
1217METHODOLOGY, PEDAGOGY, AND PHILOSOPHY

1218 METHODOLOGY, PEDAGOGY, AND PHILOSOPHY

What can we learn from No Free Lunch?
A First Attempt to Characterize the Concept of a Searchable Function

Submission category: Methodology, Pedagogy, and Philosophy

Steffen Christensen

Computer Science Dept.
Carleton University

Ottawa, ON K1S 5B6
steffen@scs.carleton.ca
(613) 520-2600 x 1857

Franz Oppacher

Computer Science Dept.
Carleton University

Ottawa, ON K1S 5B6
oppacher@scs.carleton.ca

(613) 520-2600 x 3520

Abstract

The No Free Lunch theorem has had
considerable impact in the field of optimization
research. A terse definition of this theorem is
that no algorithm can outperform any other
algorithm when performance is amortized over
all functions. Once that theorem has been
proven, the next logical step is to characterize
how effective optimization can be under
reasonable restrictions. We operationally define
a technique for approaching the question of what
makes a function searchable in practice. This
technique involves defining a scalar field over
the space of all functions that enables one to
make decisive claims concerning the
performance of an associated algorithm. We
then demonstrate the effectiveness of this
technique by giving such a field and a
corresponding algorithm; the algorithm performs
better than random search for small values of this
field. We then show that this algorithm will be
effective over many, perhaps most functions of
interest to optimization researchers. We
conclude with a discussion about how such
regularities are exploited in many popular
optimization algorithms.

1 INTRODUCTION

The No Free Lunch Theorem (NFL) states that no single
algorithm outperforms random search (equivalently,
systematic linear search) when amortized over all
functions (Wolpert and Macready, 1995). This is easy to
see and, indeed, unsurprising: if nothing is known about
the structure of a domain, then all problems in it are
equally likely; and any particular search or learning
algorithm can be expected to perform better than chance

on some randomly selected problems and worse than
chance on others, and on average it can be expected to do
no better (and no worse) than random guessing.

The apparently disheartening conclusion of NFL depends
on the assumption that nothing is known about the
structure of a domain; by the same token, the theorem
may be taken to point out the importance of assumptions
about non-uniformities in a domain for an understanding
of the success of search and learning algorithms.

In this paper we try to specify general and minimal non-
uniformities that seem to be realized in nearly all
application domains, and that enable certain algorithms to
outperform random search. In particular, we believe that
virtually all functions that a practitioner would consider
searching exhibit the requisite non-uniformity and are
thus unaffected by NFL.

In the following, we consider what makes a function
searchable, and then give an algorithm that outperforms
random search on functions thus characterized.

2 WHAT MAKES A FUNCTION
SEARCHABLE?

We all know that so-called "general-purpose"
optimization algorithms are at least modestly effective on
a wide range of combinatorial optimization problems. In
fact, most general-purpose optimization algorithms
greatly outperform random search on functions commonly
used in testing these algorithms. Indeed, while random
and linear search find minima in time linear in the size of
the search space, these algorithms are running in time
exponential in the input.

Most "general-purpose" optimization techniques rely on
some sort of hill climbing at the lowest level. These
techniques include golden section search, Brent’s method,
the downhill simplex method, direction-set methods,
conjugate gradient methods, quasi-Newton methods,
simulated annealing, the genetic algorithm, evolution
strategies, evolutionary programming and various types of

1219METHODOLOGY, PEDAGOGY, AND PHILOSOPHY

hill climbers themselves (Press, 1992; Fogel, 1995;
Mitchell, 1996; Schwefel, 1977). However, NFL
guarantees even hill climbers will not outperform random
search when amortized over all functions.

If all these methods are exploiting similar general and
minimal sorts of regularities in the functions that they
successfully search, then perhaps these regularities are
encountered more often in functions of interest in the real
world than the uniform distribution over which NFL
applies would suggest. How can we reconcile our
intuition and our experience with the efficacy of different
types of search algorithms with the conclusion of NFL?

2.1 EXPERIMENTAL FRAMEWORK

We define a framework for talking about optimization
problems in general, adopting the notation given in
Macready and Wolpert (1996).

In general optimization problem, we are given a cost
function f : X�Y to optimize. Without loss of generality,
we assume that we are seeking the global minima of f.
Since optimization techniques will in general be
implemented on digital computers, we can take X and Y to
be finite sets. (For instance, Y might be the set of
floating-point numbers representable in a computer’s
native hardware representation, while X may be an
ordered set of such floating-point numbers.) These sets
are of size |X| and |Y|, respectively.

A "population" dm is defined as an ordered sample of m
successive points chosen by a given algorithm from the

cost function. � � � �)(),()(idididd y
m

x
mmm �� . Note

that this definition differs from the concept of population
used in the evolutionary computation literature, in that it
includes all of the points ever evaluated, while in
evolutionary computation we normally consider a
population to be a working set of points in the domain
that may or may not overlap with points selected in
previous generations.
Let Dm be the set of all populations of size m, and let

�
m

mDD � be the set of all populations of any size. An

algorithm that attempts to find minima of f can be made
maximally efficient if it does not revisit any points. (This
can be implemented in any standard optimization
algorithm by caching the function evaluations, and by
looking up subsequent evaluations from the cache.) We
can therefore define an algorithm as a mapping
a: d � D � {x | x � dx}.

Let �(f) be a vector of length |Y| such that each element �i
is the number of points x � X such that f(x) = �i. That is,
�(f) is the histogram of the y-values of f. Define �(f) as
the vector of the successive nonzero components of �(f).
�(f) thus corresponds to the ordered non-zero histogram

of the distribution of values of f. f1 and f2 are then said to
be in the same equivalence class iff �(f1) = �(f2). That is,
two functions are in the same equivalence class if the
same number of points in X map to each corresponding
point in Y. Macready and Wolpert make several
important points about trying to compare the relative
hardness of functions taken from different equivalence
classes in (Macready and Wolpert, 1996); we refer the
reader to their discussion therein for more information.

It is our belief that general-purpose optimization of a
particular random function about which nothing is known
a priori can only hope to be successful if there is a degree
of "self-similarity" in the function. By self-similarity, we
mean that function values of points that are "near" to a
given point are "related" to that point’s value. Such self-
similarity is, in general, difficult to characterize
completely; it seems that a truly accurate definition would
have to rely on the notion of Kolmogorov complexity
such as "what is the ratio of the size of the Turing
machine of minimum length that can reproduce the
patterns observed in the function to the size of the
function’s domain?" However, such a measure would be
computationally intractable. The approach we choose in
this paper is to define a technique that allows us to
specify, investigate and analyze our own operational
measure of self-similarity. Thus, if you have in mind a
specific kind of regularity or pattern that your
optimization technique effectively exploits, you may be
able to operationally define that regularity and make
concrete statements about the effectiveness and generality
of your optimization technique.

We begin by requiring a total order of all points in the
domain and in the range. For traditional
multidimensional optimization in digital computers, we
can simply take the order of the complete binary
representation of the points in memory. For fixed-point
and floating-point discretizations, this is equivalent to
saying that larger values in the first dimension sort higher
than lower values, and that relative values in succeeding
dimensions break ties.

Without loss of information, we can define a function
isomorphism that maps the elements of the domain of our
original function f to the integers in [1..�], and maps the
elements of the range to the integers in [1..�]. (��and �
are used to suggest "size of domain" and "size of range",
respectively. Note that � is the size of the preimage of f,
while � is the size of the image of f.) The simplest such
isomorphism is to index the elements of X and Y, and in
our new function, preserve the mapping of the indices of
X to the indices of Y. We designate this generated
function r(f), and call the set of all such functions R,

R : � � �. The successor graph of such a function r is

1220 METHODOLOGY, PEDAGOGY, AND PHILOSOPHY

the matrix G(r) whose elements gij are defined by1:

	

�

���
1

0

])1([
�

i
ij jirg .

Note that 	
�

�

1j
ijg = the i-th component of the previously

introduced index function �(f). Furthermore, invertible
functions have � = �, and therefore all components of �(f)
are 1. A random function will, in general, exhibit no
relation between r(i) and r(i+1); therefore the
corresponding matrix G(r) will reveal few or no patterns
to exploit.

2.2 TOWARDS UNDERSTANDING
OPTIMIZATION

We now begin a general process to classify the functions
taken from a function space such as R with respect to the
NFL theorem. As Wolpert and Macready state (1995),
algorithms that do better in some regions of R must do
correspondingly worse in others. To attempt to
characterize which functions are "searchable", we adopt
the following procedure: we define a computable scalar
field S over R; we then show a systematic relation
between the values of this field on functions in R and the
performance of some corresponding algorithm A. (Note
that this concept may readily be extended to include
vector fields over R.)
If we can then show that the performance of this
algorithm A will be better in areas of R where S(r) is high,
we will have effected a partition of the function space R
based on searchability. Thus, we can begin to
operationally address the question of how well we can do
in general-purpose optimization, given that NFL holds.

By way of explanation, we here offer a definition of one
such field and a corresponding algorithm. The goal of
this algorithm, SUBMEDIAN-SEEKER, is to choose points
in the search space that lie below the median of r as early
in the selection process as possible.

We define the field M(r) as follows:

Let 	 	
� ��

�
2/

0 12/

)(
� �

�i j
ijgrM , where gij is the i, j-th

component of G(r). Thus M(r) is the number of function
values that lie below the median whose successors’ values
lie above the median.
We now define a general-purpose optimization algorithm,
SUBMEDIAN-SEEKER, which attempts to use information

1Note that here and elsewhere in this paper, we use Knuth’s shorthand
notation for predicate functions (Graham, Knuth, and Patashnik, 1994):

[x = y] is a terse way of specifying the function

�
� �

otherwise

yxif

0

1
.

gathered on the points observed thus far to predict future
points. In the following, we express the algorithm in
terms of a random function f, for generality. Because of
the possibility of constructing a function isomorphism
between any real-valued function f and the corresponding
ranked function r, the algorithm applies equally in both
cases. However, the analysis is simplified if we continue
to work in the uniform function space, R.

2.3 ALGORITHM

SUBMEDIAN-SEEKER(f):
 s � {0,0} -- will count the number of sampled

points with successors below the
median, for the first and second
halves of the domain.

 z � {0,0} -- will count the number of sampled
points with successors above the
median

 i � 0
 j � 0
 Until j = Number of points to sample do:

 Choose a next point for the algorithm to consider as
follows:
 window � [f(xi) < median(f)]
 If swindow > zwindow then

 xi+1 � xi + 1
 Else

 xi+1 � Random unchosen point
 i � i + 1
 Evaluate r(xi).
 j � j + 1.
 If j � Number of points to sample then

 If f(xi +1) has not been evaluated then evaluate
f(xi +1) and set j � j + 1.

Add the f(xi) vs. f(xi +1) information to the graph G
as follows:

 If f(xi) < med(f), then increment)]()([fmedxf i
s ��

 Else increment)]()([fmedxf i
z �� .

2.4 ALGORITHM SUMMARY

This algorithm basically builds up information about the
function by sampling. s and z store information on the
number of values that map to successor values below and
above the median, respectively. This information is used
to guide further progress in the search. This algorithm
can be expected to perform well if previous performance
is an accurate indicator or predictor of future
performance. There is, of course, no guarantee that this is
the case; however, if many points in the function have
values and successor values that happen to co-occur
below the median, then SUBMEDIAN-SEEKER will be able
to exploit these regularities. We will see later that many
functions that we might attempt to search will have this
characteristic.

