genetic Algorithm (CGA)  was proposed  
recently as an alternative to a traditional GA approach 
(Lorena, 2001), particularly, for evaluating schemata 
directly. The population, initially formed only by 
schemata, evolves controlled by recombination to a 
population of well adapted structures (schemata 
instantiation) and schemata. 

Linear gate assignment problems (LGAP) are related to 
gate matrix layout and programmable logic arrays folding. 
An example of a gate matrix and the representation used 
for structures and schemata follows: 

1  0  1  1  0  0  1  0  0  
0  0  0  1  0  1  0  0  1  
1  1  0  0  1  0  0  1  0  
1  0  0  1  1  0  1  0  0  
0  0  0  1  0  1  0  1  1  
0  0  0  0  1  0  1  1  0  
0  0  0  0  0  1  0  0  1  

 

1  0  0  0  1  1  0  1  0  
0  0  0  1  0  1  1  0  0  
0  1  1  0  0  0  0  1  1  
1  0  1  0  0  1  0  1  0  
0  0  0  1  0  1  1  0  1  
1  0  1  0  0  0  0  0  1  
0  0  0  1  0  0  1  0  0  

  1  ?  0  ?  ?  ?  0  1  ?  
  0  ?  0  ?  ?  ?  1  0  ?  
  0  ?  1  ?  ?  ?  0  1  ?  
  1  ?  1  ?  ?  ?  0  1  ?  
  0  ?  0  ?  ?  ?  1  0  ?  
  1  ?  1  ?  ?  ?  0  0  ?  
  0  ?  0  ?  ?  ?  1  0  ?  

 
1  2   3  4  5  6  7  8  9  sj= ( 7  2  5  9  3  4  6 1 8) sk=(7  #  5  #  #  #  6 1 #) 

Gate matrix Permutation (structure) Permutation (schema) 

Two fitness functions are defined on the space of all 
schemata and structures that can be obtained using this 
representation. The evolution process considers the two 
objectives on an adaptive rejection threshold, which gives 
ranks to individuals and yields a dynamic population. The 
first function reflects the total cost of a given permutation 

of gates, and the other drives the evolutionary process to a 
population trained by a heuristic. The chosen heuristic is 
the 2-Opt neighborhood. 

The initial population is composed exclusively of 
schemata. Two structures and/or schemata are selected for 
recombination. The first is called the base (sbase) and is 
randomly selected out of the best ranked individuals. The 
second structure or schema is called the guide (sguide ) and 
is randomly selected out of the total population. The 
current labels in corresponding positions are merged. A 
new filling operator is proposed to comp lement a schema, 
substituting the  #  labels for gate numbers. A local search 
mutation is always applied to structures, no matter how 
they are created (after recombination or after the filling 
process). The search at 2-Opt neighborhood of the 
structure was used.  

The CGA for LGAP was run on Intel Pentium II 
(266Mhz). All best previous results comes of 
Microcanonical Optimization - MCO approach 
(Linhares,1999). The CGA reached all the best results 
(number of tracks) for instances taken from the literature, 
but it appears to be more robust than other approaches. 

 MCO  CGA 
Problem  Time (s) Tracks   Time (s) Generations  wire length 

wli 10  4 5 5.00 35  
wsn 10  8 15 7.00 115  

v4050  10  5 5 5.00 51  
v4000  10  5 5 5.00 66  
v4470  700  9 665 33.00 269  
v4090  100  10 20 13.50 132  

x0 700 11 755 92.57 343  
w1 10  4 10 5.00 57  
w2 400  14 185 19.50 283  
w3 3900  18 3062 186.00 761  
W4 61700  27 52246  225.00 1932  

References 

L.A.N.Lorena and J.C.Furtado (2001). Constructive 
Genetic Algorithm for Clustering Problems. Evolutionary 
Computation. To appear. Available from 
http://www.lac.inpe.br/~lorena/cga/cga_clus.PDF 

A.Linhares, H.H.Yanasse, and J.R.A.Torreao (1999). 
Linear Gate Assignment: a fast statistical mechanics 
approach. IEEE Trans. on Comp. Aided Design of 
Integrated Circuits and Systems. Vol. 18(12),1750-1758.  

756 GENETIC ALGORITHMS: POSTER PAPERS



 

A Genetic Algorithm for Expert System Rule Generation 

 

 

John C. Determan 

Idaho National Engineering and Environmental Laboratory 
P.O. Box 1625, Idaho Falls, ID 83415-2211 

jcd@inel.gov 

James A. Foster 

Computer Science Department, University of Idaho P.O. 
Box 1010,  Moscow, ID 83844-1010 

 foster@cs.uidaho.edu 
 

 
Extended Abstract 

 

 

We applied genetic algorithms to fuzzy rule 
generation to compute expert system rules from 
data.  Our work introduces several innovations 
that improve both the speed of the rule 
generation process and the accuracy of the 
generated rules (Determan 2000).  Our work also 
contributes to the application of GAs to 
combinatorial problems in general.   

Our genetic data clustering (GDC) algorithm 
first locates data points in the training data that 
belong together, it then calculates exact means 
and standard deviations over these clusters, and 
finally, it builds fuzzy rules from the cluster 
means and standard deviations.  We employ 
subtractive clustering (Chiu, 1994) to initialize 
our population of solutions, but do away with 
backpropagation.  We designed crossover and 
mutation operators specifically for data 
clustering.  We used self-adaptive techniques, 
including variable length chromosomes and a 
variable probability of mutation.   Our objective 
function combines training set performance and 
the Xie-Beni cluster validity index (Xie and 
Beni, 1991).  Use of a cluster validity index 
helps to aviod over-training on the data. 

To test our algorithm, we used two data sets 
from a comparative study of neural network 
derived classification algorithms, the Enhanced 
Learning for Evolutive Neural Architecture 
(ELENA) project (Aviles-Cruz, et al. 1995).  
These data sets were the Anderson Iris data and a 
LANDSAT image data set.  The testing 
methodology used in the ELENA project (Blayo 
et al., 1995) was followed.   

Data sets used to test classification algorithms 
generally consist of data points labeled by some 
integral set of values.  It is a useful bounding 
calculation to treat these labeled data as already 
clustered (by classification) and form fuzzy rules 
by taking the average and standard deviations of 

the data points in these clusters.  These rules 
represent the results that the GDC algorithm 
could obtain with  “perfect” clustering on a given 
data set.   

The GDC algorithm achieved average 
performance compared to a suite of classification 
algorithms found in the literature.  Tests have 
shown that performance of the GDC algorithm is 
mixed.  Specifically: 

• Simple bounding calculations show that the 
GDC algorithm computes rule sets that are as 
good as the rule representation format will allow. 

• Comparised with ELENA results, our 
method produces classification rules that 
achieve about average results.  The rule 
representation is the primary limitation to 
performance. 
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1 Introduction

The recurrent dynamic constraint satisfaction problem

(rDCSP) [3] is a special class of CSP where constraints

are temporarily added and/or deleted over time. The

objective of rDCSP-solvers is to discover one or more

solutions that remain consistent (no constraint vio-

lations) and are not `damaged' when constraints are

added. Recent research on rDCSPs has shown that by

identifying, as virtual, those dynamic constraints that

have an above average probability of being added to

the set of active constraints can improve the perfor-

mance of rDCSP-solvers [3]. Although this frequency-

based approach works well for rDCSPs where the dy-

namic constraints have di�erent addition probabilities,

it does not work well for rDCSPs where the addition

probabilities are the same for all dynamic constraints.

2 A New Approach

We have modi�ed an evolutionary hill-climber (EHC)

[1] so that it identi�es virtual constraints based on con-

straint violations rather than frequency count. In this

new method, the violation-based approach, the EHC

keeps track of the number of times a dynamic con-

straint is violated while it is active or virtual. This is

referred to as the violation count of a dynamic con-

straint. Those dynamic constraints with an above av-

erage, non-zero violation count are identi�ed as virtual

constraints.

3 Some Preliminary Results

In this work we solve the recurrent dynamic form of

the classical N -Queens CSP [2]. Recurrent dynamic

N -Queens CSPs, can be viewed as a triple (N ,�,�),

where N represents the number of queens, � denotes

the percentage of static constraints, and where the ac-

tive rate (addition probability) of the dynamic con-

straints is represented by is �. Each time a solution

�� This research was supported by the National Science
Foundation under grant #IIS-9907377.
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Figure 1: The �'s of EHCs that do not identify virtual

constraints are compared with the �'s of those EHCs that

utilize the violation based approach (EHC-V) on the 100

instances of the (30,0.1,0.5) rDNQP using population sizes

of 3, 20, 40, 60, 80, 100. The violation-based approach

has the best (statistically signi�cant) performance for all

population sizes.

is found a new occasion is created by randomly acti-

vating dynamic constraints based on their active rate.

Static constraints are always active.

In solving a rDNQP, a solution must be discovered for

an initial occasion and k additional occasions. The

the fraction of the k additional occasions for which an

algorithm must perform additional search (when its

solutions have been damaged) is known as its popula-

tion instability rate (�). The e�ectiveness of our new

approach can be seen in Figure 1.
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Abstract 
This paper presents a self-adaptive hybrid 
genetic algorithm (SAHGA) and compares its 
performance to a non-adaptive hybrid genetic 
algorithm (NAHGA) and the simple genetic 
algorithm (SGA) on two multi-modal test 
functions with complex geometry. The SAHGA 
is shown to be far more robust than the NAHGA, 
providing fast and reliable convergence across a 
broad range of parameter settings. For the most 
complex test function, the SAHGA required over 
75% fewer function evaluations than the SGA to 
identify the optimal solution. 

1 INTRODUCTION 

A hybrid genetic algorithm (HGA) is the coupling of two 
processes: the simple GA and a local search algorithm. 
The purpose of this study is to develop a self-adaptive 
HGA (SAHGA) that can be used to competently solve 
different applications without extensive trial-and-error 
experimentation. 

2 HYBRID GENETIC ALGORITHM 

We present 2 different HGA approaches. The first one 
called Non-Adaptive Hybrid Genetic Algorithm 
(NAHGA) and the second one is called  Self-Adaptive 
Hybrid Genetic Algorithm (SAHGA). Both algorithms 
combine an SGA with local search. The local search step 
is defined by three basic parameters: local search gap, 
probability of local search, and number of local search 
iterations. The major difference in the approaches is that 
the SAHGA adapts in response to algorithm performance 
as the algorithm converges to the solution. This algorithm 

incorporates Baldwinian and Lamarckian evolution to 
update the local search information into the population. 

