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Evolving a Nervous System of Spiking Neurons for a Behaving Robot

Abstract

We describe the artificial evolution of ‘nervous
systems’ for the ARBIB robot, which control the
_way it interacts with its environment. The present
_ work differs from earlier attempts to evolve robot
. controllers by use of a biologically-inspired hetero-
geneous network of spiking neurons. An obstacle-
avoidance task is defined so as to provide an ap-
propriate fitness function for the evolutionary pro-
cess, and ten separate runs were undertaken in a
simulated environment. Evolved nervous systems
from 7 of the 10 runs led to an ‘emergent’ wall-
following behaviour. Two of the seven, both having
just 7 neurons, are examined and described. They
are considerably simpler than our earlier, manually-
designed solutions which had some 30-50 neu-
rons, although the latter were additionally capable
of ontogenetic (during lifetime) learning. One of
the two example nervous system promotes photo-
taxis as well as wall-following. These two evolved
systems are tested on a real Khepera robot, and be-
ave entirely as expected from the simulations.

Introduction

ently, there has been considerable attention paid to evolv-
controllers for autonomous robots. Evolutionary compu-
on has contributed to robot development in several ways,
h genetic algorithms (e.g., Davidor 1991) and genetic pro-
ming (e.g., Koza 1992) dominant in the field. Applica-
15 have been found in learning classifier systems (Dorigo
)5; Krebs and Bossel 1997; Smith and Cribbs 1997; Bertin
van de Grind 1998), navigation (Floreano and Mon-
fa 1996; Chongstitvatana 1999; Nearchou 1999), obstacle
idance (Ojala 1998), neural network design (Husbands,
Thompson, Jakobi, and Harvey 1997; Michel 1997), ar-
al life (Sims 1994a; 1994b), development of robot body
pe (Funes and Pollack 1998) and the automated design
I manufacture of robots (Lipson and Pollack 2000). The
sent work is aimed at evolving a ‘nervous system’ for the
BIB autonomous robot. What distinguishes this from pre-
us work is our use of a network of spiking neurons. To
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our knowledge, this is the first practical attempt to evolve a
spiking nervous system artificially.

ARBIB is an Autonomous Robot Based on Inspirations from
Biology which learns via low-level neural mechanisms of
habituation, sensitisation and classical conditioning (Damper
and Scutt 1998; Damper, French, and Scutt 2000). In
engineering terms, it consists of a mobile platform (a Khep-
era miniature robot in this work) controlled by a neural net-
work simulator called Hi-NOON which works at the basic
level of nerve cell membrane potential, i.e., it is capable of
simulating spiking neurons. This requires some justifica-
tion. One might reasonably ask what advantages this offers,
i.e., what can a simulation based on spiking neurons achieve
that cannot be achieved using more gross parallel distributed
processing (PDP) type model neurons? This is currently a
vexed question in computational neuroscience. It is likely
that spikes evolved mainly as a means of regenerative sig-
naling along the relatively long propagation paths of animal
nervous systems (Levitan and Kaczmarek 1997). Because of
active regenerative processes, the action potential is propa-
gated without loss of amplitude; hence, no information is car-
ried by signal amplitude. Accordingly, time of firing plays a
central role in neural coding, and this strongly suggests that
a circuit of spiking neurons ought to be better able to handle
temporal processing than PDP nets. Clearly, then, detailed
timing information for individual spikes, and relative timing
between spikes, offers an additional dimension to the neu-
ral code (Damper, French, and Scutt, forthcoming). There
is suggestive evidence that this sort of information is indeed
important in biology. Citing Rieke et al. (1997, p.279):

“... under many conditions, behavioural decisions
are made with of order one spike per cell, ... indi-
vidual spikes can convey several bits of information
about incoming sensory stimuli . .. precise discrim-
inations could ... be based on the occurrence of in-
dividual spikes...”

As previously implemented, ARBIB’s nervous system was
hand-coded. Hence, its architecture was fixed by the imag-
ination and prejudices of its programmer. Neuroscience has
not yet progressed to the state where we understand the
relationships between nervous system structure and intelli-
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gent behaviour. So it seems likely that manual design will
limit the potential for the nervous system to scale-up and
arguably hampers progress towards complex and intelligent
behaviours. A possible solution to this problem, which we
explore here, is to construct ARBIB’s nervous system us-
ing the paradigm of evolutionary computation. Since our
present concern is an evolved solution, we have disabled
the mechanisms of ontogenetic (lifetime) learning by pre-
venting the evolutionary process from constructing synapse-
on-synapse connections which underlie the neural learning
model of ARBIB (Damper, French, and Scutt 2000). This
gives a clearer view of the effects of evolution and allows
faster evaluation of candidate individuals.