1221METHODOLOGY, PEDAGOGY, AND PHILOSOPHY

2.5 EXPERIMENTATION ON SUBMEDIAN-
SEEKER

We define the performance �(a, r) of an algorithm a as
the number of points discovered in m samples that are
below the median. In Wolpert and Macready’s notation,
(Wolpert and Macready, 1995):

We would expect that any differences between the
distribution of points selected by SUBMEDIAN-SEEKER
and that of a random-search algorithm would be
maximized at m = �/2; after this point, the requirement to
sample only previously unselected points would force the
algorithm to begin making unfavourable choices. We
therefore run the algorithm until it has chosen exactly half
the points in the domain - it is expected (and verified by
experiment) that this will maximize any performance
difference between random search and SUBMEDIAN-
SEEKER.
Therefore, in every test in the present work, we ran the
algorithm until exactly half of the points in the domain
were selected. (It can be inferred from this that we
generally chose to investigate function with domains of
modest size, unlike those used in serious optimization
research!) For simplicity, we worked only over the
invertible functions In, with � = � = n.

Since SUBMEDIAN-SEEKER is a stochastic algorithm
(i.e. the points it chooses are selected at random if no
other information is available), it will generate a
distribution of outcomes for any given source function r.
However, this distribution is fixed for a given r. We are
therefore free to probe the distribution of outcomes by
rerunning the algorithm as many times as is necessary to
ascertain the true distribution as precisely as is required.
There are many choices for how one could evaluate the
performance of SUBMEDIAN-SEEKER, particularly since
its performance will be contrasted with that of random
search, another stochastic algorithm. The measure used
herein is to compare the mean performance of
SUBMEDIAN-SEEKER with the (known) mean performance
of random search using the Student’s t-test. In general,
the use of a t-test to ascertain the difference in means of
two random discrete distributions is not valid, because of
the assumptions that the t-test makes of normality and
homoscedasticity of the variables (see Neter et al, 1996,
pp. 407-408). Therefore the accuracy of this
simplification was explicitly tested using a Monte Carlo
simulation technique. 10 000 simulation runs of 100
experiments each were performed, and the run data were
used to estimate parameters of the observed distributions,
such as the mean and standard deviation. T-tests were
then performed for each run to attempt to reject the
incorrect hypothesis that the population mean was greater

than a predetermined threshold. The agreement between
the observed confidence levels and those estimated from
observed distributions using the Student's t-test were
excellent. In addition, we used very large confidence
intervals to compensate for this uncertainty.

Note that the only test that SUBMEDIAN-SEEKER performs
is to see whether the value of the cost function is above or
below the median. (For the moment, we assume that
there are no points exactly at the median of r; i.e. is
even.) Therefore, the performance of our algorithm can
only depend on the particular sequence of sub- and super-
median points in r. We can formalize this observation by
defining the 0-1 sequence s(r), where si(r) = [r(i) >
median(r)]. Thus the performance of SUBMEDIAN-
SEEKER will only depend on s(r), and not on the specific
values that r assumes. In other words, SUBMEDIAN-
SEEKER only uses part of the information available to it in
deciding where to search next.

It was hoped that M(r) would completely describe the
performance of SUBMEDIAN-SEEKER on a function r;
however, simulation showed that even when M(r) was
fixed, there was a significant dependence on the structure
of s(r). This can be seen in Figure 1, where the
distribution of SUBMEDIAN-SEEKER performance over a
fixed M(r) of 8 is shown2.

0.0%0.3%

4.6%

14.2%

22.2%
21.0%

15.1%

9.2%

5.7%
4.7%

2.1%
0.6%0.3%0.0%

0%

5%

10%

15%

20%

25%

<7.
6

7.
6

-
7.

7
-
7.

8
-
7.

9
-

8
-

8.
1

-
8.

2
-
8.

3
-
8.

4
-
8.

5
-
8.

6
-
8.

7
-
8.

8
+

Mean performance (bin lower bounds given)

P
.d

.f
.,

%
/0

.1
 p

o
in

ts
 s

el
ec

te
d

 b
el

o
w

 m
ea

n

Figure 1: Distribution of mean performance of

SUBMEDIAN-SEEKER on 5000 random functions with
n = 32 and M(r) = 8. Performance is defined as the

number of evaluated points (out of 16) whose values were
below the mean. Mean performance were determined in

each case by taking the mean of 1 000 000 runs of
SUBMEDIAN-SEEKER. The standard error of the

means (2 x�) are all less than 0.005.

2 For details on how one generates random functions satisfying a given
value of M(r), see section 5, Appendix.

	
�

��
m

i

y
idmra

1

]2/[),|(��

1222 METHODOLOGY, PEDAGOGY, AND PHILOSOPHY

Consider a function with a small value for M(r): what are
its properties? Since M(r) measures the number of
submedian values of r that have successors with
supermedian values, we know immediately that points
below the median are likely to be followed by points
below the median. Therefore, we might expect that an
algorithm that uses sampling to determine where to go
next to perform well on such functions. Indeed, this is
observed in practice3, as demonstrated in Figure 2, which
is a representative scatter plot of mean performance
obtained over 10 runs as we vary M(r) from 0 to 15.

We might further expect the worst-case performance of
SUBMEDIAN-SEEKER over many functions to be
monotonic decreasing in M(r); this too was observed (data
not shown here). There must therefore be a "critical
value" of M, below which all functions r in
{r � In | M(r) < Mcrit} will perform better than random
search, on average.

Figure 2: Average Performance of SUBMEDIAN-SEEKER
with n = 32. Successive columns correspond to

increasing values of M(r); within a column, values are
replicates with different randomly chosen functions.

The standard errors of the means (2 x�)
are all less than 0.009.

To understand the worst-case behaviour of SUBMEDIAN-
SEEKER, we examined which patterns in s gave the
poorest mean outcome. Careful experimentation,
involving examining 10 000 random functions over 5
levels of M (not detailed here) revealed that the worst

3 Note also that we would expect for random search to find that half of
the sampled points fall below the median. For the case of figure 2,
where 16 points were sampled, chance would lead us to expect 8 points
below the median.

outcomes happened when the supermedian values were as
unevenly distributed as possible, subject to the constraint
that they occur in pairs; and when the submedian values
were as symmetrically distributed as possible4. For
instance, in the case where n = 32, M = 3, the worst
outcomes occured with the pattern 12+; 6-; 2+; 5-; 2+; 5-.

Once the specific nature of this worst-case input was
characterized, an algorithm was developed that generated
and tested this worst case as the number of points in the
function, n, and M(r) were varied. In each case, 100 runs
of SUBMEDIAN-SEEKER were performed, and a t-test of
the hypothesis "the mean of this observed distribution is
larger than that expected by chance" was performed at a
significance level of �=0.001. If the t-test was
inconclusive, the number of runs was doubled and the
process repeated until it was conclusively proven either
that the mean of the distribution is greater than or less
than that expected by chance. A replicate of these data
was obtained with �=0.000 01; no change in the results
was observed. This test procedure was used to determine
Mcrit. This process was repeated for several values of n;
the results are graphed in Figure 3.

Figure 3: Graph of Mcrit vs. n, for several values of n

As is evident from the graph, a clear linear trend to the
data is observed. In fact, if we approximate the value of

Mcrit as 1
113
10

���
�

��
��

n
Mcrit , we are only incorrect in 2 of

the cases experimentally sampled, wherein it is off by
exactly 1.

4 The notation 12+; 6-; refers to the case where 12 consecutive points
were above the median, followed by 6 below the median, and so on.

7

7.5

8

8.5

9

9.5

10

10.5

11

11.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

M(r)

M
ea

n
 P

er
fo

rm
an

ce

‘ ‘

y = 0.0885x + 1.5073

R2 = 0.9998

0

5

10

15

20

25

30

35

40

45

50

0 100 200 300 400 500

n

M
cr

it
 |

n

Mcrit Linear (Mcrit)

1223METHODOLOGY, PEDAGOGY, AND PHILOSOPHY

We shall designate the quantity
n

Mcrit

n ��
lim as frcrit. Note

that the data do not permit selection of one particular
value for frcrit; 10/113ths is only the simplest such fraction
that fits the data - all that is known is that the true
multiplier is in the interval [0.088452, 0.088542].
Therefore, for all functions r � R | M(r) < Mcrit, we have
an algorithm that can be expected to perform better than
random chance at selecting points below the median.
However, since the only property that we have used is
that points in a function are above or below its median,
the same argument applies for any function f � F.

3 ANALYSIS

Such a result is only interesting if commonly searched
functions have this property. We will show now that,
because of the definition of M(f) and SUBMEDIAN-
SEEKER, many functions indeed do have this property.
If we restrict ourselves to 1-dimensional functions of a
single real variable, we can say the following:

1. If p � Pk, p � 0, is a uniformly sampled polynomial of
degree at most k, and if Mcrit > k/2, then SUBMEDIAN-
SEEKER will perform better than random search on p.
Proof: There are most k solutions to p(x) = b. If we
choose b = med p, then we know that there can be at most
k median-crossings in total over the sampled interval, and
specifically there can be at most k/2 crossings from
submedian values of p to supermedian values of p. Since
M(p) measures exactly the number of such crossings, if
M(p) < Mcrit then SUBMEDIAN-SEEKER will perform better
than random search, on average, and the stated result
follows.

2. If 	
�

�
k

j

ijx
jeaxf

0

2)(� is a truncated Fourier series of

at most k harmonics uniformly sampled over [0,1) at n
locations, and if Mcrit > k/2, then SUBMEDIAN-SEEKER
will perform better than random search on f.

Proof: Write � �jix
k

j
j

k

j

ijx
j eaeaf �� 2

00

2

��

 		 �� . This

is a polynomial of degree k in ixe �2
 , and therefore can

have at most k solutions for ixe �2
 = b. If we choose
ixe �2
 = med f, then we have that over the one period of

the interval sampled, there can be at most k median
crossings. The rest of the proof follows as in (1).

3. General valley case: If each extremum of a sampled
function f is represented by

critfr

2

20
113

 = 5.65� points on average, SUBMEDIAN-

SEEKER will perform better than random search on f.

Proof: Suppose that there are k extrema of a sampled
function. Since there can be at most 1 crossing of any
central line between any pair of extrema, there can be at
most k/2 crossings from submedian values of f to
supermedian values of f. The rest of the proof follows as
in (1).

4. Multidimensional functions: Let p �)(xPk
d be a

multivariate polynomial of dimension d and of degree at
most k in each variable, regularly sampled l times in each
dimension over a multidimensional rectangular interval.
Assuming that we use the indexing function

	
�

�
d

i

i
ip lxrankxIn

1

1)()(to index the vector x , if

2
2

� l
n

M
k crit , SUBMEDIAN-SEEKER will perform

better than random search on p.
Proof: The values of the indexed function will vary most
rapidly in the first dimension. There can therefore be at
most k/2 crossings of the median from below for every
sequence of l points from the polynomial, plus at most 1
more jump discontinuity in advancing the higher

dimensional indices. So if)1
2

(1 ��
 k
lM d

crit ,

SUBMEDIAN-SEEKER will outperform random search.
Since n = ld, the stated result follows.
The obvious extensions to multidimensional truncated
Fourier series and limits on extrema also hold.