3 EXPERIMENTS 

To evaluate the performance of the SAHGA method, we 
worked with two different multi-modal functions with 
multiple basins of attraction randomly distributed. 
Function 1 (F1) has conical basins of attraction and 
Function 2 (F2) has elliptical basins of attraction. F1 
represents the best case for local search, in which only 
one local search is required to find the local minimum, 
and F2 represents a more realistic case in which multiple 
local searches are required to find the local minimum. In 
order to evaluate the behavior of the SAHGA with respect 
to the NAHGA and SGA, we performed several 
experiments to test the capabilities of the method. The 
experiment tested the behavior of local search, maximum 
number of local search iterations, and probability of local 
search. Finally, we investigated the reliability of the 
SAHGA method in comparison with the SGA. 

4 RESULTS AND CONCLUSIONS 

The results clearly indicate that the adaptive capabilities 
of the SAHGA algorithm enabled robust solution of 
complex, multi-modal problems for a much greater range 
of parameter settings than the NAHGA. Compared with 
the SGA, the SAHGA was able to solve complex 
problems much faster because of the combined effect of 
smaller population sizes and increased information from 
local search. For the same level of reliability, the SAHGA 
required as much as 95% fewer function evaluations than 
the SGA for function f1 and as much as 75% fewer 
function evaluations for function f2. Further research is 
needed to assess the performance of the algorithm on 
other types of functions. 
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Most genetic algorithms use string or tree representations.  
However, many systems are best represented by graphs; 
e.g., molecules and circuits. To apply genetic algorithms 
to graphs, a good crossover operator is necessary. We 
developed a general-purpose  crossover operator for 
directed and undirected graphs, and used this operator to 
evolve molecules and circuits. Graph crossover is non-
trivial because, unlike strings or trees, graphs cannot 
always be divided into two parts at a single point because 
graphs may contain cycles. A steady-state, tournament 
selection genetic algorithm  (JavaGenes) was developed 
to test our graph crossover operator.  

Crossover is easy to implement for strings and trees 
because these data structures can be divided into two 
pieces at any point. Although graph crossover can be 
accomplished by breaking edges, it is more complex 
because 1) any edge may be a member of one or more 
cycles, 2) graph fragments produced by division may 
have more than one crossover point ("broken edge") that 
requires reattachment during fragment combination, 3) 
when two fragments are combined they may have 
different numbers of  broken edges to be merged, and 4) 
for a graph crossover operator to potentially reach any 
possible graph from an initial random population, the 
operator must be able to create and destroy individual 
cycles, fused cycles, cages, and combinations of fused 
cycles and cages. 

The primary contribution of this paper is to introduce a 
crossover operator that 1) operates on any connected 
directed or undirected graph, 2) divides graphs at 
randomly generated cut sets, 3) can evolve arbitrary 
cyclic structures given at least some cycles in the initial 
population, and 4) always produces connected undirected 
graphs and almost always produces connected directed 
graphs. 

JavaGenes divides an undirected graph by 1) choosing an 
initial edge at random, 2) repeatedly finding the shortest 
path between the initial edge’s vertices and 3) removing a 
random edge from this path until a cut set is found. 

Fragments are combined by repeatedly selecting random 
broken edges from each fragment and combining them.  
When the broken edges in one fragment are exhausted, 
the remaining broken edges are randomly discarded or 
attached to a random vertex in the fragment with no 
remaining broken edges. 

To evolve circuits, edges must be directed and there are 
special input and output vertices in each circuit. This  
requires changes to the algorithm. During division, 
instead of using a random bond to choose the vertices to 
split, the input and output vertices are chosen and edges 
on the shortest remaining path between these vertices are 
broken until a cut set is found. During recombination, 
only fragments containing an input vertex are combined 
with fragments containing an output vertex, and vice 
versa. Curiously, in very rare circumstances this results in 
a disconnected graph. See [Globus 2000] for details. 

JavaGenes was applied to evolving pharmaceutical drug 
molecules and simple digital circuits. To test JavaGenes 
we attempted to evolve existing drug molecules.  
Morphine, cholesterol, and diazepam were successfully 
evolved by 30-60% of runs within 10,000 generations 
using a population of 1000 molecules.  Correct delay and 
parity circuits were also evolved. 

Graph evolution is subject to a patent [Weininger 1995], 
but the patented crossover algorithm cannot produce 
connected children with material from both parents.  The 
patent holder does report success using their system for 
pharmaceutical drug design. Molecules have also been 
evolved using tree structures [Nachbar 1998] but 
crossover was not allowed to break or form cycles. 

Since representation strongly affects genetic algorithm 
performance, adding graphs to the evolutionary 
programmer's bag-of-tricks should be beneficial. In this 
effort, circuit evolution was marginal but success was 
achieved evolving pharmaceutical drug molecules. 

[Globus 2000] "JavaGenes: Evolving Graphs with 
Crossover," A Globus, S Atsatt, J Lawton, and T Wipke, 
www.nas.nasa.gov/~globus/papers/JavaGenes/paper.html 

[Nachbar 1998]  Robert B. Nachbar, "Molecular 
Evolution: a Hierarchical Representation for Chemical 
Topology and its Automated Manipulation," Proceedings 
of the Third Annual Genetic Programming Conference, 
University of Wisconsin, Madison, Wisconsin, 22-25 July 
1998, pages 246-253. 

[Weininger 1995] David Weininger, "Method and 
Apparatus for Designing Molecules with Desired 
Properties by Evolving Successive Populations," U.S. 
patent 5434796, Daylight Chemical Information Systems, 
Inc. 
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Abstract 

This paper introduces a new Computational 
Evolutionary algorithm, EITA, which uses extra 
and intracellular flows. EITA was applied to the 
Quadratic Assignment and to the Graph Coloring 
Problems. 

1 INTRODUCTION 
Computational Transgenetics (CT) is a metaheuristic that 
brings the following ideas to the evolutionary algorithms 
context: To use exogenous and endogenous information 
to interfere on the processes of formation and 
modification of individuals of a given population; to use 
the intracellular flow (Kargupta, 1997) to manipulate 
individuals; to explore new processes of population 
improvement using transgenetic agents and competition 
between agents and individuals; to guide the evolutionary 
process allowing the occurrence of evolutionary jumps. 
Recent researches show that genes and culture are 
inherently linked. Thus, individuals evolve both by 
anatomical and behavioral selection. The rules that cause 
anatomical and behavioral elements to come together are 
called epigenetic (Lynch, 1998). To bring information to 
the evolutionary process, CT uses transgenetic agents to 
manipulate individuals. A CT agent is composed by one 
or more memes and an operative method that come from 
epigenetic rules. Memes are the elements of cultural 
concepts. A meme, in this work, is any proposal to 
construct a set or block of genes (building block). A 
meme can be obtained from a number of sources, such as 
heuristics, etc. The transgenetic agents manipulate 
individuals of a certain population that evolves and may 
reinforce the whole process adding new information to it. 
CT algorithms (Goldbarg & Gouvêa, 2000) are designed 
to consider the intracellular and epigenetic contexts. 

2 EXTRA-INTRACELLULAR 
TRANSGENETIC ALGORITHM 

The Extra-Intracellular Transgenetic Algorithm, EITA, 
can be described as shown below. An EITA has an 
underlying Genetic Algorithm (GA). The arrows 

(→),check list signs (9) and asterisks (*) mark the 
statements where intracellular manipulations, epigenetic 
and the underlying GA steps occur. The meme base 
required by EITA can be thought as a library containing 
information about the problem and the instance.   
 
   99   Load a Meme Base 
   99   Design a set of agents according to the Meme Base  
  (*)   Generate and evaluate an initial population 
         Repeat            
              →  Load a subset of  agents  
             (*)  Select a set of parents to generate offspring  
              →  Manipulate sensitive parents according to  

epigenetic rules 
             (*)  Crossover 
             (*)  Mutation  
              →  Liberate chromosomes that can be set free 

(end of agent lifetime)       
             (*)  Evaluate population fitness  
          Until the stop criterion be satisfied 

  

3 COMPUTATIONAL EXPERIMENTS 

In order to check the transgenetic potential, the approach 
was applied to the Quadratic Assignment Problem (QAP) 
and to the Graph Coloring Problem (GCP). 
Computational experiments showed that chromosome 
manipulation by transgenetic agents is a powerful tool to 
guide the search in the solution space.  
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Abstract

Our earlier research laid a theoretical basis for the
contention that genetic algorithms can succeed
even if bits are arranged in configurations different
from a linear sequence. In the current research we
show this success happens in practice, for a number
of examples.

In (Greene, 2000) we extended Holland’s classic Schema
Theorem to the setting that bits are arranged, not necessarily
in a linear sequence, but at the nodes of a connected graph.
For such potentially much liberalized ways of arranging bits
(and given reasonable assumptions; see our theorem), one
can expect schema of above average fitness to flourish.

In the current research, we put theory aside and see what
happens in practice. We consider a dozen examples, of
several different types, wherein bits are arranged in
alternative geometries. Of course, with each problem and its
associated bit geometry, we should use a crossover operator
that is compatible with the geometry, and also conducive to
the accumulation of desirable chromosomal subparts. This,
coupled with the other familiar forces of geneticism, does
lead, in our experiments, to convergence to individuals of
high or even maximum fitness.

In this abstract we outline several of our examples.

(1) Twenty Queens Problem. This is the extension of the
familiar Eight Queens Problem, to a chess board whose
edge-size is 20 squares. A population individual is a 20× 20
grid of bits, with 0, resp., 1, meaning the square is empty,
resp., is occupied by a queen. For crossover, a random row
or column or diagonal line is chosen, then a child is formed
by copying bits from one side of the line in one parent and
from the other side of the line in the other parent. The initial
population consists of individuals each of whose 20 * 20 =
400 bits are chosen randomly; note such an individual starts
with far too many queens. An individual’s error is found by
summing the number of inappropriate queens situated on
each row and column and diagonal; maximum error = 1482.

An individual’s fitness is defined as maximum error minus
own error; maximum fitness = 1482, too. Note that the
fitness landscape is complex, with many global maxima and
many local maxima. Many constraints must be satisfied by a
solution to this problem. Experimental results: On 20 trials,
each stopped after 2000 generations (population size = 100),
the best individual encountered had an average fitness of
1472.1, or 99.3% of the maximum fitness.

(2) A population individual is a complete binary tree of 511
bits. There are 256 leaves on the tree’s bottom level, which
is at depth 8. For crossover, at random we choose one of the
510 proper subtrees, then form a child by replacing that
subtree in one parent by that of the other parent. We define
the fitness of an individual to be the number of sibling
nodes which have the same bit value (whether it be 0 or 1).
There are 255 sibling pairs, so maximum fitness is 255.
Note that the fitness landscape has many global and many
local maxima. Experimental results: On each of 20 trials, an
individual of maximum fitness was found, upon average
generation number 480.45.

