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Abstract

Studies of artificial life (alife) attempt to
simulate simple living beings. On the other hand,
autonomous agents researchers are interested in
building agents that are able to complete a
particular task without supervision. In this
research, these two areas of artificial intelligence
are combined into what we call "Autonomous
Life Agent" (ALA). ALA is an artificial agent
that is sent to some environment in which to live
without any supervision or any predefined
behaviour rules. The primary goal of the agent is
to learn how to survive in its artificial
environment. We utilize a recurrent neural
network (RNN) to determine the agent's actions.
A novel ALA Training System is developed that
evolves RNN topology and link weights
simultaneously using genetic algorithms.

1 GENERAL DESCRIPTION

ALA has a number of internal variables such as energy
and maintenance levels. Each variable is reduced as the
agent acts in the environment by a user-controlled rate.
The agent dies when one of the variables becomes
negative. Therefore, to remain alive, the agent has to
periodically increment the values of the internal variables
by visiting specific cells in the world that correspond to
each variable. This increment is analogous to acquiring
energy from energy cells and receiving maintenance in
home cells. There are three types of cells: empty cells that
are passive, wall cells that are fatal, and active cells that
increment internal variables. Active cells have a time
delay before they can be active again after being used.

This task involves hidden system states. Some
information about the world is not available to the agent
as input. For instance, at any time, the agent can sense
only the immediately surrounding cells and the current
cell. Thus, the agent has to explore the world and encode
its information in the agent�s brain. Furthermore, some

data is not available to the agent at all such as the time
delay of the active cells. The agent must automatically
discover this information by observing the visible system
states.

2 APPROACH

The ALA Training System consists of five components:
(1) agent, (2) genome, (3) population, (4) world, and (5)
genetic engine. The internal structure of the agent is a
three-layer RNN where each layer is fully connected with
the next layer. Some of the nodes in the hidden layer have
recurrent links. The genome completely defines an agent
by specifying its topology definition and the link weights.
The genome uses numerical encoding. The population
uses tournament selection to select genomes for
reproduction. The world evaluates agents by measuring
how long they can survive in the environment. If an agent
can live up to the maximum age then it is considered a
solution and the evolution terminates.

3 EXPERIMENTAL RESULTS

We are able to evolve agents that can live a 10x10 world
with 3 active cells. The agents start their life span from a
random cell and are evolved on two distinct but similar
environments. The agents are also able to live in unseen
environment that is similar to the training environment.
These agents have few hidden neurons (1-3) and some of
them do not have any recurrent links.

4 CONCLUSION

The training system is robust, flexible, fully configurable,
and efficient. The contribution of this research extends
beyond building training and simulation environment. It
leads to discovering that few nodes in the hidden layer of
the RNN are sufficient to control ALAs in non-trivial
world definitions. Furthermore, this research showed
through empirical experiments that recurrent links do not
enhance the capabilities of neural networks in controlling
autonomous agents in this problem definition.
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1 INTRODUCTION

In this work we propose a hybrid decision
tree/immunological algorithm method for rule
discovery that copes with the problem of small
disjuncts. The basic idea is that examples belonging to
large disjuncts are classified by rules produced by a
decision-tree algorithm, while examples belonging to
small disjuncts are classified by rules produced by a
new immunological algorithm, specifically designed for
discovering small-disjunct rules.

2 A HYBRID DECISION -TREE /
IMMUNOLOGICAL  ALGORITHM

Our hybrid algorithm consists of two phases. In the first
phase we run the C4.5 decision tree induction
algorithm. The induced, pruned tree is transformed into
a set of rules. Hence, a decision tree with d leaves is
transformed into a rule set with d rules (or disjuncts).
Each of these rules is considered either as a small
disjunct or as a “large” (non-small) disjunct, depending
on whether or not its coverage (the number of examples
covered by the rule) is smaller than a given threshold.

The second phase consists of using an immunological
algorithm to discover rules covering the examples
belonging to small disjuncts. We have developed a new
immunological algorithm (IA) for this phase.

The recognition and response to antigens (small-
disjunct examples) is performed by antibodies, which in
our system are represented by IF-THEN rules.

Each antibody represents a conjunction of conditions
composing a given rule antecedent. Each condition is an
attribute-value pair. Each gene represents a rule
condition of the form Ai Opi Vij, where the subscript i
identifies the rule condition, i = 1,..., n (where n is the
number of attributes); Ai is the i-th attribute; Vij is the j-
th value of the domain of Ai; and Op is a
logical/relational operator compatible with attribute Ai –
see Figure 2. Bi represents an active bit, which takes on
the value 1 or 0 to indicate whether or not, respectively,
the i-th condition is present in the rule antecedent.