4 CONCLUSION

The No Free Lunch theorem has been very seriously
considered and is very useful, especially in light of some
of the sometimes-outrageous claims that had been made
of specific optimization algorithms. However, once that
theorem has been proven, the next logical step is to
characterize how effective optimization can be under
modest restrictions. We have operationally defined a
technique for characterizing what makes a function
"searchable". We have demonstrated the effectiveness of
this technique by example - SUBMEDIAN-SEEKER will
outperform random search over many functions of
interest.

We emphasize that this is not merely one particular
algorithm performing well in a particular domain; but
instead a rather general and widely applicable set of
conditions over which a given algorithm has been
demonstrated to surpass random search. Let us
demonstrate this point with an example. Consider the
case of an optimization algorithm attempting to solve a
multidimensional optimization problem using a vector of
single-precision floating-point numbers as the domain.
Such a representation has on the order of l = 223 points in
any given octave in the domain. In particular, if we take
the domain to be the hypercube [x, 2x]d, then by (4)

1224 METHODOLOGY, PEDAGOGY, AND PHILOSOPHY

above, SUBMEDIAN-SEEKER will perform better than
random search on any multivariate polynomial function of
1484707th degree or lower.

We finally note that such modest non-uniformity of a
source function is all that is needed for some optimization
algorithms to outperform random search. While it may be
useful and indeed is likely to improve efficiency to
specialize a general-purpose algorithm towards the
characteristics of a particular problem, this point is
unrelated to the challenge posed by the No Free Lunch
theorem.

Acknowledgments

The authors would like to thank the members of Carleton
University’s Artificial Life and Evolutionary Computing
group for their valuable feedback during early versions of
these results. Special thanks to Dr. S. Melkovian for his
assistance in the proof of the Fourier result, and to Dr.
Mark Wineberg for his advocacy of achieving
understanding before publishing.

This work is supported in part by grants from the National
Science and Engineering Research Council of Canada.

References

D.B. Fogel, Evolutionary Computing: Toward a New
Philosophy of Machine Intelligence, Piscataway, New
Jersey, IEEE Press, 1995.

R.L. Graham, D.E. Knuth, O. Patashnik, Concrete
Mathematics; a foundation for Computer Science, 2nd Ed.,
Reading, Mass., Addison-Wesley, 1994.

W.G. Macready, D.H. Wolpert, What Makes An
Optimization Problem Hard, SFI-TR-95-05-046, Oper.
Res., (1996).

M. Mitchell, An Introduction To Genetic Algorithms,
Cambridge, Mass., London, England, MIT Press, 1996.

J. Neter, M.H. Kutner, C.J. Nachtsheim, W. Wasserman,
Applied Linear Statistical Models, 4th Ed., Boston, Mass.,
McGraw-Hill, 1996.

W.H. Press, Numerical Recipes in C; the Art of Scientific
Computing, 2nd Ed., Cambridge, England, U.P., 1992.

H.-P. Schwefel, Numerische Optimierung von
Computermodellen mittels der Evolutionsstrategie,
Basel, Germany, Birkhaeuser, 1977.

D.H. Wolpert, W.G. Macready, No Free Lunch Theorems
For Search, SFI-TR-95-02-010, Oper. Res., (1995).

5 APPENDIX

While the main text of the paper describes the
experimental setup and experimentation thereon, there are
a few details required to duplicate the experiments that
the authors felt were best left outside of the main flow of
the text. Inasmuch as is possible, we present those details
here.

5.1 GENERATING AN UNBIASED RANDOM
FUNCTION WITH A GIVEN M(r)

We consider only the case where = = n (that is, the
functions generated by this algorithm are invertible). We
give a sketch of an algorithm to generate a random
function (call it f) that has the property that M(f) is the
given input parameter.

By way of example:

Suppose that n is 32 and M is 4. There are therefore 4
points in r that are below the median that have successors
that lie above the median. Consider the graph G of the
values of f versus the values of their successors (as in
Figure 4). We can characterize such a graph by noting
that it divides nicely into 4 quadrants. Along the x-axis,
there are points whose values are below the median, and
points whose values are above the median. Along the y-
axis, there are successor values both below and above the
median. Numbering the quadrants as usual in
mathematics, we find that M describes the number of
points in the second quadrant. By symmetry relations
(exactly half the points are below the median), we can
immediately see that there are n – M points in quadrants I
and III, and also M points in quadrant IV.

Figure 4: Sample graph of function values plotted against
their successors, with n = 32 and M = 4.

0

16

32

0 16 32

f(x)

f(
x+

1)

III IV

II I

1225METHODOLOGY, PEDAGOGY, AND PHILOSOPHY

With these observations in hand, we can go about
developing an algorithm5 to randomly generate such a
function that satisfies a particular value of M.

We go about generating such a function in reverse; first
we develop the graph of f(x) vs. f(x+1), then we build a
function from this graph.

We begin by placing the aforementioned number of points
randomly in each quadrant. Coordinates are chosen at
random; if any two points in any quadrant have the same
x- or y-coordinate, we generate all the points anew. (It
can be shown that this will occur with very low
probability, if we have a modest value of n and we use 8-
byte IEEE floating point numbers to store the
coordinates).

We then replace each point’s x- and y-coordinate by the
relative ranks of their coordinates – thus converting the
domain and range of our function to n. We can
represent this information as a vector which, for each
value of f(x), store f(x+1). Call this vector v. At this
point, it remains only to determine the values for the
function f thus generated.

We choose the value for f(0) at random from [1, n].

We then look up successive values f(1), f(2)... from our
vector v. There are two possibilities:

- We encounter a cycle
- We encounter no cycle

If we don’t encounter any cycles, we are done; so we
continue assuming that there are cycles present.

We make a list of all the cycles that we’ve found, and of
their consistuent members. For each cycle we find, we
then attempt to break the cycle, while still preserving the
property that exactly the desired number of points ends up
in each quadrant in G.

For each member m of the cycle c, we try the following:

Note the quadrant of m. We then search for a point that
lies in the same quadrant of G as m, but is not a member
of the c. If we can find such a point (call it p), then swap
m and p, and we’ve just linked two disjoint cycles. If no
such point exists, try again with another member m of c.
If we run out of members, then we have a cycle that
cannot be merged with other cycles; at this point we give
up and generate points randomly from the beginning.

As an optimization, after enumerating all the cycles, we
attack the cycles in order of size, from smallest to largest.
Since a smaller cycle has fewer elements that might be
replaced, it is thought that this would improve overall
performance, by forgoing analysis of those graphs that
can not possibly generate a function.

5 As an aside, it seems likely that elements of this algorithm have been
published elsewhere. However, as the authors independently developed
this technique to solve the present problem, we do not know to whom to
attribute original discovery of such original elements. We would
appreciate any guidance in this matter.

1226 METHODOLOGY, PEDAGOGY, AND PHILOSOPHY

The Phase Transition in NK Landscapes is Easy

Yong Gao

Department of Computing Science

University of Alberta

Edmonton, Alberta, Canada, T6G 2H1

ygao@cs.ualberta.ca

Joseph Culberson

Department of Computing Science

University of Alberta

Edmonton, Alberta, Canada, T6G 2H1

joe@cs.ualberta.ca

Abstract

In this paper, we analyze the decision version

of the NK landscape model from the perspec-

tive of threshold phenomena and phase tran-

sitions under two random distributions, the

uniform probability model and the �xed ra-

tio model. For the uniform probability mod-

el, we prove that the phase transition is easy

in the sense that there is a polynomial al-

gorithm that can solve a random instance of

the problem with the probability asymptotic

to 1 as the problem size tends to in�nity. For

the �xed ratio model, we establish several up-

per bounds for the solubility threshold, and

prove that random instances with parameters

above these upper bounds can be solved poly-

nomially. This, together with our empirical

study for random instances generated below

and in the phase transition region, suggest-

s that the phase transition of the �xed ratio

model is also easy.

1 INTRODUCTION

The NK landscape is a �tness landscape model de-

vised by Kau�man [Kau�man, 1989]. An appealing

property of the NK landscape is that the \ruggedness"

of the landscape can be tuned by changing some pa-

rameters. Over the years, the NK landscape model

itself has been studied from the perspectives of statis-

tics and computational complexity [Weinberger, 1996,

Wright et al., 1999]. In the study of genetic algorithm-

s, NK landscape models have been used as a prototype

and benchmark in the analysis of the performance of

di�erent genetic operators and the e�ects of di�eren-

t encoding methods on the algorithm's performance

[Altenberg, 1997, Hordijk, 1997, Jones, 1995].

In the �eld of combinatorial search and optimization,

one of the interesting discoveries is of threshold

phenomena and phase transitions. Roughly speaking,

a phase transition in combinatorial search refers to

the phenomenon that the probability that a random

instance of the problem has a solution drops abruptly

from 1 to 0 as the order parameter of the random

model crosses a critical value called the threshold.

Closely related to this phase transition in solubility

is the hardness of solving the problems. There

has been strong empirical evidence and theoretical

arguments showing that the hardest instances of the

problems usually occur around the threshold and

instances generated with parameters far away from

the threshold are relatively easy. Since the seminal

work of Cheeseman et al. [1991], many NP-complete

combinatorial search problems have been shown

to have the phase transition and the associated

easy-hard-easy pattern of hardness. The hardest in-

stances usually occur around the solubility threshold

[Cook and Mitchell, 1997, Culberson and Gent, 2000,

Gent et al., 1998, Kirkpatrick and Selman, 1994,

Vandegriend and Culberson, 1998].

In this paper, we analyze the NK landscape mod-

el from the perspective of threshold phenomena and

phase transitions. We establish two random models

for the decision problem of NK landscapes and study

the threshold phenomena and the associated hardness

of the phase transitions in these two models.

The rest of the paper is organized as follows. In Sec-

tion 2, we introduce the NK �tness landscape and our

probabilistic models, the uniform probability model

and the �xed ratio model. In Section 3, the threshold

phenomena and phase transitions in NK landscapes

are analyzed. For the uniform probability model, we

prove that the phase transition of the uniform proba-

bility model is easy in the sense that there is a poly-

nomial algorithm that can solve a random instance of

the problem with the probability asymptotic to 1 as

1227METHODOLOGY, PEDAGOGY, AND PHILOSOPHY

the problem size tends to in�nity. For the �xed ratio

model, we establish several upper bounds for the solu-

bility threshold, and prove that random instances with

parameters above these upper bounds can be solved

polynomially. This, together with our empirical study

for random instances generated below and in the phase

transition region, suggests that the phase transition of

the �xed ratio model is also easy. In section 4, we

report our experimental results on typical hardness of

the �xed ratio model. In Section 5, we conclude our

investigation and discuss implications of our results.

2 NK Landscapes and their

Probabilistic Models

An NK landscape f(x) =
nP

i=1

fi(xi;�(xi)); is a real-

valued function de�ned on binary strings of �xed

length, where n > 0 is a positive integer and x =

(x1; � � � ; xn) 2 f0; 1gn. It is the sum of n local �tness

functions fi; 1 � i � n. Each local �tness function

fi(xi;�(xi)) depends on the main variable xi and it-

s neighborhood �(xi) � fx1; � � � ; xngnfxig. The main

parameters of an NK landscape are the number of vari-

ables n, and the size of the neighborhood k = j�(xi)j.