(3) Bits are arranged in a 3-dimensional cube. Specifically,
the bits are positioned at the points (j, k, l) of Euclidean 3-
space for which each ofj, k, l is an integer in the range
0..10. There are 113 = 1331 bits altogether. For crossover,
we cut a cube with a random plane, then form a child by
copying bits from one side of that plane in one parent and
from the other side of that plane in the other parent. Define
the pointantipodal to (j, k, l) to be the one located
symmetrically across the center of our cube; thus, it has
coordinates (10-j, 10-k, 10-l). An individual’s fitness we
take to be the number of antipodal pairs in it which have the
same bit value (whether 0 or 1); maximum fitness = 665.
Experimental results: On 20 trials, each running to at most
2000 generations, the best individual found had an average
fitness of 660.4, or 99.3% of the maximum fitness.
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Epistasis is the nonlinear interaction between bits in

the domain of a function with respect to computing

the value of the function [Jong et al., 1997]. The more

bits that simultaneously interact (the higher the epis-

tasis) the greater the degree of freedom to \hide" the

optimum anywhere in the subdomain formed by the in-

teracting bits [Heckendorn and Whitley, 1999]. High

epistasis, however, is no guarantee of a diÆcult prob-

lem. Nor is low epistasis a guarantee of an easy prob-

lem. Still, epistasis represents an important measure

of problem structure that can be used to assess a �t-

ness landscape [Heckendorn and Whitley, 1999].

The Walsh transform of a function allows us to

restate a function over L bit strings as a vector of

2L Walsh coeÆcients, each representing the \quan-

tity" of epistatic interaction for each of 2L possi-

ble sets of bit interaction. The Walsh transform

can be thought to map a function from function

space to epistatic space [Reeves and Wright, 1995]

[Heckendorn and Whitley, 1997].

It is well known that the average function value for

an L bit function over a hyperplane with k �xed bits

can be computed by summing 2k Walsh coeÆcients

[Goldberg, 1989]. That is, the smaller the hyperplane

one sums over the more Walsh coeÆcients are needed

to compute the sum precisely. In this way it is reminis-

cent of the Heisenberg Uncertainty Principle. I have

extend this result by showing a more general theorem

called the Epistatic Uncertainty Theorem describing

the trade-o� between speci�city of information about

epistasis and function value. I have shown the ver-

satility of the theorem and related corollary; and the

practical relationship to the Fast Walsh Transform and

in developing techniques for the rapid calculation of

epistasis.

The theorem is stated in terms of numbered hyper-

planes [Heckendorn and Whitley, 1999]: Given a func-

tion f : BL!R and a hyperplane partitioning mask

m : m 2 BL then:

1

jhm;nj

X

x2hm;n

f(x) x(unpack(z;m)) =

X

j : j2 hm;z

wj j(unpack(n;m))

Intuitively, this shows the relation between summing

rows of a partition matrix of a function and columns of

the partition matrix of the Walsh coeÆcients. Many

related theorems have been shown, but this space is

too small to contain them.
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Given a problem to be solved, if a simple GA adopts
the �tness proportionate selection scheme for reproduction
(Mitchell, 1996), then a pair of parent chromosomes are
selected from the population, the probability of selection
being an increasing function of �tness. In this implemen-
tation, the �rst individual is passively assigned the mat-
ing partner by the mechanism of natural selection. Conse-
quently, each individual is forced to mate with some part-
ners that may not carry promising genetic material. To
further elucidate this point, we can consider the following
example:

Suppose the population is composed of bit-strings of length
8 and the relevant building blocks are 1111**** and
****1111 (* can be either 1 or 0), and each contributes
�tness of 4 to the strings in the population. Then, for ex-
ample, a string X, 11110000, is of �tness 4, and the optimal
string is 11111111, whose �tness is 8. Now given string X,
and two candidate mating partners, Y1 (11110000) and Y2
(00001111), under the mechanics of the simple GA above,
Y1 and Y2 have the same probability to be chosen for mat-
ing since these two strings are of the same �tness. How-
ever, if we are concerned with �nding the optimal string,
apparently, string Y2 is better than Y1 because the mat-
ing between Y2 and X is likely to generate the optimum,
yet it is not the case if X mates with Y1. This implies that
natural selection may not have enough capability to distin-
guish individuals of the same �tness, yet of quite di�erent
string structures. To compensate for this de�ciency of nat-
ural selection, we introduce and investigate several mate
selection schemes that allow individuals to be able to rec-
ognize di�erent string structures of the same �tness so as
to search for more appropriate mating partners, hoping to
improve the GAs' performance. Our setup is to �rst adopt
the tournament selection scheme (Mitchell, 1996) as the
role of natural selection. Then during each mating event,
a binary tournament selection|with probability 1.0 the
�tter of the two randomly sampled individuals is chosen|
is run to pick out the �rst individual, then choosing the
mate according to the following �ve di�erent schemes:
A. Run the binary tournament selection again to choose

the partner.
B. Randomly choose two candidate partners; then the

one more dissimilar to the �rst individual is selected for
mating.
C. Randomly choose two candidate partners; then the

one more similar to the �rst individual is selected for mat-
ing.

D. Run another two times of the binary tournament se-
lection to choose two highly-�t candidate partners; then
the one more dissimilar to the �rst individual is selected
for mating.
E. Run another two times of the binary tournament se-

lection to choose two highly-�t candidate partners; then
the one more similar to the �rst individual is selected for
mating.
With the �ve mate selection schemes, we present the com-
parison among the performances of these GAs on one test
function: the Royal Road function R1 (Mitchell, 1996).

For each of the �ve mate selection schemes, the experi-
ments performed were based on one-point crossover rate
0.7, mutation rate 0.005, population size 128, and the num-
ber of maximum function evaluations allowed is 200000.
Our objective is to �nd the global optimum and measure
how many function evaluations are needed before the num-
ber of maximum evaluations is reached. The results are
shown in Table 1, in which the mean function evaluations
and the standard deviation were calculated over 30 runs
if the optimum was reached in all runs. Otherwise, the
number of runs with the optimum being reached is shown.

Table 1: Summary of Experimental Results on R1

Mean Function Evaluations to Optimum
Scheme Mean Standard Deviation

A 41551 25916
B 79284 40235
C 0 runs reached optimum {
D 21601 11965
E 0 runs reached optimum {

The results show that the speed of scheme D is about two
times that of scheme A, and four times that of scheme B.
These results indicate that, on Royal Road R1, it is most
bene�cial to allow individuals to actively choose dissimilar
mates that are �ltered by natural selection. On the other
hand, schemes C and E were designed to avoid produc-
ing lethal o�spring via mating being allowed to take place
only between relatively similar individuals. The poor per-
formance of these two schemes shows that this idea does
not bring forth advantage for �nding the global optimum
on R1.
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Abstract

In genetic algorithms, tournament schemes
are often applied as selection operators. The
advantage are simplicity and eÆciency. On
the other hand, major de�ciencies related to
tournament selection are the coarse scaling
of the selection pressure and the poor sam-
pling accuracy. We introduce a new vari-
ant of tournament selection which provides
an adjustable probability distribution, a �ne-
tuning facility for the selection pressure and
an improved sampling accuracy at the cost
of a minimal increase of the complexity and
with almost no loss of eÆciency.

1 THE METHOD

To �t mixed size tournament selection (msTS) to an
arbitrary selection scheme X we approximate the dis-
tribution of the selection probabilities pXi , where i is
an index to an individual in the ranked population

The selection probabilities p of tournament selection
(TS) with replacement is de�ned by

pAi;t =
it � (i� 1)t

N t

The de�nition above includes the population size N 2

N, an index to the sorted individuals i (1 � i � N)
and the tournament size t � 1.

The selection probabilities of the whole population are
represented by a vector ~pAt =

�
pA
1;t : : : p

A
N;t

�
.

We approximate an arbitrary selection scheme X with
a weighted sum of TS of varying size t. The parameters
of msTS which need to be identi�ed are the maximal
tournament size and the weights �t of the involved

tournament schemes.

f(�1; : : : ; �n) := k~pX �

nX

t=1

�t~p
A
t k1; n � N

Obviously, we need to minimize the function
f(�1; : : : ; �n) under the constraints given below.

�t � 0; t 2 f1; : : : ng;
Pn

t=1 �t = 1; �tN 2 N0

1.1 Fitting msTS to Exponential Ranking

The selection probability of the i{th ranked individual
using Exponential Ranking (ERk) is given by

pEi =
c� 1

cN � 1
cN�i; i 2 f1 : : :Ng c 2 [0; 1]

Table 1 shows the msTS parameters, e.g. ERk with
c = 0:99 is approximated by 58 1{tournaments, 26
2{tournaments, and 16 3{tournaments.

Table 1: Weighting parameters �tN and maximum
di�erences D between ERk and msTS with N = 100.

c n �tN D

0:99 3 58 26 16 0:000069
0:98 4 31 34 7 28 0:00008
0:975 4 23 29 0 48 0:00021
0:97 4 20 12 1 67 0:000469
0:96 5 11 15 0 1 73 0:000467
0:95 6 5 14 3 0 0 78 0:00049

2 CONCLUSION

We have introduced a new variant of TS i.e. msTS
which provides a 
exible probability distribution and
a �ne-tuning facility for the selection pressure. We
have demonstrated the adaptability of msTS by simu-
lating ERk. We would like to note that the improve-
ments were achieved at a minimal increase of complex-
ity while preserving the eÆciency of the original TS.
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For the practical use a termination criterion should

determine the end of a search process as soon as the

EA is not suÆciently eÆcient, i.e. when the EA is

degenerated to a random search or no signi�cant im-

provements of the best objective value can be expected

within a forseeable space of time. The signi�cance of

an improvement is highly dependent on the desired

precision of the results and on the envisaged goals of

the problem solving process. Each improvement cor-

responds to an economical pro�t and each iteration

causes costs. From this point of view an optimization

can run without loss up to a �xed precision. Improve-

ments obtained without loss are considered to be sig-

ni�cant.

A suitable point in time to terminate an optimization

run prevents premature termination as well as further

computations to no avail. Hence the eÆciency of a

numerical algorithm for optimization is not only de-

pendent on its computational performance but also on

its behavior to terminate a run. Furthermore in some

real-world applications of EA there are attempts to

automate the optimization process as in evolutionary

testing. In evolutionary testing, temporal correctness

of real-time systems is veri�ed with the assistance of

EA whereby the objective functions are discrete. Since

real-time systems are often safety-relevant, temporal

correctness plays an important role. Consequently, re-

liable and intelligent termination criteria as well as

general recommendations how to employ termination

criteria for the automated use of EA are required.