 A1 Op1{V1j..}   B1   . . . Ai Opi{Vij..}   Bi    . . .   An Opn{Vnj..}   Bn

  Figure 1: Structure of an antibody (rule antecedent).

In our experiments we have used a commonplace
definition of small disjunct, based on a fixed threshold
of the number of examples covered by the disjunct. The
general definition is: “A decision-tree leaf is considered
a small disjunct if and only if the number of examples
belonging to that leaf is smaller than or equal to a fixed
size S.” We did experiments with four different values
for the parameter S: S = 3, S = 5, S = 10 and S = 15.

The examples of the test set were classified as follows:
the examples belonging to large disjuncts are classified
by rules produced by a decision-tree algorithm (C4.5)
and examples belonging to small disjuncts are classified
by rules produced by our immunological algorithm.

Table 1: Accuracy rate (on test set) comparing our
hybrid C4.5/IA algorithm with C4.5

In Table 1 the entries where the hybrid C4.5/IA
outperforms C4.5 alone are shown in bold. (We used
public-domain data sets from the UCI repository –
www.ics.uci.edu/~mlearn/MLRepository.html.) The
results of Table 1 show that, when S=10 or S=15, the
hybrid C4.5/IA is competitive with C4.5 alone.

3 CONCLUSION
The above computational results show that, as long as
we are careful to define what constitutes a small
disjunct, the hybrid C4.5/IA is competitive with C4.5
alone. A reasonable definition of small disjuncts is a
decision tree leaf node having ≤ 10 or ≤ 15 examples
(S=10 and S=15).  Smaller values of S would mean
there are two few examples for reliable generalization,
and larger values of S would go against the notion of
“small“ disjuncts.

         Hybrid     C4.5 / IA
data set C4.5 S = 3 S = 5 S = 10 S = 15

Adult 0,7860 0,7818 0,7782 0,7927 0,7869
Wave 0,7554 0,7239 0,6982 0,6135 0,5860
Connect 0,7862 0,7795 0,7773 0,7681 0,7625
Splice 0,4598 0,4618 0,4638 0,4680 0,4803
Hepatitis 0,8364 0,8254 0,8058 0,8621 0,8534
Segmentation 0,9767 0,9462 0,9344 0,9297 0,9326
Voting 0,9463 0,9144 0,8990 0,8800 0,8869
CRX 0,8453 0,7918 0,7707 0,8521 0,8683
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Abstract

This work models the emergence of signaling

pathways in living cells using techniques bor-

rowed from genetic and evolutionary compu-

tation. It uses �ve-level GA: �ve cooperating

GAs working in parallel on di�erent levels of

abstraction.

The need to coordinate the behavior of individual cells

for the bene�t of the whole organism has led to the

emergence of elaborate communication mechanisms

known as signaling networks. Signaling networks relay

information from the outside world to the nucleus of

the cell so that it can make decisions adequate for the

organism's survival.

The multi-level representation of our GA reects the

complexity of living cells. Such representation suggests

the multi-layered structure of the algorithm. There

are �ve levels of abstraction in this evolutionary pro-

cedure: (1) domain, (2) protein, (3) cell, (4) popu-

lation, and (5) ensemble. An upper level embeds a

set of objects of the next lower level. On each level

we have some evolutionary operators de�ned: muta-

tion, crossover, and selection, although not all of them

should necessarily be present at each level. In terms

of one particular level, the representation can be re-

garded as linear, so the usual GA procedures can be

used. The genotype of each upper level is a set of geno-

types of its adjacent lower level. This forms a hierar-

chical genotype structure that reects the hierarchical

nature of the object of modeling.

Finding appropriate criteria for selection was an im-

portant task in this research, because the correspond-

ing criteria in nature are not known.

Results for biology and GAs

Software for modeling of signaling net evolution was

developed. Experiments show how signaling nets

emerge as a result of evolution, as well as showing the

structure of signaling nets under di�erent criteria of

selection and di�erent initial conditions.

In the presence of many layers of evolutionary process

two e�ects can be observed: compensation and rela-

tivity of genetic operators. The lack of an operator on

a particular layer is compensated by peer processes on

other layers. The relativity of genetic operators is an-

other property of evolutionary process. The observed

result of the same process appears to be di�erent for

observers at di�erent layers: an e�ect of crossover in

one layer appears as a mutation to an observer in the

adjacent upper layer.