In an NK landscape, the neighborhood �(xi) can be

chosen in two di�erent ways: the adjacent neighbor-

hood, where k variables with indices nearest to i (mod-

ulo n) are chosen, and the random neighborhood,

where the k variables are randomly chosen from the

set fx1; � � � ; xngnfxig. Once the variables in the neigh-

borhood are determined, the local �tness function fi
is determined by a �tness lookup table which speci-

�es the function value fi for each of the 2k+1 possi-

ble assignments to the variables xi and �(xi). See

[Altenberg, 1997] for a detailed discussion on the �t-

ness lookup table.

Throughout this paper, we consider NK landscapes

with random neighborhoods. To simplify the discus-

sion, we further assume that the local �tness functions

take on binary values. Given an NK landscape f , the

corresponding decision problem is stated as follows: Is

the optimum of f(x) equal to n? An NK landscape

decision problem is insoluble if there is no solution for

it.

It has been proved in [Weinberger, 1996,

Wright et al., 1999] that the NK landscape mod-

el is NP complete for k � 2. The proofs were based

on a reduction from SAT to the decision problem of

NK landscapes. To study the typical hardness of the

NK landscape decision problems in the framework

of thresholds and phase transitions, we introduce

two random models. In both of the models de�ned

below, the neighborhood set �(xi) of a variable xi is

selected by randomly choosing without replacement

k = j�(xi)j variables from xnfxig.

De�nition 2.1 The Uniform Probability Model

N(n; k; p): In this model, the �tness value of the

local �tness function fi(xi;�(xi)) is determined as fol-

lows: For each assignment y 2 Dom(fi) = f0; 1gk+1,

let fi(y) = 0 with the probability p and fi(y) = 1

with the probability 1� p, where this is done for each

possible assignment and each local �tness function

independently.

De�nition 2.2 The Fixed Ratio Model N(n; k; z): In

this model, the parameter z takes on values from

[0; 2k+1]. If z is an integer, we specify the local �t-

ness function fi(xi;�(xi)) by randomly choosing with-

out replacement z tuples of possible assignments Y =

(y1; � � � ; yz) from Dom(fi) = f0; 1gk+1, and de�ning

the local �tness function as follows:

fi(y) =

�
0; if y 2 Y ;

1; else:

For a non-integer z = (1� �)[z] + �[z +1], we choose

randomly without replacement [(1 � �)n] local �tness

functions and determine their �tness values according

to N(n; k; [z]). The rest of the local �tness functions

are determined according to N(n; k; [z] + 1).

3 Threshold Phenomena and Phase

transitions in NK Landscapes

In this section, we study the threshold phenomena

and phase transitions of the two random models estab-

lished in Section 2. We prove that the phase transition

in the probability model is easy by showing that there

is a polynomial algorithm that can solve a random in-

stance of the problem with the probability asymptotic

to 1 as the problem size tends to in�nity. For the

�xed ratio model, we establish several upper bound-

s for the solubility threshold, and prove that random

instances with parameters above these upper bounds

can be solved linearly or polynomially.

3.1 The Uniform Probability Model

In the uniform probability model N(n; k; p), the pa-

rameter p determines how many zero values a local

�tness function can take. We are interested in how the

solubility and hardness of the NK landscape decision

problem change as the parameter p increases from 0 to

1. The main result on the uniform probability model

is summarized in the following theorem.

1228 METHODOLOGY, PEDAGOGY, AND PHILOSOPHY

Theorem 3.1 For any p(n) such that lim
n

p(n)n
1

2k+1

exists, k �xed, there is a polynomial time algorithm

that successfully solves a random instance of N(n; k; p)

with probability asymptotic to 1 as n tends to in�nity.

The proof of Theorem 3.1 can be found in the ap-

pendix.

3.2 The Fixed Ratio Model

As has been discussed in the previous section, the uni-

form probability model N(n; k; p) of NK landscapes is

asymptotically trivial. This is largely due to the fact

that if the parameter p does not decrease very quickly

with n, then asymptotically there will be at least one

local �tness function that takes the value 0 for all the

possible assignments, making the whole decision prob-

lem insoluble. In this section, we study the �xed ratio

model N(n; k; z). In this model, we require that each

local �tness function has �xed number of zero values

so that the trivially insoluble situation in the uniform

probability model is avoided. We note that the same

idea has been used in the study of the awless CSP

[Gent et al., 1998].

We will establish several upper bounds on the solu-

bility threshold of the parameter z, and theoretically

prove that random instances generated with the pa-

rameter z above these upper bounds can be solved

with probability asymptotic to 1 by polynomial (even

linear) algorithms.

3.2.1 The Upper Bound of z = 3:0

The derivation of this upper bound is based on the con-

cept of a conicting pair of local �tness functions. We

say that two local �tness functions fi and fj conict

with each other if (1)fi and fj have exactly one com-

mon variable x and (2)for any assignment s 2 f0; 1gn,

we have fi(s)fj(s) = 0. It is obvious that an instance

of the NK decision problem is insoluble if there exists

a pair of conicting local �tness functions. Based on

the second moment method in the theory of probabil-

ity [N.Alon and J.H.Spencer, 1992], we can prove the

following result.

Theorem 3.2 De�ne X to be the event that there is a

conicting pair of local �tness functions in N(n; 2; z).

For the �xed ratio model N(n; 2; z) with z = 3:0 + ",

we have

lim
n

PrfXg = 1

and thus is insoluble with probability asymptotic to 1.

Since it takes linear time to check if there is a pair of

conicting local �tness functions, we conclude that the

�xed ratio model N(n; 2; z) is linearly solvable when

z > 3:0.

3.2.2 2-SAT Sub-problems in N(n; 2; z) and a

Tighter Upper Bound

In this subsection, we establish a tighter upper bound

z > 2:837 for the threshold of the �xed ratio model

N(n; 2; z) by showing that asymptotically N(n; 2; z)

contains an unsatis�able 2-SAT sub-problem with

probability 1 for any value of z greater than 2.873.

This also gives us a polynomial time algorithm which

determines that N(n; 2; z) is insoluble with probability

asymptotic to 1 for z > 2:837.

Recall from Section 2 that each instance of N(n; 2; z)

has an equivalent 3-SAT instance. The idea is

to show that with probability asymptotic to 1,

an instance of N(n; 2; z) will contain a set of

special structured 3-clauses, called a t-3-module

[Franco and Gelder, to appear]:

M = fM1; : : : ;M3p+2g

where

M1 = (�u1 _ u2 _ z1; �u1 _ u2 _ �z1);

� � �

Mp�1 = (�up�1 _ up _ zp�1; �up�1 _ up _ �zp�1);

Mp = (�up _ �u0 _ zp; �up _ �u0 _ �zp);

Mp+1 = (�up+1 _ up+2 _ zp+1; �up+1 _ up+2 _ �zp+1);

� � �

M3p�1 = (�u3p�1 _ u3p _ z3p�1; �u3p�1 _ u3p _ �z3p�1);

M3p = (�u3p _ u0 _ z3p; �u3p _ u0 _ �z3p)

M3p+1 = (�u0 _ u1 _ z3p+1; �u0 _ u1 _ �z3p+1);

M3p+2 = (u0 _ vp+1 _ z3p+2; u0 _ up+1 _ �z3p+2);

and u1; � � � ; u3p+1; z1; � � � ; z3p+1 are binary variables.

Notice that a t-3-module can be reduced to a 2-SAT

problem containing two contradictory cycles and hence

is unsatis�able.

The result is proved in two steps. In the �rst step,

it is shown that for z > 2:837 the average number of

t-3-modules contained in N(n; 2; z) tends to in�nity

as n increases. In the second step, we use a result of

Alon and Spencer [N.Alon and J.H.Spencer, 1992] on

the second moment method to prove that for z > 2:837

the probability that N(n; 2; z) contains at least one t-

3-module tends to 1. The two steps are summarized in

the following two theorems and the proof can be found

in [Gao, 2001].

Theorem 3.3 Let At be the number of t-3-modules

1229METHODOLOGY, PEDAGOGY, AND PHILOSOPHY

contained in N(n; 2; z) and t = �(ln2 n). Then, if

z = 2 + � > 2:837, lim
n!1

EfAtg =1:

Theorem 3.4 If z = 2 + � > 2:837, then N(n; 2; z)

is insoluble asymptotically with probability 1.

Since both of the tasks of converting a NK landscape

instance to a 3-SAT instance and identifying a t-3-

module can be done in polynomial time, it follows that

the �xed ratio model N(n; 2; z) is asymptotically poly-

nomially solvable for z > 2:837.

4 Experiments

Our study of the threshold phenomena in NK land-

scapes started with an experimental investigation.

Many of the theoretical results in the previous section

are motivated by the observations made in our exper-

iments. In this section, we describe the approach and

methods we used in the experimental study, and report

the results and observations we have made.

In our experiments, an instance of the NK landscape

decision problem is converted to an equivalent 3-SAT

problem, and then the 3-SAT problem is solved using

Roberto's relsat|an enhanced version of the famous

Davis-Putnam algorithm for SAT problems imple-

mented in C++. The source code of relsat can be found

at http://www.cs.ubc.ca/ hoos/SATLIB/solvers.html.

In the experiments, we generated random instances

of the NK landscape decision problem from the ran-

dom model N(n; 2; z). As a result, the equivalent

SAT problem for each random NK landscape instance

is a 3-SAT problem with n variables and (on aver-

age) zn clauses. By de�nition, the parameter z is be-

tween 0 and 8. For z � 1, the 3-SAT instance can

be solved easily by setting the literals that correspond

to the main variables of the local �tness function to

true. As z increases, we get more and more claus-

es and the 3-SAT problem becomes more and more

constrained. The aims of the experiments are three-

fold:(1)Investigating if there exists a threshold phe-

nomenon in the random NK landscape model; (2) Lo-

cating the the threshold of the parameter z; and (3)De-

termining if there are any hard instances around the

threshold.

4.1 Experiments on the Original Fixed Ratio

Model

In this part of the experiments, we generate 100 ran-

dom instances of N(n; 2; z) for each of the parameters

n = 29 � � � 216 and z = 2:71 + offset; 0 � offset �

0:29. These instances are then converted to 3-SAT

2.7 2.75 2.8 2.85 2.9 2.95 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
n=512
n=1024
n=2048
n=4096
n=8192
n=16384
n=32768
n=65536
z=2.84

Figure 1: Fractions of insoluble instances(Y-axis) as a

function of z (X-axis).

0 1 2 3 4 5 6 7

x 10
4

0

5

10

15

20

25

30

35
z=2.71
z=2.80
z=2.84
z=2.86
z=2.90

Figure 2: Square root of the average search cost (Y-

axis, in seconds) as a function of n (X-axis).

instances and solved by relsat. Figure 1 shows the

fraction of insoluble instances as a function of the pa-

rameter z. It can be seen that there exists a threshold

phenomenon and the threshold is around 2.83. This

shows that our upper bound z = 2:837 is very tight.

In Figure 2, we plot the square root of the average

search cost as a function of the parameter n. The �g-

ure indicates that the average search is in O(n2) for

any parameter z. We have also observed that more

than 99 percent of the insoluble instances are solved

quickly in the preprocessing stage of relsat. This indi-

cates that there must be some \small" structures that

make the instances insoluble. For the detailed experi-

mental results, see [Gao, 2001].

