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Abstract

The rapid growth of a global electronic mar-

ket place, together with the establishment
of standard negotiation protocols, currently
leads to the development of multi-agent ar-
chitectures in which arti�cial agents can ne-
gotiate on behalf of their users (Maes et
al., 1999). Most of today's (prototype) sys-
tems for automated negotiations, like Kas-
bah or Tête-�a-Tête, use simple and static
negotiation rules. Ideally, however, negoti-
ating agents should be able to deal success-
fully with a variety of opponents (with dif-
ferent tactics and di�erent preferences). Fur-
thermore, they should be able to adapt their
strategies to deal with changing opponents.

Such exible and powerful bargaining agents
can be obtained by representing the agents'
bargaining strategies as �nite automata. A
�nite automaton representation allows an
agent to behave di�erently against di�erent
opponents. We demonstrate that highly ef-
fective bargaining automata are generated by
an evolutionary algorithm (EA).

Our application domain is rather complex
compared to the simple games considered in
previous works [e.g., the iterated prisoner's
dilemma (IPD) (Miller, 1996) or Nash's de-
mand game (Ashlock, 1997)]. We focus on so-
calledmulti-issue negotiations. In multi-issue
negotiations not only the price of a product
is important, but other aspects are also taken
into account (for instance the quality of the
product, the delivery time, etc.). Obviously,
the complexity of such multi-issue negotia-
tions increases rapidly when the number of
issues becomes large.

We show how successful strategies (repre-

sented as �nite automata) can be generated
for this class of complex bargaining problems.
We follow Miller's (1996) approach by encod-
ing the automata as linear strings. We show
that very e�cient strategies can be generated
by evolving these strings using a GA (when
the strings are binary coded). We also pro-
pose a hybrid EA model, based upon evo-
lutionary programming (EP) and evolution
strategies (ES), which performs well in case
of real codings.

We validate our approach in a series of ex-
periments by testing the performance of the
evolving automata in a competition with a
variety of �xed opponents. A similar ap-
proach has been used in the past to gener-
ate robust strategies for the IPD (Axelrod,
1987). Current work focusses on the develop-
ment of automata that perform well against
co-evolving opponents.
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The ability of an evolutionary algorithm (EA) to adapt
its search strategy during the optimization process is a
central concept in evolutionary computation, because
(i) the best setting of an EA is not known a priori for a
given task, (ii) the optimal search strategy is normally
not constant during the evolutionary process. Think-
ing in terms of search (or generating) distributions,
population and search strategy as well as selection and
strategy adaptation are of equal importance. We pro-
pose a derandomized algorithm that adapts operator
probabilities on population level. A detailed descrip-
tion, theoretical and more empirical results, and in
particular references to related work can be found in
[1].

Let Φ be a fitness function to maximize, Ω the set
of (asexual) variation operators employed, and p

(t)
o

the probability at generation t that o ∈ Ω is cho-
sen. Further, let O

(t)
o contain all offsprings produced

in generation t by application of operator o, e.g., if
individual g has been generated by consecutive ap-
plication of the operators oi and oj then g is added
to O

(t)
oi and O

(t)
oj . The adaptation of operator prob-

abilities is based on a function q that measures the
value of a single modification by an operator. One
possible choice for this measure is the local delta or
credit given by q (g) := max{Φ(

g
) − Φ

(
gbest

)
, 0

}
,

where gbest is the best individual in the current pop-
ulation. Replacing Φ(gbest) with the fitness of the
parent of g yields an alternative measure called ben-
efit. The generation dependent quality of o ∈ Ω is
defined as q

(t)
o := 1/

∣∣O(t)
o

∣∣ ∑
g∈O

(t)
o

q (g). The opera-
tor probabilities are adjusted every τ generations. Let
qall :=

∑τ−1
i=0

∑
o′∈Ω q

(t−i)
o′ . Then we set

p̃(t+1)
o :=




ζ/qall ·
τ−1∑
i=0

q(t)
o + (1 − ζ) · p̃(t)

o if qall > 0

ζ/|Ω| + (1 − ζ) · p̃(t)
o else

for all o ∈ Ω. Then

p(t+1)
o := pmin + (1 − |Ω| · pmin)

p̃
(t+1)
o∑

o′∈Ω

p̃
(t+1)
o′

.