The full version of this paper is available as

IlliGAL Technical Report #2001006 at www-

illigal.ge.uiuc.edu.
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Abstract

Computationalexperimentswereperformedwith
amulti-issuealternating-offersbargainingmodel
in which several issuesare negotiated in se-
quence.Thestrategiesthatdeterminetheagents’
behaviors aregeneratedby individual evolution
strategies. As opposedto the conventionalset-
ting wheretheissuesaredisputedsimultaneously
in bundles,agentsnegotiateeachissueindividu-
ally. Conformitywith gametheoreticpredictions
wasexperimentallyverified.

Recently, therehasbeena growing intensificationin the
relationsbetweeneconomicsandcomputerscience,more
specificallywith the areaof artificial intelligence. Such
cross-fertilizationis doubtlessbeneficialfor bothsides.For
instance,economicscanloosenup from therestrictionsof
perfectrationality, that have beenmolding in a greatex-
tent, large part of their models.On the otherhand,asthe
numberof market institutionsin the Internetgrows, there
is an imminentpossibility that computationalagentswill
increasinglyplay animportantrole in thedeterminationof
themarketdynamics.Sincethefield of economicshasded-
icatedmuchof its effortsto thestudyof coordinationof de-
centralizedsystemspopulatedwith self-interestedindivid-
uals,from thecomputersciencepointof view suchbodyof
work representsavaluablesourceof ideasfor thedesignof
innovativeapproachesto dealwith distributedsystems.

In this double-foldedspirit, computationalexperiments
wereperformedwith a sequentialmulti-issuealternating-
offersbargainingmodel,basedontheframework presented
in [1, 2]. A bargainingsituationconsistsof two or more
playerstrying to engagein amutuallybeneficialagreement
over a setof issues.The players,or agents,have a com-
mon interestto cooperate;the questionthat remainsopen
is which oneof the possiblyseveral compromisesettings
will bechosenby theplayers.In analternating-offersbar-

1Webaddress:http://www.isd.atr.co.jp/˜eiji

gainingmodel,thepathtowardsanagreementinvolvesthe
direct interactionof theplayers,who will make offersand
counteroffers to eachotherthroughseveral stages,until a
compromisethatis acceptedby all thepartiesis achieved.

In the conventionalsetting,the issuesaredisputedsimul-
taneously. Our interest in the sequentialsettingof bar-
gainingprocesseslayson thefact thatoftenthenegotiated
issueshave time-varying, inter-dependentcomplementari-
ties. That is, from the point of view of the players,the
valuationof certainissuemaychangeaccordingto theutil-
ities thatwereobtainedwith otherissuesin theagenda;if
thenegotiationis madein bundles,theplayershaveto con-
sider theseinter-relationshipsin advancein order to cal-
culatethe utilities of the possibleoutcomesandsettlean
agreementthat providesa good trade-off betweenall the
issues.By makingthenegotiationof theissuessequential,
weexpectto facilitatetheevolutionaryprocessto dealwith
suchinter-issuecomplementarities.

The playershave their behaviors determinedby strategies
whicharedevelopedby meansof evolutionstrategies(ES).
Time pressureover the agentsis representedby a fixed
discounton the players’utilities of the prize at stake; the
longerthenegotiationprocesstakes,thelower theutility of
theoriginal unity. Thetaskof theESis to build strategies
thatleadto highpayoffs.

Preliminaryresultsshowedthattheevolvedstrategiesqual-
itatively reproducethe gametheoreticpredictions,despite
the fact that no assumptionsconcerningthe rationality of
theagentsor their behaviorsweremade.
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Abstract

We describe a model to explain how an arbi-

trary gene may persist in a population of self-

interested agents even when it is detrimental

to the individual. Since the arbitrary gene

may code for a cooperative behavior, disad-

vantageous to the owner but advantageous to

the whole population, the model may be used

to explain the persistence of cooperative be-

haviors in societies of sel�sh agents.

THE MODEL

Explaining the persistence of cooperative behaviors

is particularly diÆcult when cooperation is not di-

rectly bene�cial to the individuals �tness and when

it involves more than a handful of agents, weaken-

ing any mechanism based on reciprocity. We consider

an iterated cooperation opportunity whose advantage

is shared between all individuals of the population,

whether they are cooperators or not. Also, in our

simple model the cooperative behavior is the same

for all cooperating agents. In such a case, the gene

that codes for cooperation tends to disappear, since

defectors share the advantages of cooperation without

sharing the costs. A widespread gene coding for a re-

taliation against defectors may support cooperation.