4.2 Experiments on the 2-SAT sub-Problem

This is the part of the experiments that motivated our

theoretical analyses in Section 3.2.2. The idea can be

1230 METHODOLOGY, PEDAGOGY, AND PHILOSOPHY

2.7 2.75 2.8 2.85 2.9 2.95 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n=512
n=1024
n=2048
n=4096
n=8192
n=16384
n=32768
n=65536
z=2.84

Figure 3: Fractions of insoluble instances(Y-axis) as a

function of z (X-axis) for 2-SAT sub-problems.

0 1 2 3 4 5 6 7

x 10
4

0

5

10

15

20

25

30

35

40

z=2.71
z=2.80
z=2.84
z=2.86
z=2.90

Figure 4: Square root of the average search cost (Y-

axis, in seconds) as a function of n (X-axis) for 2-SAT

sub-problems.

explained as follows. Let f(x) =
nP
i=1

fi(xi;�(xi)) be an

instance of the decision problem of NK landscape and

' = C1

V
C2 � � �

V
Cn the equivalent 3-SAT problem

where Ci is the set of 3-clauses equivalent to the local

�tness function fi. For each i, there is a set of 2-clauses

Di(possibly empty) implied by Ci. For example, if

Ci has three 3-clauses ((x; y; z); (x; �y; z); (x; y; �z)), then

the set of 2-clauses Di would be ((x; z); (x; y)). The

conjunction of Di, denoted by �', is a 2-SAT problem.

It is obvious that the original 3-SAT problem ' is sat-

is�able only if the 2-SAT sub-problem �' is satis�able.

The experimental settings are the same as those in the

experiment on the original problem. The results are

shown in Figures 3-4, in parallel to the Figures 1-2 of

the results on the original 3-SAT problems in Section

4.1. We see that the patterns of insoluble fractions and

search cost are similar to those we found in the original

3-SAT problems. There is a soluble-insoluble phase

transition occurring around 2.83, but the fraction of

unsatis�able instances is lower than the fraction in the

original 3-SAT problems.

We also observed that the average search cost for the

2-SAT sub-problems remains the same as that for the

original 3-SAT problems. This tells us that the diÆ-

culty of solving a soluble instance of NK landscape is

almost the same as that of solving a 2-SAT problem,

and hence is easy. Therefore, on average the NK land-

scape N(n; 2; z) is also easy at parameters below the

threshold where almost all of the instances are soluble.

5 Implications and Conclusions

One of the questions that arises about this work is its

implications to the design and analysis of genetic algo-

rithms. NK landscapes were initially conceived as sim-

pli�ed models of evolutionary landscapes which could

be tuned with respect to ruggedness and epistatic in-

teractions [Kau�man, 1989]. In the study of genetic

algorithms, NK landscape models have been used as a

prototype and benchmark in the analysis of the perfor-

mance of di�erent genetic operators and the e�ects of

di�erent encoding methods on the algorithm's perfor-

mance [Altenberg, 1997, Hordijk, 1997, Jones, 1995].

Kau�man, (1993, pages 40�) points out that the pa-

rameters that primarily a�ect a number of ruggedness

measures are n and k. Nevertheless, the fact that

for k � 2 the discrete NK landscape is NP-complete

[Wright et al., 1999] when the neighbors are arbitrari-

ly chosen could be construed as implying that random

landscapes with �xed k are in practice hard.

The results in this paper should serve as a caution-

ary note that this may not be the case. Our analyses

show that for �xed k the uniform probability model is

trivially solvable as the problem size tends to in�nity.

For the �xed ratio model, we have derived two upper

bounds for the threshold of the solubility phase tran-

sition, and proved that the problem with the control

parameter above the upper bounds can be solved in

polynomial time with probability asymptotic to 1 due

to the existence of easy sub-problems such as 2-SAT.

A series of experiments has also been conducted to in-

vestigate the hardness of the problem with the control

parameters around and below the threshold. From the

experiments, we have observed that the problem is also

easy around and below the threshold.

Our proofs hold only for the decision version of the

problem where the component functions are discrete

on f0; 1g. The proofs are obtained by noticing that

the clustering of functions, or clauses, on selected sub-

sets of variables implies that the overall problem is

1231METHODOLOGY, PEDAGOGY, AND PHILOSOPHY

decomposable into independent subproblems, or that

the problem contains small substructures that identi-

fy the solution. The subproblems are the components

of the connection graph de�ned in the proof in the

appendix.

In response to the question `what are the implications

for GAs?' we suggest the following speculative line of

enquiry. For the discrete model we use, the soluble

instances are readily solved by a standard algorith-

mic approach based on recognizing the components of

the connection graph. A similar connectivity can be

developed for real valued distributions, for example

by capping the minimum value which we allow a sub-

function to take. We can speculate that the clustering

imposed by �xed values of k would also generate local-

ized structures when real values are applied and when

considering optimization instead of decision, but per-

haps with fuzzy boundaries. In fact, this observation

is just the ip side of limited epistasis. Genetic algo-

rithms, designed to mimic natural evolution, are sup-

posed to take advantage of this situation. So, to the

extent that NK landscapes are an accurate reection of

the features exploited by evolutionary algorithms, we

pose the following question. Is it possible to identify

these fuzzy components if they exist, and in doing so

design an algorithm that exploits the same landscape

features that the evolutionary algorithms do, but far

more eÆciently, as we have done for the uniform dis-

crete decision problem?

These landscapes were designed with the intent of s-

tudying limited interactions, and our results can also

be seen as a con�rmation that indeed limited epista-

sis leads to easier problems. In another domain, that

of the more traditional research into search and opti-

mization, there is a need for test bed problems with

real world connections which are tunable with respect

to diÆculty. NK landscapes might have been such a

domain for generating 3-SAT instances. It is disap-

pointing that for restricted k the instances generated

are easy with high probability.

Acknowledgements

This research supported in part by Natural Sciences

and Engineering Research Council Grant No. OG-

P8053.

References

[Altenberg, 1997] L. Altenberg. NK �tness land-

scapes. In T. Back, D. B. Fogel, and Z. Michalewicz,

editors, Handbook of Evolutionary Computation.

Oxford University Press, New York, 1997.

[Cook and Mitchell, 1997] Stephen A. Cook and

David G. Mitchell. Finding hard instances of the

satis�ability problem: A survey. In Du, Gu, and

Pardalos, editors, Satis�ability Problem: Theory

and Applications, volume 35 of DIMACS Series in

Discrete Mathematics and Theoretical Computer

Science. American Mathematical Society, 1997.

[Culberson and Gent, 2000] J. Culberson and I.P.

Gent. Frozen development in graph coloring.

Technical Report APES-19-2000, APES Research

Group, 2000. To appear in Theoretical Computing

Science.

[Franco and Gelder, to appear] J. Franco and A. Van

Gelder. A perspective on certain polynomial time

solvable classes of satis�ability. Discrete Applied

Mathematics, to appear.

[Gao, 2001] Yong Gao. Threshold phenomena in nk

landscapes. Master's thesis, Department of Com-

puting Science, University of Alberta, Edmonton,

Alberta, Canada, 2001.

[Gent et al., 1998] Ian Gent, EwanMacIntyre, Patrick

Prosser, Barbara Smith, and Toby Walsh. Ran-

dom constraint satisfaction: Flaws and structure.

Technical Report APES-08-1998, APES Research

Group, 1998.

[Hordijk, 1997] W. Hordijk. A measure of landscapes.

Evolutionary Computation, 4(4):335{360, 1997.

[Jones, 1995] T. C. Jones. Evolutionary Algorithms,

Fitness Landscapes and Search. PhD thesis, Uni-

versity of New Mexico, Albuquerque, NM, 1995.

[Kau�man, 1989] Stuart Kau�man. Adaptation on

rugged �tness landscapes. In Daniel L. Stein, ed-

itor, Lectures in the Sciences of Complexity, Santa

Fe Institute Studies in the Sciences of Complexity,

pages 527{618. Addison Wesley, 1989.

[Kau�man, 1993] Stuart A. Kau�man. The Origins of

Order: Self-organization and Selection in Evolution.

Oxford University Press, Inc., 1993.

[Kirkpatrick and Selman, 1994] S. Kirkpatrick and

B. Selman. Critical behavior in the satis�ability

of random boolean expressions. Science, 264:1297{

1301, 1994.

[N.Alon and J.H.Spencer, 1992] N.Alon and

J.H.Spencer. The Probabilistic Method. Wiley, New

York, 1992.

[Vandegriend and Culberson, 1998] B. Vandegriend

and J. Culberson. The Gn;m phase transition is not

1232 METHODOLOGY, PEDAGOGY, AND PHILOSOPHY

hard for the Hamiltonian Cycle problem. Journal

of Arti�cial Intelligence Research, 9:219{245, 1998.

[Weinberger, 1996] Edward D. Weinberger. Np com-

pleteness of kau�man's N-K model, a tunable

rugged �tness landscape. Technical Report Work-

ing Papers 96-02-003, Santa Fe Institute, Santa Fe,

1996.

[Wright et al., 1999] Alden H. Wright, Richard K.

Thompson, and Jian Zhang. The computational

complexity of N-K �tness functions. Technical re-

port, Department of Computer Science, University

of Montana, 1999.

Appendix: Proof of Theorem 3.1

We consider two cases: (1) lim
n

p(n)n
1

2k+1 = +1 and

(2) lim
n

p(n)n
1

2k+1 < +1.

(1) The Case of lim
n

p(n)n
1

2k+1 = +1.

Let Ai be the event that fi(y) = 0 for each possible

assignment y 2 f0; 1gk+1 and let A =
nS
i=1

Ai be the

event that at least one of the Ai's occurs. We have

lim
n!1

PrfAg = 1� lim
n!1

Prf

n\
i=1

Ac

i
g

= 1� lim
n!1

(1� p(n)2
k+1

)n:

It can be shown that if k is �xed and lim
n

p(n)n
1

2k+1 =

+1, then lim
n!1

PrfAg = 1. It follows that with prob-

ability asymptotic to one, there is at least one local

�tness function which takes on values 0 for any pos-

sible assignments. We can therefore show that in this

case, the NK decision problem is insoluble by checking

the local �tness functions one by one. And this only

takes linear time.

(2) The Case of lim
n

p(n)n
1

2k+1 < +1.

To prove that the theorem is true in this case. We

need to introduce the concept of a connection graph

for the NK landscape model and some related results.

De�nition 5.1 The connection graph of an NK land-

scape instance f(x) =
nP
i=1

fi(xi;�(xi)) is a graph

G = G(V;E) satisfying

(1) Each vertex v 2 V corresponds to a local �tness

function; and

(2)There is an edge between vi; vj if and only if the

corresponding local �tness functions fi; fj share vari-

ables and both of them have at least one zero value.

De�nition 5.2 Let f(x) =
nP
i=1

fi(xi;�(xi)) be an NK

landscape instance with the connection graph G =

G(V;E). Let G1; � � � ; Gl be the connected components

of G. Since the vertices of G correspond to local �t-

ness functions, we can regard Gi as a set of local �t-

ness functions. For each 1 � i � l, let Ui � x =

(x1; � � � ; xn) be the set of variables that appear in the

de�nition of the local �tness functions in Gi.