Here an overview of partly well-known termination cri-

teria and a newly de�ned criterion (ClusTerm) based

on cluster analysis is given. Conventional criteria ei-

ther use objective values or the distribution of indi-

viduals in the search space to decide the end of a run.

To get other, probably more reliable and intelligent

termination criteria, it is reasonable to combine and

evaluate both, information about objective values and

distribution of individuals. This approach is imple-

mented by using cluster analysis on the �ttest indi-

viduals. The intelligence behavior of ClusTerm is in-

corporated in the 
uctuations of the aggregate sizes of

elitist clusters.

All termination criteria were systematically tested by

extensive experiments and evaluated with respect to

their reliability and performance. Initiated by the ne-

cessity of reliable and intelligent termination criteria

in evolutionary testing, where the objective functions

are discrete, we primarily considered multidimensional

step functions in our empirical analysis. This test set

can also be used for benchmarking EA strategies on

discrete problems. The results of the empirical anal-

ysis were veri�ed by real-world applications in evolu-

tionary testing. The criterion ClusTerm proved to be

promising for problem domains with discrete objective

functions.

Finally, for each termination criterion guidelines for

the practical employment and automated application

of EA as well as references when certain criteria should

not be used are suggested. Obviously, terminiation

criteria behave di�erently for varying EA strategies

and objective functions. Therefore it is impossible to

formulate a general rule for optimal use of a termi-

nation criterion. But in real-world applications like

evolutionary testing an automated employment of EA

is desired, since software tester often are not famil-

iar with the behavior of EA. For this reason we give

some practical guidelines of the application of termi-

nation criteria for unskilled practioners and the auto-

mated use of EA. Our recommendations are not only

restricted to discrete objective functions. They can

also be accepted under reserve if one is dealt with con-

tinuous optimization problems. Our suggestions for

the continuous case are based on �rst unsystematical

experiments with common continuous test functions.

768 GENETIC ALGORITHMS: POSTER PAPERS



A Remark on Solving Minimax Problems with Coevolution

Mikkel T. Jensen
Department of Computer Science, University of Aarhus, Denmark.
email: mjensen@daimi.au.dk, http: www.daimi.au.dk/~mjensen/

Abstract

Minimax optimization problems are relevant
to research in scheduling, mechanical struc-
ture optimization, network design and con-
strained optimization. Recent papers have
demonstrated that coevolutionary algorithms
have a potential for solving this kind of prob-
lem. In the present paper it is argued that the
approaches used so far will fail if the problem
does not have a symmetric property. A new
approach solves the problem.

1 Summary

A minimax problem is an optimization problem in
which the task is to find the solution x ∈ X with the
minimum worst case cost F , where some problem pa-
rameter s ∈ S is chosen by an adversary. The minimax
problem can be formulated: Minimize

ϕ(x) = max
s∈S

F (x, s) subject to x ∈ X. (1)

A minimax problem can be seen as a game between
two players. The first player controls the solution, x,
and wants to minimize the cost F (x, s). The second
player controls the scenario, s, and wants to maxi-
mize the cost. Recent papers have used coevolution
to solve minimax problems from scheduling domains
[Herrmann 1999], constrained optimization and me-
chanical structure optimization.

The previously proposed algorithms have been based
on the idea of having two coevolving populations, PX

holding solutions and PS holding the scenarios. The
idea of using coevolution is to save time by estimating
ϕ(x) by only evaluation F (x, s) for a low number of s
values. During fitness evaluation, F (x, s) is evaluated
for every combination of solution x ∈ PX and scenario

s ∈ PS . Every solution xi ∈ PX is assigned the objec-
tive function h(xi) = maxs∈PS F (xi, s), which is to be
minimized. Every scenario sj ∈ PS is assigned the ob-
jective function g(sj) = minx∈PX F (x, sj). According
to [Herrmann 1999] this objective is to be maximized.

The minimax problems solved in earlier coevolutionary
work all have a symmetric property. They satisfy

min
x∈X

max
s∈S

F (x, s) = max
s∈S

min
x∈X

F (x, s). (2)

If a minimax problem does not satisfy (2), the previ-
ously proposed GAs are likely to fail.

The problem is in the fitness evaluation of the sce-
narios. Assigning the scenarios the objective function
g(sj) = minx∈PX F (x, sj) will reward scenarios which
lead to moderately high values of F for all x, but pun-
ish a scenario if it leads to a low value of F for some
x, even if it leads to high values of F for other x val-
ues. Because of this, the scenario which gives rise to
the highest value of F in (1) may be assigned a low
fitness, and PS may fail to converge or converge on a
wrong part of the search-space. This in turn can lead
to PX failing to converge to the right solution, since
the fitness evaluation will not be an estimate of ϕ(x).

A new fitness evaluation for the scenarios has been de-
veloped. The idea is to give all scenarios which lead to
a relatively high F value for some x a high fitness. Ex-
periments have demonstrated that a GA similar to the
GA in [Herrmann 1999] shows very poor performance
on a number of simple numerical minimax problems
not satisfying (2), while a GA based on the new fit-
ness evaluation performs much better.
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Clustering, or the unsupervised classi�cation of data

items into clusters, can reveal some intrinsic structures

like the optimal number of clusters among data sets.

Model-based clustering approaches, describing a data

set with a mixture model, are able to determine the

optimal number of clusters in theory. The common

approach (EnumEM) to select the number of clusters

is based on the enumeration strategy by using the Ex-

pectation Maximization (EM) algorithm [1]. However,

it often fails to �nd the globally optimal model, espe-

cially for ill-separated data sets.

We propose two new genetic-guided model-based

clustering algorithms, GAXEM and GAEM, to en-

hance EnumEM. GAs can be used both to explore the

natural clusters and to determine the optimal number

of clusters among data sets. This distinguishes the pro-

posed algorithms from other genetic-guided clustering

algorithms.

In our algorithms, each mixture model is directly

coded as a chromosome to represent a clustering so-

lution. The Bayesian Information Criterion (BIC) [1]

serves for the �tness value of the mixture model. To

enhance the performance, we develop several speci�c

genetic operators. The EM algorithm is embedded

to calculate the BIC value to enable the algorithms

to search around these local minima. Besides sev-

eral intuitive genetic operators, we also develop a spe-

ci�c HAC crossover operator, which is motivated by

the model-based Hierarchical Agglomerative Cluster-

ing (HAC) algorithm [2]. To get a new child, the clos-

est pair of clusters in two parents merges iteratively,

and the mergence ends with the lowest BIC value. The

main di�erence between GAXEM and GAEM is that

only the former uses the HAC crossover operator.

As shown in Table 1, both GAXEM and GAEM can

determine the optimal number of clusters more fre-

quently than EnumEM on 9 synthetic data sets. For

example, EnumEM fails to detect 12 clusters among

DataSet EnumEM GAXEM G A E M
K Accu Suc Time Accu Suc Time Accu Suc Time

A 4 56.8 3 1799 63.5 6 1374 63.5 6 1079

B 5 51.4 1 2581 53.7 6 4250 53.2 5 2096

C 6 42.6 2 2184 48.3 6 5685 48.3 6 3115

D 7 42.8 1 3135 63.7 5 4885 51.5 3 4803

E 8 62.0 2 3224 64.7 6 9780 63.4 4 4262

F 9 53.9 2 3318 60.8 6 6891 60.8 6 6399

G 10 55.0 1 4369 59.2 4 17921 55.2 2 6906

H 11 43.2 0 8570 52.9 4 28732 42.7 3 15871

I 12 38.5 0 9149 51.4 5 35296 42.3 2 24487

Average 49.6 1.3 4259 57.6 5.3 12757 53.4 4.1 7669

Table 1: The simulation results on 9 synthetic data

sets of the EnumEM, GAXEM and GAEM cluster-

ing algorithms. `K' indicates the optimal number of

clusters in the data set, `Accu' indicates the average

clustering accuracy value(%) and `Suc' indicates the

successful trials on �nding the optimal number of clus-

ters within 6 runs. The unit for the average execution

time `Time' is second.

dataSetI within 6 runs. However, GAEM succeeds

twice and GAXEM succeeds 5 times. The signi�cant

di�erent performance between GAXEM and GAEM

also substantiates the signi�cance of the proposed

HAC crossover operator.

The work was partially supported by RGC Grant

CUHK 4161/97E of Hong Kong.
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Evolutionary Algorithms(EAs) are often well-suited

for optimization problems. Since 1980's, the inter-

est in multiobjective problems has been expanding

rapidly. Various evolutionary algorithms for multiob-

jective problems have been developed which are capa-

ble of searching for multiple solutions concurrently in a

single run. One of the typical methods for multiobjec-

tive problems is VEGA (vector evaluated genetic algo-

rithms) proposed by J.D. Scha�er. VEGA is a natural

extension of simple genetic algorithms (SGA) in the

sense that the individuals are divided and reproduced

independently according to each objective function.

The problem of VEGA is diÆcult to obtain equally

distributed solutions in the Pareto space. In order to

overcome this problem, Fonseca and Fleming proposed

MOGAs (multiple objective genetic algorithm) based

on the ranking selection using the concept of domi-

nated and non-dominated solutions. In addition, there

have been developed many other multiobjective evolu-

tionary methods such as NPGA(niched Pareto genetic

algorithms), NSGA(nondominated sorting genetic al-

gorithm). But, these methods still have the problem,

that is, the distribution of the solutions in the Pareto

space can not be controlled easily by user's requests.

The reasons are the following two factors, such as se-

lection pressure and genetic drift. We can divide an

evolutionary process by using ranking methods into

two cases. One is when not all the points are Pareto

optimal points and the other is when all points are

Pareto optimal points. In the �rst case, the selection

pressure should make the population into the second

case because the second case is the target of the op-

timal selection. Let us pay attention to the second

case. In this case, each point has the same chance of

producing o�spring and we can consider the o�spring

of them are selected randomly. If we eliminate the ef-

fects of mutation and crossover, we can see the e�ects

of genetic drift, making the population converge ran-

domly. Because crossover and mutation should make

the population diverge randomly, we can �nd the dis-

tribution of the solutions in the Pareto space can not

be controlled easily.

In order to overcome this problem, let us pay attention

to ecosystems which hold a very wide diversity. Every

species seek their habitants called niche by adapting

themselves to the ever changing environments. And

in the niche they are interacted with each other by

competing, exploiting and bene�ting. These relations

are generally called symbiosis. In other words, the

selection pressure can be produced not only by some

environmental conditions such as temperature, water

and food, but also some interactions among species.