Unfortunately, since the punishment of the defectors

is a cooperative e�ort itself, the vengeful gene tends to

disappear in its turn.

In our model each agent can attack any other, de-

termining symmetric penalties. The gene that codes

for the vengeful behavior, though, does not code for

a direct attack against defectors. It triggers, instead,

an attack against each agent that behaved di�erently

from the owner agent in the previous step. To deter-

mine the targets of its attacks, each agent maintains

a succinct representation of the events that took place

at the previous step consisting for each other agent

of the simple information \did the other agent behave

the same as me?"

In the experiments we considered a population of 100

individuals. At each time step the �tness of all the

agents is increased by 4n points, where n is the num-

ber of cooperators. Further, the �tness of each agent

is decreased by 1 point for each attack involving the

agent and is decreased by 3 points if the agent is co-

operating. After 100 time intervals the population re-

produces with binary tournament selection. The re-

sults of the experiments are shown in Figure 1. The

starting point of each arrow corresponds to the initial

frequencies of the two genes, while the ending point

corresponds to the frequencies of the next generation.

Each arrow is obtained averaging ten experiments with

the same initial gene frequencies. Our experiments

show that if the frequency of the vengeful gene is high

enough, the population is pushed towards uniformity,

and any gene that is widespread into the population

(the vengeful gene itself, a cooperative gene, or an ar-

bitrary gene whatsoever) gains stability.

Figure 1: The results of the experiments.
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A fuzzy logic based expert system, referred to as the
resource manager (RM) has been developed that
automatically allocates electronic attack (EA) resources in
real-time over many dissimilar platforms. The initial
version of the algorithm was optimized using a genetic
algorithm (GA) employing fitness functions constructed
based on expertise.  To produce a RM with a more robust
response, a new approach is being explored that involves
embedding the RM in an electronic game environment.
The game allows a human expert to play against the
resource manager in a simulated battlespace.  Each of the
defending blue platforms is exclusively directed by the
fuzzy RM and the attacking red platforms are controlled
by a human expert (HVC mode) or operate autonomously
under their own logic (CVC mode). The game
automatically creates a database reflecting a domain
expert's knowledge that is used with a GA for co-
evolutionary re-optimization of the RM.  The game has its
own criteria as to when to re-optimize and when the
process is complete.  In biology co-evolution refers to the
fact that a biological system never evolves alone, both
system and environment simultaneously evolve.  Within
the game co-evolution refers to the simultaneous
evolution of red and blue agents.  CVC and HVC mode
experiments have been conducted.  HVC mode exhibits
faster convergence than CVC mode.  Preliminary results
point to CVC mode as potentially providing a better
optimization procedure.  This is due to the tendency of
human experts to fixate on particular strategies: a
characteristic not shared by computerized opponents, due
to the GA's ability to escape local maxima.
The game environment will allow a human EA expert to
play competitively against the RM and allows the RM to
adapt to the strategies employed by the human player,
effectively allowing the RM to learn from its opponents.
The human player will control at least 1 platform in
competition with a group of individual blue agents each
running their own copy of the RM.  The number of
degrees of freedom available to the player determines the
level of control a human player exercises over a platform.
More complicated optimization requires that the human
player have access to additional degrees of freedom.
For a human expert to play against the RM in HVC mode
it was necessary to write a significant amount of software

allowing the expert to control a red platform, launch
missiles and receive sensor input.  A digital simulation of
a radar plan position indicator (PPI) display similar to
those used in real radar systems was created.  The
simulated PPI display is designed to imitate the properties
of a real PPI display.  In this way decisions made by the
EA expert playing the game and subsequently
automatically stored in the database for later data mining
will reflect truth.
GA based co-evolutionary optimization can be used to
produce a RM effective not only against the most recent
generation of enemy agents; but also, all past generations.
This is done by using a symbolically recursive fitness
function. The first step in producing a symbolically
recursive fitness function involves multiplying the fitness
function used in the previous co-evolutionary generation
for blue optimization by a product of Heaviside step
functions. The argument of each Heaviside step function
is the difference between the offending root concept
membership function evaluated appropriately at each time
step and a threshold.  The resulting product fitness
function is referred to as a symbolically recursive fitness
function.  The idea is that unless the GA optimization
returns a root concept membership function which for this
set of input data, exceeds the threshold, the symbolically
recursive fitness function will return a value of zero.
Using the symbolically recursive fitness function the GA
can be used to ensure that the membership function value
for a particular root concept will be above a certain
threshold. This triggers an appropriate action by the RM
the next time red exhibits the behavior that led to blue's
loss and subsequent re-optimization.
In CVC mode, red is re-optimized using a symbolically
recursive fitness function in a manner similar to blue.  If
red has sufficient a priori knowledge of blue's fuzzy
membership functions and their related thresholds, then
red can use this knowledge to determine trajectories that
do not alert blue to his intention.  This can be built into
red's recursive fitness function, potentially making red an
extremely formidable enemy who can make near optimal
decisions at each time step accelerating the development
of a more robust blue RM.  The only limit on this process
is red's knowledge of blue.
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Extended Abstract 
 