It's easy to see that (U1; � � �Ul) excluding independent

vertices forms a disjoint partition of (a subset of) the

variables x = (x1; � � � ; xn), and that the local �tness

functions in Gi only depend on the variables in Ui.

Furthermore, the NK decision problem is soluble if and

only if for each 1 � i � l, there is an assignment

si 2 f0; 1g
jUij to the variables in Ui such that for each

local �tness function g 2 Gi, g(s) = 1.

Now, let us consider an algorithm that �rst �nds the

connected components Gi; 1 � i � l of the connection

G of the NK model, and then uses brute force to �nd

an assignment si 2 f0; 1gjUij to the variables in Ui

such that for each local �tness function g 2 Gi, g(s) =

1. The time complexity of this algorithm is O(n2 +

n � 2M(n;k;p)) where M(n; k; p) = max(jUij; 1 � i �

l) is the maximum size of the subsets (Ui; 1 � i �

l) associated with the connected components of the

connection graph. To prove the theorem, we only need

to show that M(n; k; p) 2 O(logn). In the following,

we will show that for lim
n

p(n)n
1

2k+1 < +1,

lim
n!1

PrfM(n; k; p) � 2k + 2g = 1

Consider the connection graph G = G(V;E) of the NK

model. It is a random graph and there is an edge be-

tween two nodes if and only if the two corresponding

local �tness functions share a variable and both of the

local �tness functions take at least one zero as their

�tness value. However, under this de�nition the edge

probabilities are not independent. If vx 2 E then we

know that fx has at least one zero and so the proba-

bility that xw is in E is greater than if there were no

other edge on x.

To deal with this we resort to the following proof con-

struction. Let Cm = fv1; : : : ; vmg be a subset of V

of size m. Let � be an ordering (permutation) of

v1 : : : vm. We say that Cm is variable connected with

respect to the ordering �, denoted as C(Cm; �), if for

each i; 2 � i � m there is either

1233METHODOLOGY, PEDAGOGY, AND PHILOSOPHY

1. a j < i such that fj and fi share a variable

or

2. there is a j; 1 � j � m such that the variable xj
is one of the k random variables in fi.

Lemma If the induced subgraph G[Cm] is connected

then there exists at least one ordering � of v1 : : : vm
such that C(Cm; �).

As proof, consider the ordering of vertices of any depth

�rst search of a connected subgraph. In this case, the

connections are all by case 1.

The expected number of permutations � for which

C(Cm; �) is

Ec = E[jf� : C(Cm; �)gj] = m!PrfC(Cm; �)g

We then observe that the expected number of connect-

ed induced graphs on m vertices is less than pm
0

�
n

m

�
Ec,

where p0 is the probability that at least one variable

is zero in fi. We show this value goes to zero in the

limit if m � 2k + 2. Finally, since if there is a con-

nected connected subgraph on m vertices then there

must be one for each i < m, it follows that the largest

connected component is at most 2k + 1.

For a randomly generated permutation � of Cm, let Ci

be the set of the �rst i vertices of the permutation. For

i � 2 de�ne Pi to be the probability that f�(i) shares

at least one variable with f�(j) for some j < i given

that C(Ci�1; �). Let P1 = 1. (A one vertex subgraph

is always a connected.)

For i > 1 we have Pi = Prf9j < i; f�(i) and f�(j) share

a variable, given C(Ci�1; �) or one of the k random

variables in f�(i) is in fx1 : : : xmg � fxigg.

PrfC(Cm; �)g =

mY
i=2

Pi

Finally, for i > 1 we note that Ci�1 has at most (i�1)k

distinct other variables. If Ci�1 is connected then the

number of variables may be less than this. Thus,

Pi � 1�

�
n�k(i�1)�m

k

�
�
n�1

k

�
The combinatorial part reduces to

(n� k(i� 1)�m) : : : (n� k(i� 1)�m� k + 1)

(n� 1) : : : (n� k)

�

�
n� ki�m+ 1

n� 1

�k

So, PrfC(Cm; �)g is

�

mY
i=2

1�

�
n� ki�m+ 1

n� 1

�k
!

�

1�

�
1�

km+m� 2

n� 1

�k
!m�1

2 O

 �
1

n

�m�1
!
;m; k �xed

Noting that pm
o
2 O

�
n
�m

2k+1

�
, we see that the expected

number of connected subgraphs of size m is bounded

by

pm
0

�
n

m

�
Ec 2 O

nmn

�m

2k+1

�
1

n

�m�1
!

which goes to zero if m = 2k + 2.

It follows thatM(n; k; p) is less than 2k+2 with prob-

ability asymptotic to 1. This completes the proof.

1234 METHODOLOGY, PEDAGOGY, AND PHILOSOPHY

An Empirical Analysis of Collaboration Methods in Cooperative
Coevolutionary Algorithms

R. Paul Wiegand
George Mason University

Computer Science Department
Fairfax, VA 22030
paul@tesseract.org

William C. Liles�

Central Intelligence Agency
Washington, DC 20505

wliles@gmu.edu

Kenneth A. De Jong
George Mason University

Computer Science Department
Fairfax, VA 22030
kdejong@gmu.edu

Abstract

Although a variety of coevolutionary methods
have been explored over the years, it has only
been recently that a general architecture for co-
operative coevolution has been proposed. Since
that time, the flexibility and success of this co-
operative coevolutionary architecture (CCA) has
been shown in a variety of different kinds of
problems. However, many questions about the
dynamics of this model, as well as the efficacy
of various CCA-specific choices remain unan-
swered. One such choice surrounds the issue of
how the algorithm selects collaborators for eval-
uation. This paper offers an empirical analysis of
various types of collaboration mechanisms and
presents some basic advice about how to choose
a mechanism which is appropriate for a particular
problem.

1 Introduction

In recent years there has been a growing interest in coevo-
lutionary algorithms as interesting and useful extensions
to the more traditional Evolutionary Algorithms (EAs).
The important difference in moving to coevolutionary al-
gorithms is that the fitness of an individual is a function of
the other individuals in the population. Two basic classes
of coevolutionary algorithms have been developed: com-
petitive coevolution in which the fitness of an individual
is determined by a series of competitions with other indi-
viduals (see, for example, Rosin and Belew (1996)), and
cooperative coevolution in which the fitness of an individ-
ual is determined by a series of collaborations with other
individuals (see, for example, Potter and De Jong (2000)).

�This material has been reviewed by the CIA. That review
neither constitutes CIA authentication or information nor implies
CIA endorsement of the author’s views.

Both types of coevolution have been shown to be useful for
solving a variety of problems.

In this paper our focus is on cooperative coevolutionary al-
gorithms (CCAs). A standard approach to applying CCAs
to a problem is to identify a natural decomposition of the
problem into subcomponents. Each component is assigned
to a subpopulation, such that individuals in a given subpop-
ulation represent potential components to the greater prob-
lem. Then each component is evolved simultaneously, but
in isolation to one another. In order to evaluate the fitness
of an individual from a given subpopulation, collaborators
are selected from the other subpopulations in order to form
a complete solution.

While the CCA has shown definite promise on various
problems, there is still a lot that we do not know about how
the model works. One major question is the issue of how
collaborators are chosen. It is clear from early work that
problem characteristics are connected with this choice. For
instance, problem landscapes with strong inter-activity be-
tween components seem to require less greedy methods for
selection of collaborators.

In this paper we examine this choice by looking at three
main aspects of collaboration: collaborator selection pres-
sure, the number of collaborators for a given evaluation,
and the assignment of fitness in evaluation when using mul-
tiple collaborators. These attributes are examined by a se-
ries of experimental studies on a variety of different func-
tion optimization problems.

In the next section we will discuss some background about
coevolutionary approaches. The third section will describe
the architecture in more detail, as well as illustrating the
various choices surrounding collaboration. Then we will
describe the experiments that were run and the results ob-
tained. Finally, we will discuss our conclusions and offer
some practical advice about how to do collaboration in the
CCA in light of particular problems.

1235METHODOLOGY, PEDAGOGY, AND PHILOSOPHY

2 Background

Although evolutionary algorithms (EAs) have been with us
for half a century, significant research into the use of co-
evolutionary systems did not really begin until the early
1990’s. From the start early research focused on applica-
tions of complex tasks, such as competitive approaches us-
ing a parasite-host relationship as a model to coevolve sort-
ing networks and problem sets (Hillis, 1991), and cooper-
ative approaches for coevolving job-shop schedules (Hus-
bands and Mill, 1991).

However, although both cooperative and competitive ap-
proaches were explored from the beginning, most research
since that time has dealt with applications of competitive
approaches. Most popularly competitive coevolution has
been applied to game playing strategies (Rosin and Belew,
1995, 1996; Rosin, 1997; Pollack and Blair, 1998). Addi-
tionally Angeline and Pollack (1993) demonstrate the ef-
fectiveness of competition for evolving better solutions by
developing a concept of competitive fitness to provide a
more robust training environment than independent fitness
functions. Competition was also successfully harnessed
by Schlierkamp-Voosen and Mühlenbein (1994) to facili-
tate strategy adaptation in breeder genetic algorithms.

More recently a variety of coevolutionary methods have
been applied to machine learning problems. There has been
particular attention to neural network coevolution (Pare-
dis, 1994; Juillé and Pollak, 1996; Mayer, 1999; Potter and
De Jong, 2000). Additionally, some work in using coevolu-
tionary algorithms for concept learning has been done (Pot-
ter and De Jong, 1999).

Moreover, there have been recent attempts to lay out gen-
eral frameworks for coevolutionary models (Potter and
De Jong, 1994; Paredis, 1996). However, attempts to un-
derstand the dynamics of these frameworks have been few
and far between. Some basic empirical work is laid out
by Potter and De Jong (1994) and Potter (1997), indicating
that there is a possible link between variable inter-activity
and collaboration selection. Even more recently, some ba-
sic theoretical work has been done to take ideas from sim-
ple genetic algorithm theory provided by Vose (1999), and
apply it to coevolution (Ficici and Pollack, 2000). This
work explores the mechanics of a simple competitive co-
evolutionary algorithm from a game theoretic viewpoint.

These questions of coevolutionary dynamics are not aca-
demic. The question of selecting collaborators for eval-
uation, for instance, has not only been an issue for our
application activities, but has also cropped up with other
researchers who are applying the techniques to problems
such as inventory control optimization Eriksson and Olsson
(1997). Indeed, since this is a key element of the success of
applying this cooperative coevolution architecture (CCA),

we believe it merits particular attention in order to improve
our ability to apply CCAs in the future.

3 Coevolution and Collaboration

When applying a CCA to a particular problem, a standard
approach is to decompose the problem into subcomponents
and assign each subcomponent to a subpopulation. These
subpopulations may or may not be homogeneous with re-
spect to the representation used or the EA being used to
evolve a particular subcomponent.