So in this paper, a set of symbiotic parameters which

can represent the symbiotic relations similar to ecosys-

tems are introduced to modify the �tnesses for each

individual. The modi�ed �tnesses are used for repro-

duction. The symbiotic parameters are determined by

the distance in genome and �tness space between in-

dividuals. In the paper, we use Fuzzy Inference to

determine the relations between symbiotic parameters

and the distance in genome and �tness space. User's

requirements can be described as criterion functions.

Because the fuzzy rules are so complex like in ecosys-

tems that we can not preset, we train the parameters

in fuzzy inference to realize the user's requirement.

According to several simulations on some convex mul-

tiobjective functions and some unconvex multiobjec-

tive functions, we can �nd that the fuzzy parameters

can be trained to realize the required distribution of

individuals in the genome and the �tness space.
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Abstract

This paper proposes a new method of genetic
algorithms (GAs) for dicrete optimization
problems. For continuous problems, it has
been reported that parallel distributed ge-
netic algorithms (PDGAs) show higher per-
formance than conventional GAs. But, for
discrete optimization problems, the perfor-
mance of PDGAs has not been clearly shown.
We examine the performance of conventional
GAs, distributed GAs, and the proposed
method for a typical optimization problem,
the Traveling Salesman Problem(TSP). The
features of the proposed method are based
on multiple crossover operations applied to
the entire population (Centralized Multiple
Crossover: CMX) and the isolated DGA.

Figure 1: Flowchart of the proposed method.

1 PROPOSED METHOD

The fundamental concept of the proposed method is
as follows. For problems with non-separable objective
functions such as TSP, the global optimum can be ob-
tained by appropriately combining their minimum el-
ements of the local optima. The local optima is ob-
tained by some heuristic search methods or a DGA
without migration. On the other hand, The appropri-
ate combination of the minimum elements of the solu-
tions is performed by using multiple crossovers without
selection.

2 EXPERIMENTS ON CMX

Figure 2 shows the effect of the number of repeated
CMXs on the histories of the total distance. In this
figure, CMX1, 2, and 5 represent one, two, and five
times CMX processes, and it is recognized that in-
crease in the number of the CMX processes yields
higher performance. Several other experimental re-
sults also show the similar tendencies and the proposed
method is found to be very effective for discrete opti-
mization problems.

Figure 2: Effect of the repeated CMX processes.
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Behavior Analysis of Real{Valued Evolutionary Algorithms
for Independent Loci in an In�nite Population

Tatsuya Nomura
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Matsubara, Osaka 580{8502, Japan

Although most of theoretical researches on behavior
of Evolutionary Algorithms (EAs) through generations

are ones using discrete variables as chromosomes, some
researchers have focused their attention on EAs that
use real{valued chromosomes. Here, we also provide

results on behavior of EAs with real{valued chromo-
somes for cases that stochastic variables on some loci of

chromosomes and them on the others are independent
each other, by combining our previous results (Nomura

and Shimohara, 2001) with them of Qi and Palmieri
(1994).

We formalize EA as follows; a chromosome is a
stochastic variable in the m{dimensional Euclidean
space, and alternation of one generation consists of

roulette selection, recombination, and mutation by ad-
dition of independent noise with zero mean, in that or-

der. Furthermore, we assume that the �tness function
f has only �nitely many global maxima and �nitely
many discontinuous points, and satis�es 0 < f(x) <1

for 8x 2 R
m. Moreover, we describe the probability

density function (pdf) of chromosomes in the k{th gen-

eration as p(k)(x). Under these assumptions, Qi and
Palmieri (1994) proved that (i) the pdf after selection

is
f(x)p(k)(x)R

Rm
f(x)p(k)(x)dx

, (ii) the pdf after mutation is the

convolution of the pdf before mutation and the pdf of
additive noise in mutation, and (iii) selection and mu-
tation maintain Gaussian property in the population.

First, we assume that f is separable for some
groups of variables in the sense of f(x1; : : : ; xm) =Q
L

j=1 fj(xij1 ; : : : ; xijdj ) (
P

L

j=1 dj = m), and the cor-

responding groups of loci are independent each other

in the k{th generation (that is, p(k)(x1; : : : ; xm) =Q
L

j=1 p
(k)
j
(xij1 ; : : : ; xijdj ) and p

(k)
j

is the pdf of ij1, : : :,

ijdj{th loci in the k{th generation). Then, it is easily
shown that the same groups of loci in the (k + 1){th
generation are independent each other if recombina-

tion maintains this independence.

Second, we consider a special case of the above as-
sumptions on the �tness function and loci. If f is

completely separable and all the loci in the k{th gen-
eration are independent each other (that is, L = m),
it can be shown that all the loci in the (k+1){th gen-

eration are independent each other if recombination is
any of one{point, multi{point, and uniform crossovers.

This is shown by the fact that the pdf after these re-
combinations is described as the sum of the products

of the pdf of some loci and that of the other loci before
the recombinations (Nomura and Shimohara, 2001).

Finally, as a more special case, we assume that f is
completely separate and Gaussian (that is, f(x) =Q
m

i=1 exp(�Qi(xi � x
�

i
)2=2)), and the pdf in the 0{th

generation is independent Gaussian with mean values

(�
(0)
1 ; : : : ; �

(0)
m ) and variances (�

(0)
1 ; : : : ;�

(0)
m ). More-

over, we assume that mutation is also independent

Gaussian with variances (�w1; : : : ; �wm) in any k-th
generation. If recombination is any of one{point,

multi{point, and uniform crossovers, then it is shown
that the pdf in any k{th generation is also indepen-

dent Gaussian with mean values (�
(k)
1 ; : : : ; �

(k)
m ) and

variances (�
(k)
1 ; : : : ;�

(k)
m ). Furthermore, we can ob-

tain recursive equations of �
(k)
i

and �
(k)
i
, and it is

shown that limk!1 �
(k)
i

= x
�

i
and limk!1 �

(k)
i

=
1
2

n
�wi +

q
�2
wi

+ 4�wi
Qi

o
> �wi.
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Tackling Multimodal Problems in Hybrid Genetic Algorithms
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A method is proposed to address the issue of multi-

modality while using hybrid genetic algorithms (GAs).

The issue of handling explicitly multimodal functions

using hybrid GAs was addressed in Seront and Bersini

(2000). Using a similar idea and also ideas closely re-

lated to those of a coevolutionary sharing introduced

by Goldberg and Wang (1997) and a variable radius

niching technique used in Gan and Warwick (2000),

a model building sharer (MBS) has been developed.

The proposed method has been applied to a real-world

problem, namely sizing of member for fully-stressed

design of frame structures.

The motivation for developing the method comes from

the fact that traditional niching via sharing does not

perform well in hybrid GAs. Some thought shows why

sharing, which typically uses phenotypic distance for

estimating diversity, fails to perform its job. Figure

1 illustrates this idea. From the �gure one can see

that, even though the two starting points lead to the

same optimum point, conventional sharing will not

share their �tnesses as much as Baldwinian sharing

would.

However, it must be

Distance under conventional
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sharing

Local
Search

x 

f(x)

Optimum
Point
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     local search

L
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Figure 1: Conventional vs.

Baldwinian sharing

noted that the problem

occurs only when using

a Baldwinian learning

mechanism where the

termination point

under local search is

not back-substituted

into the population.

Instead, only the �t-

ness of the termination

point is taken. In

Lamarckian learning

where both the �tness

and the point itself are taken, conventional sharing

should perform just as well as Baldwinian sharing.

The idea that local search takes all points in a given

basin of attraction to the same optimum point was ex-

ploited in Seront and Bersini (2000). That work used

clustering algorithms to identify basins of attraction

Table 1: Number of optima using various sharers

Number of optima

Frame Evals No. Vars. Baldwinian

Sharing

MBS w/

Equal

Radius

MBS w/

Unequal

Radii

2s2b 10000 6 2 13 16

3s3b 20000 12 4 7 11

and evaluated only one point from each cluster to get

the optimum point. Selection was however based on

the �tness value of points at the starting positions and

the worst individual in a cluster was replaced by the

optimum point in that cluster.

In this work, the businessmen-customers model used

in Goldberg and Wang (1997) is used to represent the

optima and the customers (the regular GA population)

are assigned to businessmen based on a variable radius

niching technique. The idea of Baldwinian sharing is

used by calculating the distance of termination points

of the customers from the businessmen. The business-

men evolve by occasionally allowing some of the cus-

tomers to be evaluated completely by local search.

The ideas were used on a structural member sizing

problem and results are shown in Table 1. 2s2b and

3s3b refer to 2-story, 2-bay and 3-story, 3-bay frames

respectively. Use of conventional sharing resulted in

predominant convergence to a single optimum for both

problems.
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Abstract

It is shown that Genetic Algorithm can be

used to search for periodic patterns in Game

of Life 2D cellular automaton in spite of a

very strong linkage inherent in the problem.

1 THE PROBLEM IN GA TERMS

The Game of Life cellular automaton (Gardner 1970)

has been studied extensively and a large number of in-

teresting structures have been found (see for instance

http//home.interserve.com/�mniemiec/lifepage.htm).

These structures were found by trial and error, aided

by intuition. Genetic algorithm has the potential to

discover structures which may be impossible to �nd

through human intuition.

The transformation of cells in the Game of Life from

one epoch to the next is determined by their local

neighbourhoods. In terms of genetic algorithm it

means that there a strong linkage between correspond-

ing alleles. If the corresponding region of the under-

laying lattice is represented as a binary string, the

above means that even small building blocks (Goldberg

1989) are represented as long schemata and thus are

very prone to disruption during crossover. 2D form of

the genotype allows one to set up a crossover scheme

which minimizes the linkage disruption. It also allows

exploitation of symmetries of the underlaying square

lattice.

Finding period-1 structures (i.e. ones which are stable)

turns out to be very easy. However, in case of period-

2 structures the linkage is so strong that even with

the above choice, most of the o�spring have �tness

well below the �tness of the parents. In nature, when

chances of survival of o�spring are low, mating results

in a large number of o�spring. Consequently, each pair

of mating organisms was made to create a large brood

of o�spring and then the two best organisms from this

brood, augmented with the parents, were selected for

the new population. This increased the chances that

the good building blocks were retained and combined

into better structures.

In order to avoid convergence to uninteresting struc-

tures (very small ones or their independent combina-

tions) the �tness function had to be made dependent

on a number of characteristics of the structures, pro-

viding measures of various aspects which made a struc-

ture 'interesting'. Extensive numerical experiments

were required to determine types of functional depen-

dencies which would provide enough time for building

blocks to assemble into the perfect structures and yet

be fast enough to would overcome linkage disruption

inherent in crossover.

These experiments were performed �nding period-2

structures and the experienced gain was used in the

search for period-3 structures.

The problem was programmed in MATLAB.