The remainder of this paper is structured as follows. Sec-
tion 2 briefly describes the way a nervous system is repre-
sented in Hi-NOON and the consequences this has for devel-
opment through evolution. We show how simulated robot ac-
tivity is used to evaluate a candidate nervous system, as well
as describing the evolutionary processes of selection, recom-
bination and mutation. Section 3 examines the structure and
function of a typical nervous system evolved to promote ob-
stacle avoidance in a simulated environment, but which also
led to ‘emergent’ wall-following behaviour. Section 4 reports
tests of this evolved network with a Khepera robot in the real
world. Section 5 describes a second evolved nervous system,
together with its atypical phototaxis (light seeking) ability.
Section 6 concludes with suggestions for future development
of this work.

2 Evolving a Nervous System

Hi-NOON is a simulator for a Hierarchical Network of Object-
Oriented Neurons (Scutt and Damper 1991; French, Damper,
and Scutt 2000; Damper, French, and Scutt, forthcoming). As
the name suggests, synapses, neurons and network are rep-
resented as dynamically-created objects (equipped with their
own data members and member functions) within an object-
oriented hierarchy. Substantial machinery is already in place
for executing a nervous system in Hi-NOON, and it is advan-
tageous to reuse as much of this as possible during evolution.
Hence, candidate nervous systems are represented and manip-
ulated during selection, recombination and mutation using the
existing data structures. The approach is in marked contrast
to that adopted by, for example, Michel (1997) where a sepa-
rate growth phase precedes nervous system execution. Direct
manipulation of data structures avoids a (possibly) protracted
growth phase.

In this work, we repeated the evolutionary process 10 times.
Each run was for a population of 100 individuals (Hi-NOON
nervous systems) over 100 generations.

2.1 Initial population

Initially, the evolutionary process must be seeded with a pop-
ulation of randomly-generated individuals. How are we to do
this? The individuals in any new generation (including the
initial one) must have a high likelihood of being structurally-
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viable nervous systems: Thus, it is advantageous to cons;
(at least partially) the genetic operators to help achieve this
One way to do this is to ensure that newly-generated Neurgy
of a particular type (e.g., sensory neuron) can only conp,
to other neurons of a particular type (e.g., interneuron

maintain diversity, the constraints are sometimes applied g
sometimes not, according to a random choice.

Hence, we use the following functions:

add neuron, deleteneuron, add.synapse an
delete_synapse—simply create and destroy neurons an
synapses.

add-sensor.to—creates a sensory neuron at a randop
sensor position on ARBIB, and connects it to a randomly ge
lected motor or interneuron postsynaptic target.

add_-turn—creates an interneuron that carries an identifi
cation tag as a ‘reflex’ interneuron which then attempts ¢
connect postsynaptically with motor neurons connected to th
robot’s differential drive.

add_reflex—creates an interneuron and connects it with
randomly-selected postsynaptic reflex interneuron.

add-interneuron—creates an interneuron and connect
it to a randomly-selected motor, interneuron or reflex post
synaptic target.

add_forward—creates an interneuron and connects it t
available forward motor postsynaptic targets.

These functions are used both to generate the initial popula
tion and in the creation of new generations during the subse-.
quent evolutionary process itself, as illustrated in Figure 1.

2.2 Recombination and mutation

Recombination is implemented as single-point crossover.
Two parents are chosen together with a common neuron (
neuron with a numerical identifier, the ‘neuron number’, com
mon to both parent nervous systems) which acts as a crossove
point. Two children are instantiated who then undergo prun
ing of any synapses that no longer have valid postsynaptic t
gets. In the interests of computational efficiency, this method
has been chosen in preference to any attempt at analysing the
two parents looking for an ideal crossover point. This op
eration is similar in function to the crossover used by Sims
(1994b). Here, however, we only use one crossover point
whereas Sims uses one or more. Also, he reassigns synapses
that no longer have a postsynaptic target and we do not.