Evolution proceeds independently, except for evaluation.
Since any given individual from a subpopulation represents
only a subcomponent of the problem, collaborators will
need to be selected from the other subpopulations in order
to assess fitness. Each generation, all individuals belonging
to a particular subpopulation have their fitness evaluated by
selecting some set of collaborators from other subpopula-
tions to form complete solutions. Afterward, the CCA pro-
ceeds to the next subpopulation, which will in turn draw
collaborators from each of the other subpopulations. A
simple algorithm of this process is outlined below in fig-
ure 1.

gen = 0

for each species s do
Pops(gen) = initialized population
evaluate(Pops(gen))

while not terminated do
gen++

for each species s do
Pops(gen) select(Pops(gen� 1))
recombine(Pops(gen))
evaluate(Pops(gen))
survive(Pops(gen))

Figure 1: The structure of a Cooperative Coevolutionary
Algorithm (CCA).

Computing the fitness of individuals in a coevolutionary
system can be done in a variety of ways. Some compet-
itive coevolutionary algorithms perform bipartite evalua-
tions, applying each individual in one population to each in
the other (Hillis, 1991). Additionally, it is not uncommon
for single population competitive fitness models to perform
exhaustive pair-wise evaluations (Axelrod, 1989). Such
approaches can be computationally expensive in multi–
population models, since the number of objective function
evaluations used for each assessment of fitness grows ex-
ponentially by the number of species. Less expensive ap-
proaches, such as single elimination tournaments have also
been addressed (Angeline and Pollack, 1993).

1236 METHODOLOGY, PEDAGOGY, AND PHILOSOPHY

Alternatively, early work in the CCA model (Potter and
De Jong, 1994) suggests two methods for selecting collab-
orators for the purpose of fitness evaluation:

CCA-1 Choose the best individuals from alternative sub-
populations, as defined by fitness obtained from the
last evaluation process of that group.

CCA-2 Select two individuals: the best and a random indi-
vidual. Evaluate both with the current individual and
use the higher objective function value for the current
individual’s fitness score.

We could of course imagine many more such meth-
ods. Rather than speculate about potential collaboration
choices, however, it is more useful to define some basic at-
tributes of this choice. In our opinion, there are three such
attributes:

� The degree of greediness of choosing a collaborator
(collaborator selection pressure).

� The number of collaborators per subpopulation to use
for a given fitness evaluation (collaboration pool size).

� The method of assigning a fitness value given multiple
collaboration-driven objective function results (col-
laboration credit assignment).

We will examine all three of these attributes in this paper.

3.1 A Clearer Picture of Collaboration

Since in a CCA an individual represents only a subcom-
ponent of a problem solution, collaborator subcomponents
from each of the other subpopulations must be assembled
to form a complete solution. We call the process of choos-
ing these collaborator subcomponents collaborator selec-
tion. To do this, we can use the last evaluated fitness scores
of the individuals in the alternative subpopulations to bias
how we choose these collaborators. The degree of bias in
this choice is what we are calling collaborator selection
pressure.

This newly assembled complete candidate solution (a col-
laboration) can now be plugged into the objective function
and assigned a collaboration score. If only one collabora-
tor from each subpopulation is selected, there will only be
a single collaboration score, and this score may be used as
the fitness value.

However, we may choose to try different combinations of
collaborators from the other subpopulations. In which case
evaluation of an individual will consist of multiple collab-
orations. The number of collaborators selected from each

subpopulation is what we call the collaboration pool size.
Since each of these collaborations will have their own col-
laboration score from the objective function, these multi-
ple scores must be resolved in some way to a single fitness
value (collaboration credit assignment).

4 Experimental Methods

4.1 Fitness Landscapes

For our initial experimental studies on collaboration meth-
ods we elected to study simple function optimization prob-
lems. These types of problems are well–suited for the
CCA, since a natural decomposition of the problem is very
straightforward: each subpopulation represents a particular
variable of the function. In all cases, we chose to examine
only two variable landscapes, since increasing the dimen-
sionality creates a combinatorial problem and raises ques-
tions about how multiple collaborators are applied. Future
work on this matter is needed.

We use three fitness functions: Rosenbrock, Rastrigin, and
a quadratic which is not directly aligned with the axes. The
first two were chosen to be consistent with the Potter and
De Jong (1994) study. They represent two difficult prob-
lems, one of which is not linearly separable (Rosenbrock)
and the other which is linearly separable (Rastrigin). The
third function was chosen because, although it is a simple
problem conceptually, the lack of axis alignment has been
shown to introduce problems for certain kinds of evolution-
ary algorithms (Salomon, 1996). Table 1 summarizes the
functions used, as well as shows the constraints of those
functions. In all cases the functions were to be minimized.

4.2 EA Characteristics

As previously stated, subpopulations of the CCA are
homogeneous in our study. Again, where possible EA char-
acteristics remain similar to previous studies. In all cases,
the details of the evolutionary mechanisms are as follows:

representation: binary
(16 bits per function variable)

selection: fitness proportionate
with linear scaling

genetic operators: two-point crossover &
bit-flip mutation

mutation probability: 1 / chromosome length
crossover probability: 0.6
(sub)population size: 100
termination criteria: 100,000 function evaluations

1237METHODOLOGY, PEDAGOGY, AND PHILOSOPHY

Table 1: Function Test Suite

Function Bounds Name

f1(x1; x2) = 100(x
2

1
� x2)

2
+ (1� x1)

2
�2:048 � xi � 2:048 Rosenbrock

f2(x1; x2) = 6 +
P

2

i=0
x
2

i
� 3:0cos(2�xi) �5:12 � xi � 5:12 Rastrigin

f3(x1; x2) = x
2

1
+ (x1 + x2)

2
�65:536 � xi � 65:536 Off-axis quadratic

5 Experimental Results

We used the experimental setup described above to run a
large number of experiments in order to see if there were
clear patterns indicating how best to design a CCA col-
laboration method. Recall that designing a collaboration
method involves three decisions: how to assign fitness
when there are multiple collaborations, how to choose col-
laborators, and how many collaborators to choose. Each of
these issues is explored in the following subsections.

5.1 Collaboration Credit Assignment

We explored three methods for assigning an eventual fit-
ness score to individuals who have had multiple collabora-
tive function evaluations. These methods are as follows:

Optimistic: The more traditional method of assigning an
individual a fitness score equal to the value of its best
collaboration.

Hedge: Assign an individual a fitness score equal to the
average value of its collaborations as is generally done
in competitive coevolution.

Pessimistic: Assigning an individual a fitness score equal
to the value of its worst collaboration.

The intuition for the latter option is that perhaps it might be
best to use a “safe” credit assignment that rewards an indi-
vidual only as well as its weakest collaboration. However,
in all of our experiments this never turned out to be the
case. In fact both the pessimistic and hedge strategies con-
sistently resulted in significantly poorer performance in our
studies, generally by several orders of magnitude. Some
typical examples of these results can be seen in Table 2,
involving minimizing a two variable Rosenbrock function
when selecting two and three collaborators.

As a consequence of this consistent pattern, the remainder
of the experiments discussed in this paper will only use the
optimistic approach for credit assignment.

5.2 Collaboration Selection Pressure

The next attribute for deciding collaboration mechanics
is the degree of greediness of choosing a collaborator.

Table 2: Example collaboration credit assignment results
for the Rosenbrock minimization problem. The number
represent averages across 50 trials. Collaborators are cho-
sen at random.

Collaborator
Poolsize

Credit
Assignment

Result

2 Optimistic 43:35

2 Hedge 10; 413:6

2 Pessimistic 7; 063:22

3 Optimistic 25:82

3 Hedge 76; 870

3 Pessimistic 46; 843:5

CCA-1 uses a very greedy method, selecting the best in-
dividual from the previous generation. CCA-2, however,
weakens this pressure somewhat by using a two collabora-
tor mechanism in which the second collaborator is chosen
at random. It is still quite greedy however, since the best
individual is still used. We can imagine weakening this
pressure even more by allowing for different combinations
of selection mechanisms aside from selecting the best. Ta-
bles 3, 4, and 5 show results for all three functions with
various combinations of collaborator pool size two using
the three selection mechanisms: best, random, and worst.

Notice that no improvements are obtained on the Rosen-
brock function regardless of whether the best individual is
included as one of two collaborators. This finding is con-
sistent with ANOVA at 95% confidence. In the Rastrigin
function and the quadratic functions however, there is a
clear significant advantage to using the best individual as
one of the collaborators. We will return to this later in the
paper.

We can weaken selection even further, as well as provide
ourselves with a way of controlling the degree of collabo-
rator selection pressure by using previous generation eval-
uation results to bias a non-deterministic choice of current
collaborations. We use a method similar to tournament

1238 METHODOLOGY, PEDAGOGY, AND PHILOSOPHY

selection, varying tournament sizes from 1 (random selec-
tion) to 4, which is a fairly strong bias. More extreme sizes
were used, but are not presented in detail in this paper.

Table 3: Rosenbrock minimization results using various
combinations of selection choices for each of two collab-
orators: best, worst, and random. These show averages of
50 trials, as well as 95% confidence intervals.

Rosenbrock Random Best

Worst 56.51 �44:24 57.67 �48:49

Random 37.82 �24:29 68.28 �88:43

Table 4: Rastrigin minimization results using various com-
binations of selection choices for each of two collaborators:
best, worst, and random. These show averages of 50 trials,
as well as 95% confidence intervals.

Rastrigin Random Best

Worst 6.43 �1:93 0.54 �0:03

Random 3.46 �1:06 0.54 �0:05

Table 5: Off-Axis quadratic minimization results using var-
ious combinations of selection choices for each of two col-
laborators: best, worst, and random. These show averages
of 50 trials, as well as 95% confidence intervals.

Quadratic Random Best

Worst 295.07 �199:19 2.85 �5:45

Random 136.63 �82:96 1.21 �0:93

This tournament–like method should not be confused with
that of selecting multiple collaborators. In the case where
the collaboration pool size is only one, we can still have
large tournament sizes without affecting the fact that only a
single objective function application is required to evaluate
an individual. This tournament-style collaborator selection
method is used merely to leverage previous generation fit-
ness values as a way to bias our search for a collaborator
for the current evaluation. Of course the method is still rea-
sonable for larger collaboration pool sizes, and again the
size of the tournament will not impact the number of col-
laborations that are ultimately formed.

Figure 2 shows the results for the minimization experi-
ments of the Rosenbrock function. The x-axis represents
fitness scores. The points on the plot are averages of 50
trials for each experimental group. The whiskers show the
95% confidence intervals of these groups. Results for the

basic GA, CCA-1, and CCA-2 groups are shown at the top
for baseline comparison. The remaining four panels show
the results for groups which were run using increasing col-
laboration selection pressure.

Notice that varying the pressure with this tournament-like
collaborator selection method makes very little difference
in the overall performance of the CCA. The f1, f2, and f3

graphs show a similar story in this respect. Although the
graphs in this paper show results for conservative ranges of
this parameter, a range of extreme values (such as tourna-
ment sizes limiting toward the population sizes, and tourna-
ment selection of collaborators with the worst fitness score,
etc.) were also run. These trends bear out even at extreme
values.

More interesting perhaps is the fact that with the non-linear
case, collaborator selection method neither helps, nor cre-
ates a performance degradation unless the selection bias is
so strong that it effectively reduces the number of collabo-
rators used (for extreme tournament sizes). Indeed, recall
from Table 3 that using one best and one random (or worst)
individual as collaborators in a two-way collaboration re-
sulted in no significant performance difference.

Clearly it is not entirely the case that collaboration selec-
tion pressure is unimportant, however, since CCA-1 and
CCA-2 do quite well against the linearly separable Rastri-
gin and the off-axis quadratic function compared to those
CCA algorithms employing random selection.