2 RESULTS

The program �nds known period-2 and period-3 struc-

tures �tting in the 8x8 region (limitation due to avail-

able computer resources). Preliminary results indicate

that there are no structures in this region which repeat

themselves after two epochs, shifted orthgonally or di-

agonally.
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Abstract

The paper presents a genetic algorithm ap-
proach for evolving multi-agent reinforce-
ment learning systems that are made up of
a coalition of agents with bidding. The ex-
periment results show the advantage of this
approach over the single agent reinforcement
learning approach, the pure GA approach
and the reinforcement learning with bidding
approach.

1 GA-Based Multi-Agent
Reinforcement Learning

The general idea of our multi-agent reinforcement
learning system is as follows: There are a number of
individual agents. Each of them can select actions to
be performed at each step, which is done by the Q
module in the agent. For each agent, there is also a
controller CQ, which determines at each step whether
the agent should continue or relinquish control. Once
an agent relinquishes its control, to select the next
agent, it conducts a bidding process among agents.
Based on the bids, it decides which agent should take
over next from the current point on, and takes the bid
as its own reward.

We use genetic algorithm to evolve this multi-agent
reinforcement learning system. Two algorithms were
designed in our experiment. Algorithm 1 is a tradi-
tional genetic algorithm. We train a set of bidding
systems. We then select the best bidding systems by
using tournament selection. The new population is
composed of the best bidding systems, crossovers of
the best bidding systems and mutations of the best
bidding systems. After that, we train the new set of
bidding system.

In algorithm 1, because the mutation and crossover
are done randomly, in some cases, the performance of
the newly generated population is worse than that of
the old population. In algorithm 2, we restore the old
population in case the performance gets worse. We
also simplify the algorithm by using only one bidding
system to speed up computation. So the crossover and
mutation will happen within one bidding system.

2 Experiments

We use our multi-agent reinforcement learning system
for playing Backgammon game. Both algorithms’ per-
formance against the single agent shows that the sys-
tem has an advantage over the single agent. The high-
est winning percentage is 0.92. Between these 2 al-
gorithms, algorithm 1 has a better average winning
percentage when compare to algorithm 2. However,
the algorithm 2 has a much better winning percent-
age/time ratio. Further experiment shows that the
average performance of algorithm 1 is better than that
of the pure GA algorithm, the GA with RL, and RL
with Bidding. That means, all 3 components in our
system, GA, RL and bidding, are important. They
are synergistic. Missing any component leads to worse
performance.

3 Conclusion

In sum, we developed a GA bidding approach for per-
forming multi-agent reinforcement learning, to form
action sequences to deal with a complex situation: the
backgammon game. The experiment result shows the
advantage of the system over the single reinforcement
learning, the pure GA approach and the bidding sys-
tem without GA. The result of the experiments sug-
gests that our system may work well in more general
complex problems.
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SUMMARY

A new recombination framework for genetic algorithms
referred  to as the Collective Learning Genetic Algorithm
(CLGA) has been demonstrated which utilizes genotypic
learning to guide recombination deterministically in a
distributed network of interacting agents [Riopka and
Bock, 2000]. In the CLGA, individuals of the population
collaborate and exchange knowledge instead of symbols
in order to modify their own chromosome strings in a
process referred to as intelligent recombination. Thus,
random crossover is essentially replaced with a consensus
of information based on individual experience and
observation. In addition, individuals maintain their own
strings throughout evolution, preserving a modified string
only if it is the same or better than the last.

Although preliminary experiments suggest that the CLGA
may be an effective algorithm for searching for solutions
to highly epistatic, non-separable combinatorial
optimization problems, whether or not the mechanism of
genotypic learning is responsible for this apparent success
is less clear. It is possible that given the object-oriented
framework of the CLGA, any recombination method
substituted for intelligent recombination might result in
reasonable CLGA performance. Before devoting
significant effort into testing the CLGA, it is important to
establish the degree to which the central concept of the
CLGA, specifically genotypic learning, is relevant to its
successful operation.

The effect of genotypic learning is shown by comparing
the performance of the CLGA with the following
recombination mechanisms substituted for intelligent
recombination (optimized in the experiments over all
levels of epistasis): parameterized uniform crossover
(puc), two-point crossover (tpc), mutation-only (m) and
random information exchange (r). A non-optimal CLGA
was configured heuristically, similar to one used in
[Riopka and Bock, 2000] with a population of 572 but
without mutation. 50 NK-Landscape problems of size
N=20 with random linkage of K=2 and K=10 were tested.

Note that intelligent recombination consistently
outperforms random information exchange across all
levels of epistasis supporting the hypothesis that

genotypic learning is a relevant mechanism for
recombination. Intelligent recombination seems to behave
like parameterized uniform crossover at low levels of
epistasis and like mutation-only at high levels, suggesting
an ability to adapt to the level of problem epistasis.

It is not unreasonable to infer that as epistasis increases,
the amount of useful information available for intelligent
recombination decreases, due to decreasing correlation
between fitnesses of similar solutions in Hamming space.
Consequently, it becomes more and more difficult for the
CLGA to learn consistent relationships between bits due
to greater variance in solution fitness, causing intelligent
recombination to act  more intelligently at low levels of
epistasis but like mutation at high levels of epistasis.

Fig. 1: Normalized average best-so-far fitness (NABF)
          plots with 95% confidence intervals are shown.
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1 INTRODUCTION

Let G = (V,E) be an undirected graph. A dom-
inating set is any subset S ⊆ V such that, for all
v ∈ V − S, v is adjacent to at least one element
of S. The problem of determining, for arbitrary G
and integer K, whether or not G has a dominating
set of size less than or equal to K, is NP-complete
(Garey & Johnson 1979); we denote this decision prob-
lem and the corresponding optimization problem by
Dom. This paper represents a first attempt to ap-
ply genetic algorithms to the dominating set problem.
We identify two classes of graphs—random geomet-
ric graphs and lattice-partitioned degree-4 graphs—for
which GAs significantly outperform the greedy heuris-
tic.

Random geometric graphs have been well-studied in
the computer science and mathematics literature.
A lattice-partitioned random degree-4 graph is con-
structed as follows: form a p × q lattice of cells, each
containing three vertices. Within each pair of horizon-
tally and vertically adjacent cells, construct a random
matching between the three vertices in each cell (wrap
around for cells at the boundaries of the lattice).

2 THE PATCHY GA

The Patchy GA is a steady-state, elitist algorithm. It
generates an initial population of dominating sets us-
ing a greedy algorithm with random tie-breaking. In
each succeeding generation, two chromosomes are cho-
sen, a covering set of subgraphs (“patches”) is con-
structed, and crossover is performed by intersecting
the dominating set of one or the other parent with
each of the patches and then extending the resulting
vertex set to a dominating set for the graph. The worst
element of the population is replaced. (Mutation was
not investigated in this study.)

To construct patches for geometric graphs, we select a
line passing through the unit square and partition the
vertices into those to the left and those to the right of
the line. For lattice-partitioned graphs we choose as
the dividing line a zig-zag path running between the
“cells” that were used to partition the vertices into
three-element subsets.

3 EXPERIMENTAL RESULTS

We ran Greedy fifty times on each of ten graphs:
five random geometric graphs of size 1000 and five
lattice-partitioned degree-4 graphs of size 7500. We
ran Patchy GA five times on each of the ten graphs,
halting it after 50 generations. The best-of-five re-
sults for Patchy were consistently better than the best-
of-fifty results for Greedy on every one of the graphs
tested; the difference in results as a percentage of the
smaller of the two results ranged from 0.1% to 3.2%.
Moreover, in eight of the ten tests, the worst result
from the Patchy GA was better than the best Greedy
result, sometimes by as much as 2.2% of the smaller
value. The lattice-partitioned graphs were the ones
in which the improvement was most noticeable. Dif-
ferences in dominating set size tended to be close to
1% for geometric graphs, but between 2% and 3% for
lattice-partitioned graphs.
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wkh gdwd xvlqj dx{loldu| wdeohv1

Wuhh edvhg IGD iru Lqwhjhuv +Lqw0Wuhh,

VWHS 3= Vhw w + 31 Jhqhudwh Q  3 srlqwv udq0

grpo|1

VWHS 4= Vhohfw n � Q srlqwv dffruglqj wr d vhohfwlrq

phwkrg1

VWHS 5= Fuhdwh wkh wuhh W xvlqj dq dojrulwkp iru
�qglqj wkh pxwxdo lqirupdwlrq vwudljkw iurp wkh srs0

xodwlrq/ dqg wkh PZVW phwkrg ^4`1

VWHS 6= Fuhdwh/ xvlqj W / wkh dx{loldu| wdeohv wkdw

uhsuhvhqw wkh lqirupdwlrq vwruhg lq wkh vhohfwhg vhw1

VWHS 7= Jhqhudwh Q qhz srlqwv xvlqj W dqg wkh
dx{loldu| wdeohv1 Vhw w + w. 4

VWHS 8= Li wkh whuplqdwlrq fulwhuld duh qrw phw/ jr

wr VWHS 4

Iljxuh 4= Jhqhudo vfkhph ri wkh IGDv wkdw frqvlghu

xs wr sdluzlvh ghshqghqflhv

Wkh vwuxfwxuh ri wkh wuhh lv fdofxodwhg olnh lq ^4`1 Wr

jhqhudwh qhz yhfwruv d gl�huhqw dojrulwkp lv xvhg1 Ohw
[ @ +[4> ===> [q, zkhuh [l lv d glvfuhwh yduldeoh zlwk

ul +qrw qhfhvvdulo| frqvhfxwlyh, srvvleoh dvvljqphqwv =

+yl>4> ===> yl>ul, dqg zh zloo ghqrwh rqh ri wkhvh srvvleoh
lqvwdqwldwlrqv dv {l/ l1h1 {l @ yl>m zlwk m 5 i4> 5> ===> ulj1

Wzr wdeohv duh fuhdwhg wkdw doorz wr lghqwli| zklfk duh
wkh ihdvleoh ydoxhv ym � +ym>4> ===> ymm>um , d yduldeoh [m

fdq wdnh jlyhq wkdw lwv sduhqw [l kdv ehhq dvvljqhg d

ydoxh yl � +yl>4> ===> yl>ul,1

Zlwk wklv zrun zh kdyh wulhg wr sduwldoo| uhphg| dq

xqvdwlvidfwru| vwdwh ri d�dluv lq wkh xvh ri IGDv iru
wkh rswlpl}dwlrq ri lqwhjhu sureohpv1 Wkh dojrulwkp

vkrzv ehwwhu uhvxowv wkdq wkh Xqlyduldwh Pdujlqdo Glv0

wulexwlrq Dojrulwkp iru wkh rswlpl}dwlrq ri wkh ixqf0
wlrqv frqvlghuhg1 Wklv dojrulwkp kdv dssolfdwlrq wr

wkh rswlpl}dwlrq ri frqvwudlqhg sureohpv zlwk lqwhjhu

uhsuhvhqwdwlrq1

Dfnqrzohgjphqwv

Wklv zrun zdv ixqghg e| wkh Fxedq Plqlvwu| ri Vfl0

hqfh/ Whfkqrorj| dqg Hqylurqphqw/ xqghu wkh surmhfw

Orz Frvw Hyroxwlrqdu| Dojrulwkpv1

�
�
�
��



^4` Vkxphhw Edoxmd dqg Vfrww Gdylhv1 Xvlqj rswlpdo

ghshqghqf|0wuhhv iru frpelqdwruldo rswlpl}dwlrq=

Ohduqlqj wkh vwuxfwxuh ri wkh vhdufk vsdfh1 Lq

Surfhhglqjv ri wkh 47wk Lqwhuqdwlrqdo Frqihuhqfh

rq Pdfklqh Ohduqlqj/ sdjhv 63�6;1 Prujdq Ndxi0

pdqq/ 4<<:1
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This paper analyzes the e�ects of tournament selec-

tion (Goldberg, Korb, & Deb, 1989) with replacement

(TWR) on the convergence time and population siz-

ing for selectorecombinative genetic algorithms. In

contrast to tournament selection without replacement

(TWOR), TWR has not received considerable analyti-

cal attention in genetic algorithms literature. TWR is

usually considered to be equivalent to TWOR. How-

ever, we empirically show that TWR requires more

function evaluations for attaining the same accuracy

as TWOR.

