
1213EVOLVABLE HARDWARE: POSTER PAPERS

1214 EVOLVABLE HARDWARE: POSTER PAPERS

Two Approaches for High-level Evolvable Hardware using Function

Blocks

Magnus Ekman

Department of Computer Engineering

Chalmers University of Technology

G�oteborg, Sweden

mekman@ce.chalmers.se

Andreas Magnusson and Peter Nordin

Department of Physical Resource Theory

Chalmers University of Technology

G�oteborg, Sweden

fandmag, nording@fy.chalmers.se

In general, approaches to genetic programming are

more eÆcient if the implementation is close to hard-

ware. For instance, evolution of binary machine code

is very eÆcient time-, space- and energy-wise. In AIM-

GP [1] binary machine code is directly evolved re-

sulting in a speed up of several orders of magnitude,

while also enabling compact implementation on low-

end computer architectures. Here we present work

taking GP implementation one step closer to the hard-

ware. The logical step for increased eÆciency is to

move below the level of processors into recon�gurable

logic chips, such as FPGAs. This is quite straight for-

ward as long as the evolution and �tness function is

limited to logical functions [2]. However, in reality

many domains require evolution of functionality com-

posed of blocks at a higher level. Hardware evolution

can thus be performed at various abstraction levels.

Work has been done at low levels by Thompson et

al. [3] who have evolved con�guration strings for an

FPGA. Higuchi et al. have investigated hardware evo-

lution at function level [4], using more complex func-

tions instead of just primitive two-input gates. In this

paper we present two other approaches to evolvable

hardware using an FPGA:

1. The main objective for the �rst approach was to

develop a method for more eÆcient individual evalua-

tion in genetic programming, enabling evolved FPGA

con�gurations to be used for arithmetic tasks in weak

architectures such as those used for mobile comput-

ing. The individuals are represented by a list of in-

structions. Instead of executing these instructions in a

general processor, several specialized functional blocks

are placed after each other in a pipeline, implement-

ing a data-
ow machine that tests one individual each

clock cycle. The functional blocks that represent the

instructions are constructed as VHDL objects and are

only routed once, before evolution. All of the blocks

have the same number of inputs and outputs and they

all occupy the same physical size. This makes it pos-

sible to switch the blocks in the data path without

a new \place and route" pass. All evaluations were

performed on Xilinx chips.

2. In many applications it is desirable to address a

segment for abstraction between that of a numerical

register machine and the pure logic function. For

this requirement we have designed the second ap-

proach, which is based on state-machines implemented

in VHDL. We evolve the code using a structure con-

sisting of several state-machines of various sizes that

co-operate to solve the problem. The reason to have

several machines instead of one big complicated one is

that no eÆcient method to mix two machines and still

keep the properties of both exists. We thus use several

state-machines to make crossover easier to implement

| an alternative future approach would be to evalu-

ate the system without crossover using only mutation,

e.g. the way state-machines are treated in early work

of Evolutionary Programming [5]. The structure we

use is built from several synchronous state-machines

and one combinatorial net that are connected to a bus.

Each state-machine and the combinatorial net are as-

signed a constant number of bits on the bus that it

can write to. The way the inputs to the machines and

the net are connected is evolved. The crossover oper-

ator exchanges machines and mixes the net between

individuals. Mutations modify the state-transitions.

In summary, we have implemented and evaluated the

�rst method for evolution of high-level register ma-

chine structures directly in reprogrammable hardware,

while the second method has been simulated. Both

variants have application areas where eÆciency in the

physical system is critical but evolution of pure logical

functions is too crude. Such architectures exist in mo-

bile computing and handheld devices as well as other

areas which require low-power but adaptive applica-

tions.

For full paper and references see:

http://www.ce.chalmers.se/sta�/mekman/

1215EVOLVABLE HARDWARE: POSTER PAPERS

Evolvable Hardware

Proposal for a Register Transfer Level Evolution on a Microprocessor
Incorporated Flash Memory

Yuji Sato
Department of Computer Science

Hosei University
3-7-2, Kajino-cho, Koganei-shi, Tokyo 184-8584, Japan

E-mail: yuji@k.hosei.ac.jp

Abstract

A new idea for evolvable hardware based on a
microprocessor is proposed. In recent years, there
has been much research using Programmable
Logic Devices (PLD) and Field Programmable
Gate Arrays (FPGA). In particular, the
application of digital circuit evolution to
engineering fields has already begun. On the
other hand, long learning time, difficulty to
predict when an effective capability will appear,
large chip size and other such problems have
hindered progress in diffusion into engineering
fields. Here, we propose register transfer level
evolution performed on a microprocessor as a
means of addressing these problems.

1 BASIC APPROACH OF THE PROPOSED
EVOLVABLE HARDWARE SCHEME

With conventional evolvable hardware, for both the PLD
scheme and the FPGA scheme, the target functions are
implemented by a logic circuit whose configuration
evolves in a process where the configuration bits of the
logic serve as the chromosomes of a GA [Higuchi 1999].
With the evolvable hardware that we propose here, the
target functions are by an execution unit that have fixed
configurations. The evolution takes place in the control
signal that indicates how the execution unit is used. That
is to say, register transfer level evolution takes place on
the LSI chip. A conceptual diagram that illustrates the
relationship of the execution unit and control signal is
shown in Fig. 1. The execution unit comprises a register
file group, an arithmetic and logic unit (ALU), a
comparator, a flag control and other such functional
modules connected by a data bus. This configurational
element is controlled by a control vector of control
signals s1 through sn that is obtained by decoding
microinstruction code. For example, when the value of
control signal s1 in Fig. 1 is 1, the data in the register that
specifies an address signal is read by bus A. In the same
way, when the value of control signal s2 is 1, the address-
specifying register content is read by bus B. When the
values of control signals s4 and s5 are 1, the contents of

data bus A and data bus B are input to the ALU. When
control signals s6 = 0, s7 = 1 and s8 = 1, for example,
represent an ADD instruction and the value of control
signal s9 is 1, the computation results of the ALU are
output to data bus C. Accordingly, if the control signal bit
string (s1, s2, …, sn) is regarded as a GA chromosome,
then the target function can be implemented through
genetic manipulation of the control signal.
A number of reports concerning research on the synthesis
of circuits on the register transfer level through genetic
manipulation at the HDL (Hardware Description
Language) level have already. All of those, however,
involve evolution at the HDL level and require changes in
specifications and revision of the chip manufacturing.

References

[Higuchi 1999] T. Higuchi, M. Iwata, D. Keymeulen, H.
Sakanashi, M. Murakawa, I. Kajitani, and E. Takahashi,
“Real-World Applications of Analog and Digital
Evolvable Hardware,” IEEE Trans. on Evolutionary
Computation, Vol. 3, No. 3, pp. 293-308, September
(1999).

Register
 File

ALU

Output
Control

Branch
Control

Flag
Control

Comparator

Bus-A
Bus-B

Bus-C

Execution Unit

s1 s2 s3 s4 s5 s6 s7 s8 s9 sn

Fig. 1 A conceptual diagram that illustrates the relationship
of the execution unit and control signals.

control signals

1216 EVOLVABLE HARDWARE: POSTER PAPERS

mailto:y-sato@ma.kcom.ne.jp

	2202.pdf
	Yuji Sato