One hypothesis is that the CCA-1 and CCA-2 algorithms’
use of the most extreme collaboration selection pressure
creates a search which is similar in behavior to a line-
search. Therefore Rosenbrock non-linearities create a
problem for which this bias gives us little or no advan-
tage. In the case of the other two functions, this simple
line-search type of behavior provides a strong bias which
is well suited to solving these problems.

5.3 Collaboration Pool Size

The most dramatic effect on the success of the CCA was
clearly the number of collaborators one uses. To some
extent, computationally speaking this is an unfortunate,
though not surprising, result since increasing the number
of collaborators can significantly increase overall computa-
tion time—a problem which is combinatorial with the num-
ber of subpopulations.

Again look at figures 2, 3, and 4. In almost all cases in-
creasing the number of collaborators used assisted the per-
formance of the algorithm. In fact, although the relaxation
of the greedy collaboration method hinders the CCA with
respect to the GA on the Rastrigin function, increasing the
collaborative pool size to 5 with random collaborator selec-

1239METHODOLOGY, PEDAGOGY, AND PHILOSOPHY

Figure 2: Results for Rosenbrock (f1) minimization exper-
iments. The x-axis represents the final reported result from
the EA after 100,000 function evaluations. The points plot-
ted are averages of 50 trials, and the whiskers show the 95%
confidence intervals.

Figure 3: Results for Rastrigin (f2) minimization experi-
ments. The x-axis represents the final reported result form
the EA after 100,000 function evaluations. The points plot-
ted are averages of 50 trials, and the whiskers show the 95%
confidence intervals.

Figure 4: Results for the off-axis quadratic (f3) minimiza-
tion experiments. The x-axis represents the final reported
result from the EA after 100,000 function evaluations. The
points plotted are averages of 50 trials, and the whiskers
show the 95% confidence intervals.

Figure 5: The contributions of collaborators were tracked
using three different collaboration mechanisms for each
function (best, worst, and random; best and worst; and best
and random). The number of times each collaborator is re-
sponsible for yielding the better fitness score is illustrated
as ratios in the above chart. Averages across 50 trials were
used.

1240 METHODOLOGY, PEDAGOGY, AND PHILOSOPHY

tion returns CCA performance to at least an insignificant
difference from that of the GA.

While our research does not address the issue of how large
the collaboration pool size should be for a given problem, it
does suggest that a relatively conservative adjustment from
one to two collaborators will frequently yield substantial
benefit. Indeed, in all three functions this change is statis-
tically significant for the data shown in our figures.

Of course even such a “conservative” adjustment from one
to two collaborators is disappointing news in terms of com-
putational complexity. Whether some sampling technique
can be used to reduce the combinatorial problem remains
to be seen.

6 Further Analysis

In order to look more closely at what kind of use the CCA
is making of its collaborators, we decided to setup some
multi-collaborator runs and track the frequency with which
the CCA makes use of any particular collaborator for fit-
ness assessment. We did this by setting up three groups for
each function, one requiring three collaborators, and two
requiring just two. In the first group the best, worst, and
random collaborators were selected and the function was
evaluated with each. The second group selects the best and
worst collaborator and the third selects best and random.
Since we are using an optimistic strategy for credit assign-
ment, we kept track of the number of times each collab-
orator produces the best resulting fitness score. Figure 5
on page 6 shows these ratios for these groups for all three
functions.

The Rastrigin function always uses the best collaborator.
Given the premise that using the best individual for collab-
oration gives us something like a simple line-search, it is
not surprising that the best collaborator is always the one
used by the algorithm during evolution. Even the off-axis
quadratic makes predominant use of the best individual, al-
though it seems evident that its own alignment properties
create a need for small use of other collaborators.

What is more interesting is that not only does the Rosen-
brock make use of all three collaborators, but it doesn’t
seem to matter whether we use a random collaborator or
the worst individual as a collaborator. Curiously, use of the
worst individual seems to overshadow use of the random
individual in the three collaborator case. We believe this
is an artifact of the properties of this particular landscape,
though clearly more investigation is needed to fully explain
this.

7 Conclusions and Future Work

There are several clear lessons to take home from this re-
search. First and foremost it is evident that using an op-
timistic approach is generally the best mechanism for col-
laboration credit assignment. This may not always be true
for every type of problem, but it seems that it is a very safe
first guess for static objective functions.

The next question a practitioner should ask is how much
non-linear interaction there is likely to be among the sub-
components with respect to fitness. If this can be reason-
ably assessed, it is the key to making the next decisions
about collaboration. Clearly if the problem is a simple
problem that is linearly separable, a greedy approach to col-
laborator selection is warranted. Additionally, it may well
be that the number of collaborators may be limited (perhaps
even to just 1).

For more complicated problems with large degrees of vari-
able interactivity, the selection pressure of collaboration is
far less important than the number of collaborators. More-
over, if computationally feasible, increasing the number of
collaborators seems to benefit CCA performance in gen-
eral.

However, it is also clear that there is no magic bullet.
The simple off-axis quadratic still perplexes the non-greedy
CCA. Combining random (or worst, or arbitrary) collab-
orators with best collaborators against these problems re-
sulted in no significant degradation of solution quality over
the greedy CCA-1. So combining these methods (as in
CCA-2 by Potter and De Jong (1994)) may be a good first
stab at solving a problem when the degree of variable inter-
activity is unknown.

The fact that in the non-linear case collaborator selection
pressure seems to be unimportant may be a clue for some
resolution to the multi–collaborator combinatorial prob-
lem. It suggests that how you sample the collaboration
space is not very important. This encourages the possibility
that some simple sampling methods can give us some relief
to this problem. As state earlier, more work here is needed.

Although we feel this is a good first step toward under-
standing how collaboration works in the CCA, much work
remains. Ideally it would be nice to have some theory that
allows us to find the minimal number of collaborators nec-
essary to solve a given problem, for instance.

Even without such a theory though many questions are
raised by this research which deserve attention. First of
all, if the CCA makes even use of different collaborators
in non-linear problems like Rosenbrock as it seems to,
what kind of run-time behavior does this usage have? Is
there some sort of periodicity, as one collaborator selec-
tion method dominates the other for some time, then trends

1241METHODOLOGY, PEDAGOGY, AND PHILOSOPHY

reverse? Or is there some punctuation of equilibrium that
occurs to cause the method to re-balance? Or perhaps the
usage is random and unpredictable. Exploring this question
is one of our foremost questions.

Additionally, while increasing from two to three collabo-
rators in the Rosenbrock problem is clearly superior, CCA
runs do not seem to make even distributed use of these col-
laborators. Our observations show that two selection meth-
ods can overshadow the third, even though the addition of
a third method improves performance. We would like to
answer this question in the future, as well.

Finally, one of our most pressing questions is that of how to
efficiently deal with the dimensionality problems caused by
having multiple collaborators and multiple subpopulations.
We are interested in exploring whether or not various sam-
pling methods can be used to address these problems.

References

P. Angeline and J. Pollack. Competitive environments
evolve better solutions for complex tasks. In S. Forrest,
editor, Proceedings of the Fifth International Conference
on Genetic Algorithms, pages 264–270, San Mateo, CA,
1993. Morgan Kaufmann.

R. Axelrod. Evolution of strategies in the iterated prisoner’s
dilemma. In L. Davis, editor, Genetic Algorithms and
Simulated Annealing. Morgan Kaufman, 1989.

R. Eriksson and B. Olsson. Cooperative coevolution in in-
ventory control optimisation. In G. Smith, N. Steele,
and R. Albrecht, editors, Proceedings of the Third Inter-
national Conference on Artificial Neural Networks and
Genetic Algorithms, University of East Anglia, Norwich,
UK, 1997. Springer.

S. Ficici and J. Pollack. A game-theoretic approach to the
simple coevolutionary algorithm. In Proceedings from
the Sixth Parallel Problem Solving from Nature, pages
467–476. Springer-Verlag, 2000.

D. Hillis. Co-evolving parasites improve simulated evo-
lution as an optimization procedure. Artificial Life II,
SFI Studies in the Sciences of Complexity, 10:313–324,
1991.

P. Husbands and F. Mill. Simulated coevolution as the
mechanism for emergent planning and scheduling. In
R. Belew and L. Booker, editors, Proceedings of the
Fourch International Conference on Genetic Algorithms,
pages 264–270. Morgan Kaufmann, 1991.

H. Juillé and J. Pollak. Co-evolving interwined spirals. In
L. Fogel, P. Angeline, and T. Bäck, editors, Proceedings
of the Fifth Annual Conference on Evolutionary Pro-
gramming, pages 461–468. MIT Press, 1996.

H. Mayer. Symbiotic coevolution of artificial neural net-
works and training data sets. In Proceedings from the
Fifth Parallel Problem Solving from Nature, pages 511–
520. Springer-Verlag, 1999.

J. Paredis. Steps towards co-evolutionary classification net-
works. In R. A. Brooks and P. Maes, editors, Artificial
Life IV, Proceedings of the fourth International Work-
shop on the Synthesis and Simulation of Living Systems.,
pages 359–365. MIT Press, 1994.

J. Paredis. Coevolutionary computation. Artificial Life
Journal, 2(3), 1996.

J. Pollack and A. Blair. Coevolution in the successful learn-
ing of backgammon strategy. Machine Learning, 32(3):
225–240, 1998.

M. Potter. The Design and Analysis of a Computational
Model of Cooperative CoEvolution. PhD thesis, George
Mason University, Fairfax, Virginia, 1997.

M. Potter and K. De Jong. A cooperative coevolutionary
approach to function optimization. In Proceedings from
the Third Parallel Problem Solving from Nature, pages
249–257. Springer-Verlag, 1994.

M. Potter and K. De Jong. The coevolution of antibod-
ies for concept learning. In Proceedings from the Fifth
Parallel Problem Solving from Nature, pages 530–539.
Springer-Verlag, 1999.

M. Potter and K. De Jong. Cooperative coevolution: An ar-
chitecture for evolving coadapted subcomponents. Evo-
lutionary Computation, 8(1):1–29, 2000.

C. Rosin. Coevolutionary Search Among Adversaries. PhD
thesis, University of California, San Diego, 1997.

C. Rosin and R. Belew. Methods for comptetitive co-
evolution: Finding opponents worth beating. In L. Es-
helman, editor, Genetic Algorithms: Proceedings of the
Sixth International Conference, pages 373–380. Morgan
Kaufmann, 1995.

C. Rosin and R. Belew. New methods for competetive co-
evolution. Evolutionary Computation, 5(1):1–29, 1996.

R. Salomon. Performance degradation of genetic algo-
rithms under coordinate rotation. In L. Fogel, P. Ange-
line, and T. Bäck, editors, Proceedings of the Fifth An-
nual Conference on Evolutionary Programming V, pages
153–161. MIT Press, 1996.

D. Schlierkamp-Voosen and H. Mühlenbein. Strategy
adaptation by competing subpopulations. In Proceed-
ings from the Third Parallel Problem Solving from Na-
ture, pages 199–108. Springer-Verlag, 1994.

M. Vose. The Simple Genetic Algorithm. MIT Press, 1999.

1242 METHODOLOGY, PEDAGOGY, AND PHILOSOPHY