We observe that though the run duration is same for

both TWR and TWOR, the population size required

for successful convergence is not. This is because TWR

is a noisy scheme when compared to TWOR. In TWR

the best individual in the population can have all n

copies or none at all, where as in TWOR the best indi-

vidual has exactly s copies. We model this discrepancy

as an apparent noise in the population-sizing model

(Miller, 1997), similar to that proposed by Goldberg

et al. (1992) for roulette-wheel selection.

To quantify the noise term, recognize that the process

of selecting an individual is a Bernoulli trial and this

process is repeated n=s times. Therefore the process

of selecting an individual i in n=s trials is binomially

distributed with probability pi = s=n. The variance of

the number of tournaments that the individual i par-

ticipates in is (n=s)pi (1� pi). Summing over all indi-

viduals we get a variance (s=n)
Pn=s

i=1(n=s)pi (1� pi) =

(n� s)=n � 1. Since this process is repeated s times,

the variance of tournaments that an individual i par-

ticipates in is s(n � s)=n � s. This variance is in the

units of squared individuals and has to be converted it

into units of squared �tness. We recognize that an in-

dividual must change by an amount equal to some pro-

portion of the population �tness variance to increase

or decrease its numbers by s. Thus, the appropriate

variance due to TWR is cos�
2

F , where co is a constant

and is empirically determined to be 0.25. Using this
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Figure 1: Proportion of correct BBs, given by equation

(1) compared to experimental results

noise due to selection as an external noise term, the

approximate population-sizing model for TWR can be

written as

n = �
�2k�1 log( )

d

q
� (1 + cos)�

2

F : (1)

The success rate 1�  computed for di�erent tourna-

ment size values and di�erent problems sizes as a func-

tion of population size are veri�ed with computational

results in �gure 1. The experimental results are for

OneMax and are averaged over 100 runs. The results

demonstrate signi�cant agreement with the analytical

relation.
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1 INTRODUCTION

In real-coded GAs, most crossover operators like to
search the center of search space much more than the
other [1]. When a crossover operator has such bias, it
will not work on functions whose optima are near the
boundary of the search space. To reduce the sampling
bias, several methods have been proposed. BEM [1]
extends the search space to move the relative posi-
tion of the optimum toward the center of the search
space. BEM allows individuals to be located outside
the search space. The functional value of individual i

with real vector ~X(i) = (x
(i)
1 , . . . , x

(i)
n ) is calculated as

the followings:

f( ~X(i)) = f(~Y (i)), (1)

~Y (i) = (y
(i)
1 , . . . , y

(i)
n ),

y
(i)
j =


2 minj − x(i)j : if xj < minj

2 maxj − x(i)j : if xj > maxj

x
(i)
j : otherwise,

where, minj and maxj are the lower and upper limits
of parameter range respectively. BEM has one param-
eter, re (0 < re < 1), that controls how much search
space is extended. Although existing methods succeed
in reducing the sampling bias, from the viewpoint of
robustness, no sampling bias is desirable.

2 TSC

We propose a new method, Toroidal Search Space Con-
version (TSC), to remove the sampling bias. TSC con-
verts search space with boundary into toroidal one.
This conversion is performed as follows:

step1 Extend the search space like BEMwith re=1.0,

step2 Connect each e-maxj of the extended search
space to corresponding e-minj .

When re=1.0, the width of the search space doubles.
The landscape of the outside of the search space is

Figure 1: An example of TSC

defined as if mirrors stand on each boundary. An ex-
ample of the converted search space is shown in Fig.1.
A generated individual i is modified as follows:

~X(i) = ~Z(i), (2)

~Z(i) = (z
(i)
1 , . . . , z

(i)
n ),

z
(i)
j =


x
(i)
j + 2l : if xj < e-minj

x
(i)
j − 2l : if xj > e-maxj

x
(i)
j : otherwise.

For example, A and B, located outside of the extended
search space, in Fig.1 are modified to A0 and B0 respec-
tively. When the distance between A0 and B0 is farther
than that between A0 and B (=A and B0), crossover
operation using A0 and B is performed instead of A0

and B0. When the distance between parents is far,
crossover does not generate children in the center of
the search space, but does them near the boundary
close to the parents. In TSC, initial individuals are
placed in the extended search space uniformly. Ac-
cordingly, by this proposed method, any position on
this search space become equivalent to any others. The
converted search space has no sampling bias.
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Abstract
In this paper we show that genetic algorithms

(GA) can be used to evolve teams whose

members cooperate and specialize. Our re-

sults indicate that with an appropriate coop-

eration mechanism teams evolved with a GA

can perform better than evolved individuals.

1 Introduction
Genetic programming (GP) has had considerable suc-

cess evolving teams of programs that cooperate to out-

perform simgle program, see for eample (Hayes et al.

95, Luke and Spector, 96). More recently GP has

been used to evolve teams that use explicit cooper-

ation mechanisms to solve problems that do not re-

quire teams, such as the even-parity problem and func-

tion regression problems (Soule, 99, Soule, 00). These

problems are well suited to GAs. Thus, it should be

possible to use a similar cooperative, team based ap-

proach with GAs. This paper uses an explicit coop-

eration mechanism to solve several function regression

problems. This is a �rst result showing GAs can evolve

cooperative teams with specialized members.

2 Experimental Design
We use the symbolic regression problem on the func-

tions f1(x) = sin(x) and f2(x) = sin(x)+0:5cos(2�x):

40 evenly destributed points in the range(��; pi) are

used as the test set. The chromosome is 144 bits long.

It is divided into 6 sections of 24 bits each. The �rst

20 bits of each section represents a coe�cient. These

20 bits are Grey coded and scaled to give a value in the

range -2 to 2. The next 4 bits of each section represent

an exponent. These 4 bits are also Grey coded and are

scaled to an integer value between 7 and -8. Thus, the

solution generated is polynomial with six terms with

coe�cients between 2 and -2 and exponents between 7

and -8. Teams consist of 3 or 5 chromosomes, the team

members. One point crossover between team members

is used.

In the �rst cooperation mechanism a majority vote is

applied to each bit in the chromosome, to produce a

single chromosome for evaluation (bitwise voting). In

the second cooperation mechanism used median vot-

ing. Each team member's chromosome is translated

into a polynomial and evaluated at each of the 40 test

points. At each test point the median of the N mem-

ber values is used as the `actual' solution for purposes

of determining �tness (median voting). The GA is

generational; population size is 300; 50 trials and 50

generations are used; crossover rate is 0.8; mutation

rate is 1/chromosome length (0.006944), tournament

selection (7), and elitism (5).

3 Results
Median voting performed signi�cantly better than ei-

ther individuals or bitwise voting on both test func-

tions. Bitwise voting performed no better than normal

individuals. (Student's two-tailed t-test p < 0:05 was

used to test siginifcance.)

Medain voting produced specialized, cooperating team

members, but bitwise voting did not. These results

show that a GA can be used to evolve cooperative

teams similar to those that have been evolved with a

GP. However, the choice of cooperation mechanism is

clearly important.
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Although the rigorous models of genetic algorithms
(GAs) [1, 2] are a powerful method to predict the ideal
(infinite-population) behavior of a simple GA, they are
no use for the analysis of problems with a large string
length (or schema order). The state of a population
is represented by a 2o(H)-dimensional frequency vec-
tor (o(H) is the order of a target schema H); hence
the computational cost for a model calculation is pro-
portional to 23o(H) or 22o(H) × T (T is the generation
number). To reduce the dimension of this vector, here
we extend a vector representation method established
by Suzuki [3] and formulate a set of evolution equa-
tions for quasi-schemata.

To analyze the evolution of the target schema H ,
we separate the whole bit field (binary loci) into
E subfields {F1, F2, · · · , Fe, · · · , FE}. Then, a quasi-
schema G{ie} ≡ G{i1,i2,···,ie,···,iE} is defined as a set of
schemata which have the same defining loci as H , i1
anti-bits in F1, i2 anti-bits in F2, and so on (where
an ‘anti-bit’ is a defining bit different from H ’s). For
example, for H = [000*0**0], if we define the sub-
fields as F1 = [####....] and F2 = [....####] (‘#’/‘.’
stand for the inclusion/exclusion of the locus in/from
the subfield), quasi-schema G{2,1} is

G{2,1} = [110*1**0] ∨ [101*1**0] ∨ [011*1**0] ∨
[110*0**1] ∨ [101*0**1] ∨ [011*0**1].

With oe = oe(H) defined as the number of H ’s defin-
ing loci in the e-th subfield (Fe), the number of dif-
ferent quasi-schemata is

∏E
e=1(oe + 1), and we de-

scribe the state of a population with a (
∏E

e=1(oe +1))-
dimensional frequency vector {x{ie}} whose {ie}th el-
ement is the expected frequency of G{ie}. The evolu-
tionary dynamics of an infinite population under GAs
are then represented by a set of recursive formulas for
selection, mutation, and crossover as

x{ie}
sel.−→ f(G{ie})

f
x{ie}, (1a)

x{ie}
mut.−→

∑

{je}
x{je}M{je}{ie}, (1b)

x{ie}
cross.−→ (1− pc)x{ie} + pc

∑

{je}

∑

{ke}
x{je}x{ke}

×C{je}{ke}{ie}, (1c)

where f(G{ie}) is the average fitness of strings belong-
ing to quasi-schema G{ie}, f is the average population
fitness, and pc is the probability of the crossing-over
occurring per string pair. The summation for {je} and
{ke} is taken for all of the

∏
e(oe +1) quasi-schemata.