 

The work reported in this paper applies genetic algorithms 
(GAs) to the automatic generation of cases for a case-
based reasoning (CBR) system employed for multiagent 
negotiations. Our problem domain is in resource 
allocation and constraint satisfaction. In particular, our 
multiagent system has a set of agents working 
cooperatively to track multiple moving targets as 
accurately as possible. Each agent maintains its local 
information base and has a limited sensor capability (each 
sensor can only cover a small area of the environment and 
accurate target tracking requires at least three sensors). 
Thus, the agents controlling the sensors have to be 
communicative—to inform their neighbors of incoming 
targets and to ask them to perform certain tasks. 
Moreover, the agents may share the same CPU platform 
and thus need to re-allocate their usage of the limited 
CPU resources according to their tasks and their 
perceived environments. This also motivates the agents to 
share local constraints and cooperate. 

We use a case-based argumentative negotiation model to 
facilitate cooperative behavior. An agent argues to 
persuade its neighbor to perform a requested task, and via 
that process, the agents know more about each other by 
exchanging locally maintained information. This 
distributed, bottom-up characteristic is the key of our 
problem domain. An agent uses case-based reasoning 
(CBR) to obtain a negotiation strategy for each 
negotiation that arises. Using the most similar retrieved 
case, an agent can quickly adapt its past experience to the 
current situation to derive a suitable negotiation strategy. 
Our CBR approach is designed to deal with the highly 
dynamic and time-critical agent environment. A case is 
defined as a semantically rich description of a negotiation 
previously experienced. Cases are considered to be either 
initiating or responding. Each agent has its own set of 
cases for both case types in its local case base. The reason 
for this distinction of case types is that agents react 
differently when they need to initiate a negotiation rather 
than when they need to respond to a negotiation. 

One of the major issues with the described approach is the 
need for generating and populating the initial sets of case 
bases that each agent is equipped with prior to the 
negotiations. We need a set of initial cases to bootstrap 
our agent and CBR design including learning, 
negotiations, and tracking. Note also that since we are 
dealing with a dynamic and real-time environment, we do 
not expect all representative cases to be part of the initial 
case bases. Thus, we also equip our CBR module with a 
learning capability to learn more refined and useful cases 
as each agent progresses in its lifetime. This relaxes the 
requirement on the correctness of the initial cases. In 
order to generate these initial cases, genetic algorithms 
(GAs) are used. 

This paper reports on the use of GAs to evolve the sets of 
cases for the CBR agent negotiations. A representation 
scheme is developed to properly represent each case as a 
chromosomal string to be used by the GA operations, 
such as crossover, mutation, etc. A fitness function is 
defined to evaluate each evolved case to be used by the 
GA. The outcome, i.e., the applicability of GAs to 
multiagent negotiation, is evaluated through the analysis 
and evaluation of the generated cases. 

Each generated case maps a situation, or a collection of 
similar situations, to a negotiation strategy, i.e., solution. 
Therefore, it is very important for the generated cases to 
cover a wide range of possible situations. In addition, a 
good case base will cover each possible situation with a 
wide range of possible situations. The GA results were 
evaluated using clustering algorithms in order to 
determine (1) whether the evolved cases provide a good 
coverage of the clusters of possible situations, and (2) 
whether the evolved cases, for each situation cluster, 
provide a good coverage of possible solutions. 

We have found that, based on experimental results, the 
application of genetic algorithms is an e ffective technique 
for automatic generation of cases in our problem domain. 
Another work in progress is the use of GAs for 
continuous updating of the cases in the CBR module of 
the agents and for assisting in case-based learning as each 
agent adapts itself to its dynamic environment. 

909ARTIFICIAL LIFE, ADAPTIVE BEHAVIOR, AND AGENTS: POSTER PAPERS