Herein ζ ∈]0, 1] controls a momentum effect and
pmin < 1/|Ω| serves as a lower bound on the op-
erator probabilities. We initialize p̃

(0)
o = p

(0)
o (e.g.,

p
(0)
o = 1/|Ω|) for all o ∈ Ω. This adaptation algorithm

itself has free parameters, but (i) their number is re-
duced compared to the number of parameters that are
adapted, (ii) to our experience, the new parameters
are very robust, and (iii) sensible guidelines for their
choice exist.

The proposed adaptation scheme has proven to be
beneficial in structure optimization of neural networks
(NNs). In our experiments, the goal is to find an NN
that solves a real-world classification task and has as
few as possible degrees of freedom (DOF). It turns out
that (i) structure optimization with operator adapta-
tion performs statistically significantly better than op-
timization without operator adaptation, (ii) the bene-
fit tends to give better results than the local delta, and
(iii) the operator probabilities change in an intuitive
way during evolution. Early in the search process, op-
erators that add DOF to the NN perform better. But
after NNs that solve the classification task evolved, op-
erators that reduce the DOF are preferred: First, com-
plete nodes are pruned, then the NNs are fine-tuned
by removing single connections.

References

[1] C. Igel and M. Kreutz. Operator adaptation in evolu-
tionary computation and its application to structure
optimization of neural networks. Technical Report
IRINI 2001-03, Institut für Neuroinformatik, Ruhr-
Universität Bochum, 44780 Bochum, Germany, 2001.

1094 EVOLUTIONARY PROGRAMMING: POSTER PAPERS



How to Evolve a Cooperative Population by Minimizing

Mutual Information

Yong Liu

The University of Aizu

Tsuruga, Ikki-machi, Aizu-Wakamatsu

Fukushima 965-8580, Japan

Combining individual neural network (NNs) in a pop-

ulation into an NN ensemble has a close relationship

with the design of NN ensembles. The population of

NNs can be regarded as an ensemble. The evolution-

ary process can be regarded as a natural and auto-

matic way to design NN ensembles. Based on nega-

tive correlation learning and evolutionary learning, an

evolutionary learning system EENCL was proposed for

learning and designing of NN ensembles [1].

The negative correlation learning and �tness sharing

were adopted in EENCL to encourage the formation of

species in the population. Fitness sharing refers to a

class of speciation techniques in evolutionary compu-

tation. The �tness sharing used in EENCL was based

on the idea of \covering" the same training patterns by

shared individuals. It would be useful to explore possi-

ble connection between �tness sharing and information

theory. The similarity measurement between two NNs

in a population can be de�ned by the explicit mutual

information of output variables extracted by two NNs.

The mutual information between two variables, output

Fi of network i and output Fj of network j, is given

by

I(Fi;Fj) = H(Fi) +H(Fj)�H(Fi; Fj) (1)

where H(Fi) is the entropy of Fi, H(Fj) is the entropy

of Fj , and H(Fi; Fj) is the joint di�erential entropy of

Fi and Fj . The equation shows that joint di�eren-

tial entropy can only have high entropy if the mutual

information between two variables is low, while each

variable has high individual entropy. That is, the lower

mutual information two variables have, the more dif-

ferent they are. By minimizing the mutual information

between variables extracted by two NNs, two NNs are

forced to convey di�erent information about some fea-

tures of their input.

From Eq.(1), we may make the following statements:

1. If Fi and Fj are uncorrelated, the mutual infor-

mation I(Fi;Fj) becomes very small.

2. If Fi and Fj are highly positively correlated, the

mutual information I(Fi;Fj) becomes very large.

Both theoretical and experimental results have indi-

cated that when individual networks in an ensemble

are unbiased, average procedures are most e�ective

in combining them when errors in the individual net-

works are negatively correlated and moderately e�ec-

tive when the errors are uncorrelated. There is little

to be gained from average procedures when the errors

are positively correlated. In order to create a popula-

tion of NNs that are as uncorrelated as possible, the

mutual information between each individual NN and

the rest of population should be minimized. The �t-

ness fi of individual network i in the population can

therefore be evaluated by the mutual information:

fi =
1

P
j 6=i I(Fi; Fj)

(2)

Minimization of mutual information has the similar

motivations as �tness sharing. Both of them try to

generate individuals that are di�erent from others,

though overlaps are allowed.

This paper introduces mutual information into

EENCL. Through minimization of mutual informa-

tion, a diverse and cooperative population of neural

networks can be evolved by EENCL. The e�ectiveness

of such evolutionary learning approach was tested on

two real-world problems.
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