Rigorous formulas for M{je}{ie} and C{je}{ke}{ie} are
given under the mutation probability pm and one-point
crossover, respectively, each of which are evaluated
with the computational cost proportional to E×o(H).

From some numerical experiments, it has been proved
that the established formulas provide us with a method
to predict the schema evolution with sufficient accu-
racy (for some problems) and a polynomial computa-
tional cost (∝ (o(H)

E +1)3E ·E · o(H)) for fixed E. We
infer that the method can be a powerful tool to ana-
lyze GAs under a function wherein the evolution of a
large-order schema plays a vitally important role.
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Abstract:  In this paper, we propose a method of linkage
identification in real-coded GAs with simplex crossover
(SPX) and evaluate it using test functions.

1. Introduction
Previous studies [Tsutsui 99], [Higuchi 00] have proposed
simplex crossover (SPX) for real-coded GAs. SPX works
well on various test functions. However, SPX fails on
functions that consist of multiple tightly linked sub-
functions. On those functions, SPX should be applied on
each tightly linked parameters group, i.e., each simplex should
be formed in each subspace in which parameters are tightly
linked. Thus, we need a method of identifying those tightly
linked parameter groups.

In this paper, we propose a method of linkage
identification for real-coded GAs with SPX and evaluate it
using test functions.

2. SPX [Tsutsui 99], [Higuchi 00].
The SPX operator uses n+1 parental vectors X

i
, i = 0, 1, ..., n

for  recombination. These (n+1) vectors form a simplex in Rn.
Then this simplex is expanded in each direction (X

i
-O) to

some extent, where O is the center of mass of (n+1) parental
vectors. Offspring are then generated by uniformly picking
vector values from this expanded simplex.

3. Linkage Identification
In this study, we consider evaluation functions that can be
written as

F(X)=F
tight,1

(X
tight,1

) +, ..., + F
tight,S

(X
tight,S

)
Here, each sub-function F

tight,s
(X

tight,s
) (s=1, ..., S) has tight

linkage among parameters. For these kinds of functions, we
intuitively notice that we it is better to apply SPX in each
subspace X

tight,s
 (s=1,...,S) separately. Then the problem is

how to identifiy each tight linkage group.
The linkage information among parameters can be

obtained by observing the distribution of individuals in a
population. If F(X) has a linkage among parameters on loci
x

i
, x

j
, and x

k
, then there should be some degree of correlation

between x
i
-x

j
, x

j
-x

k
, and x

k
-x

i
, respectively. Thus if we examine

the correlation coefficient matrix R =[ ρ
ij
 ] of parameter values

of individuals in a population, linkage among parameters
might be detected. However, this normal correlation
coefficient can examine only linear correlations among
parameters. We must use some non-linear estimation
technique such as non-linear regression or higher moment

methods. This paper
propose a piecewise
interval correlation by
i t e r a t i o n  ( P I C I )
algorithm, a more simple
and straightforward
extension of  the linear
correlation. It calculates
correlation coefficients
of piecewise intervals
(Fig. 1).

4.  Experiments
To evaluate the linkage
identification method
proposed in Section 3, we
run a real-coded GA. Here we show only a typical results
(see Table 1) on the following function:

 F
R2-n

(X)=F
R2

(x
1
,x

2
)+F

R2
(x

3
,x

4
)+ ... + F

R2
(x

n-1
,x

n
)

where F
R2

 (x
1
,x

2
) is the Rosenbrock function. We can see the

the effect of the proposed method.

5.  Conclusions
In this paper, we have
proposed a method for
linkage identification in real-
coded GAs with SPX.
W i t h o u t  l i n k a g e
identification, it was difficult
for the algorithm with SPX to find the optimal solution on
these kinds of test functions. With the proposed linkage
identification method, the algorithm found optimum solutions
fairly well on the test functions. This work was partialy
supported by AFOSR grant No. F49620-00-0163 and NSF
grant DMI-9908252.
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No of parameters
n #OPT MNE #OPT MNE
4 20 67,721.8 20 54,830.8
8 20 191,046.8 20 135,136.1
12 18 697,515.4 20 225,800.8
16 0 -- 20 295,944.5
20 0 -- 20 354,135.5
24 0 -- 20 402,790.9
28 0 -- 20 448,570.9
32 0 -- 20 497,641.3
36 0 -- 20 540,894.5
40 0 -- 20 584,640.5

with linkage learningwithout linkage learning

Table 1 Results on F2-n(X)

divide space into four child sub-
spaces  and call Corr (Ν s, x(s)

i, x(s)
j) 

if Ns>N min for s=1,..,4, 
recursively

Corr( Ν , xi, xj)

N1 N2

N4N3

N1 N2

N4N3

calculate correlat ion 
coeffic ient between xi
and xj and set its  
absolute value as  ρ

]4,1[,| min ∈≥∃ sNNs s

s
s

s
s

N
sN

ρρ ×
∑

= ∑
==

4

1
4

1

1

take a weighted average as

F

T

return  ρ

N, xi , xj

calculate correlat ion 
coeffic ient between xi
and xj and set its  
absolute value as  ρ

]4,1[,| min ∈≥∃ sNNs s ]4,1[,| min ∈≥∃ sNNs s

s
s

s
s

N
sN

ρρ ×
∑

= ∑
==

4

1
4

1

1

take a weighted average as

F

T

return  ρ

N, xi , xj

N1<N min

ρ 1= Corr ( Ν 1, x (1) 
i, x (1) 

j)Ν 1= 0, ρ 1= 0
F

T
N4<Nmin

ρ 4= Corr ( Ν 4, x (4) 
i, x (4) 

j)Ν 4= 0, ρ 4= 0
F

T
N1<N min

ρ 1= Corr ( Ν 1, x (1) 
i, x (1) 

j)Ν 1= 0, ρ 1= 0
F

T
N1<N min

ρ 1= Corr ( Ν 1, x (1) 
i, x (1) 

j)Ν 1= 0, ρ 1= 0
F

T
N4<Nmin

ρ 4= Corr ( Ν 4, x (4) 
i, x (4) 

j)Ν 4= 0, ρ 4= 0
F

T
N4<Nmin

ρ 4= Corr ( Ν 4, x (4) 
i, x (4) 

j)Ν 4= 0, ρ 4= 0
F

T

Fig.  1 PICI algorithm
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Abstract

There are applications where a binary image

is given and a shape has to be reconstructed

with some kind of evolutionary algorithms.

A solution for this problem usually highly de-

pends on the �tness function. The main goal

of this research is to �nd good �tness func-

tions and fast calculation methods for them.

1 INTRODUCTION

Some experiments have already been done to describe

an image using Evolutionary Algorithms, but they

used �tness functions not applicable for binary im-

ages [1] [2]. This project however uses �tness functions

based on the pixel by pixel comparison of two images.

2 FITNESS FUNCTIONS

Some simple functions can easily be given such as the

following �tnesses:

simple and modi�ed quadratic error A usual er-

ror function is the so-called quadratic error. This

function can be slightly modi�ed by distinguish-

ing the di�erent errors.

multi-level �tness When using multi-level �tness,

the distance is coded into the destination image

before the process, so without the loss of speed,

the distance can also be calculated into the �tness.

distance based �tness Using the idea from the pre-

vious �tness function a more sophisticated version

can also be given, where the �tness is a function of

the distance. The tests have shown, that this �t-

ness results in a faster convergence than quadratic

error.

2.1 CALCULATING THE FITNESS

One way to calculate �tness is to generate the image

and then compare it with the original one. Another

way is to do the comparison during drawing. Accord-

ing to the tests, the latter one, called on-line, is faster,

and it was proven that it can be applied for simple,

and sometimes also for complex �tness functions.

2.2 EXTENDED FITNESS FUNCTIONS

As it was mentioned before in some cases the simple

�tness functions have to be extended. Some possible

extensions are the following:

overwriting pixels This can be handled by marking

the already drawn pixels. This can cause a slow-

down, but with a special algorithm, this loss of

speed can be eÆciently reduced.

handling thick lines Since it can be considered as a

special case of the previous one, similar ideas can

be used to handle thick lines.

3 CONCLUSION

With the help of the theoretical foundations eÆcient

algorithms can be de�ned for �tness functions, which

take more information into consideration. And better

�tness functions usually mean faster convergence.
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Abstract

In this paper we propose a new parallel ap-

proach to genetic algorithms that has shown

interesting performance concerning both the

speedup and the quality of the solutions.

1 INTRODUCTION

Most of the parallel GAs divide the genetic population

into several independent nests or niches, on which the

selection and crossover operations act locally (Cant�u-

Paz, 1998). The global performance is insured by pe-

riodic migration of some individuals between subpop-

ulations. In this paper we introduce a new parallel

model for GAs for which the problem to be solved is

divided among processes.

2 MODEL DESCRIPTION

Let L be the size of the individual, and np the number

of processes. In our model, the process number i is

evolving the genes corresponding to the places from

i �L=np to (i+1) �L=np� 1, where both the process

numbers and the gene positions start from 0.

To evaluate the partial individuals generated by each

process, we compose complete individuals by period-

ically exchanging information between processes. We

estimate the �tness of each partial individual by aver-

aging the �tness of several complete individuals con-

taining it.

To test the new model we have used the set of standard

test functions (minimization problems), the Hamilto-

nian circuits (HC) (Vrajitoru, 1999), and several de-

ceptive functions. The experiments are based on 40

trials in each case with a population size of 50 and a

generation number of 500. We have used a combina-

Table 1: Average results and speedup

Average Fitness Standard Deception HC

sequential 2.87 2673.73 0.946

parallel 1.69 2812.20 0.948

speedup 27.77 29.10 44.68

nr. of processes 2 - 5 4 4

tion of the 1-point, 2-point, uniform and dissociated

crossover operators.

Table 1 shows the average results of the sequential al-

gorithm on each of these problems, as well as those of

the best con�guration of our parallel model, for which

the processes exchange 2 individuals every 50 genera-

tions. The minimum for the set of standard functions

is equal to 0. The maximal �tness is equal to 3000 for

the deception problems, and to 1 for the HC problems.

The third line presents the average speedup for each

problem as a percentage of the sequential execution

time. The last line contains the number of processes

used in each case.

From this table we can conclude that our parallel im-

plementation of GAs is interesting both from the point

of view of the quality of the solutions, and of the

speedup.
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