Mutation operates by adding or deleting individual neurons
and synapses. A random choice is made as to whether to ap-
ply the functions listed in Section 2.1 or not. Because the
Hi-NOON data structures are dynamic, and because we ma-
nipulate the nervous system representation directly during the
evolutionary process, there is no limit on the size of gen
type in this application. Genetic algorithms usually employ 2 ‘
fixed-length genotype (Koza 1992, p. 18): Hence, we see this
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nervous system has been constructed, it must be eval-
ither on the robot platform or in a simulation. Here,
erform evaluation in simulation for convenience. Es-
lly, each of the robot’s sensors and motors is associ-
c tar- d with an accumulator, which sums activity in that device
sthod a fixed number of simulation time-steps, i.e., they are
gthe beishted averages. The accumulated values are then scaled,
5 op- imed and divided by the number of time-steps. The scal-
Sims oefficients are predefined to reflect our intuitions about
poinf obstacle avoidance involves. Hence, bump sensors have
1pses egative coefficient but forward motor drives have a positive
cient. In so doing, we are conscious of the observation
Zaera, Cliff, and Bruten (1996) that: “... formulating an
tive fitness evaluation function for use in evolving con-
fers can be at least as difficult as hand-crafting an effective
ntroller design.” In our particular situation, however, an ef-
tive fitness function suggests itself rather easily.

irons
) ap-
: the
ma-

gthe
eno- oceeding as above, we obtain an evaluation of the robot’s
oya rformance per-clock-tick of nervous system execution, ac-

. this rding to the following detailed equations:
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Here, Sir and Sjign; are the accumulated sums for the infra-
red (IR) range and light sensors, respectively; the range of the
summation counter 1 is [0,7] because Khepera has 8 combined
IR/light sensors; k; denotes the ith coefficient; R; and L; are
the ith infrared range and light activities, respectively; M
and M, are motor activities on the left and right sides, re-
spectively; My and M|, are forward and reverse activities for
the left motor; similarly M;¢ and M, are forward and reverse
activities for the right motor; T is the number of simulation
time-steps; and a; is the scaled accumulator value for the
jth individual of the population.

The selection operator used here is the stochastic universal
sampling (SUS) method (Baker 1987; Whitley 1993) with
elitism. SUS was chosen because it is computationally effi-
cient and maintains diversity among the population. However,
some of the a;’s evaluated as above may be negative for par-
ticularly unfit individuals, whereas the SUS scheme requires
sampling along a positive number axis divided up according
to individual fitnesses. Hence, we determine fitness F; for
the jth individual by increasing the a; values by the absolute
minimum value of all the a;’s according to:
Fj = aj + |minfay, ..., ap)|

where P is the size of the population. This results in a set of
non-negative values to which SUS can be applied.

3 Typical (Simulated) Evolved Behaviour

In this section, we examine a typical result obtained by ap-
plying the evolutionary paradigm to nervous system develop-
ment for the Khepera instantiation of ARBIB in a simulated
environment (Michel 1996). The primary task for the robot
was obstacle avoidance. The evolved nervous system was bi-
ased to produce this behaviour by the choice of accumulator
coefficients, as described in the previous section.

Figure 2 shows a typical nervous system found in one of the
10 runs. It has several redundant components that perform no
useful function here: They are ‘leftovers’ from the evolution-
ary process. Had evolution continued longer, it is possible
that these might eventually have played a part in robot be-
haviour, i.e., they could serve as preadaptations for some as
yet undiscovered functionality.
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Figure 2: Typical nervous system evolved for obstacle avoidance. Neuron 2 is depolarised by an IR distance sensor that ope;
in inverse mode. Numbers in brackets after sensory neurons denote position on Khepera. Some components are redund:
They have no sensory input or are disconnected from postsynaptic targets. On removal of redundant components, the cirey

divides into three separate subassemblies.

As can be seen in the figure, the nervous system has organised
itself into three separate parts:

1. neurons 1,6 and 7 form a subassembly that fires the
right forward motor when a wall is detected by distance
sensor 5 (a wall on the robot’s right hand side);

2. neurons 2 and 3 fire the left forward motor in the ab-
sence of an obstacle in front of the robot;

3. neurons 4 and 9 fire the right reverse motor in the pres-
ence of an obstacle in front of the robot.

Note that only the IR range sensors are in use. Although a
light sensory neuron has been created, it has not been con-
nected to any other part of the nervous system. The first sub-
assembly above is only one step away from forming an oscil-
latory neural circuit—were it not for the fact that neuron 7 is
a sensory cell and so its membrane potential is heavily influ-
enced by the environment. . . .
Figure 3: A screenshot of ARBIB exploring a simulated
Figure 3 shows the path taken by ARBIB (with the nervous  ronment using the evolved nervous system in Figure 2. Wal
system shown in Figure 2) in a test environment. It is abun-  following behaviour has emerged.
dantly clear that it shows robust wall-following behaviour.
Interestingly, 7 out of the 10 separate evaluations resulted in
such behaviour. The remaining 3 runs enerated nervous . .
. 5 & . to follow a wall can be predicted from knowledge of
systems that predisposed the (simulated) robot either to ex- . h .
. . . underlying simpler behaviours—obstacle avoidance and
plore a limited part of the environment by traversing a small oo s .
. . . : . ward motion in the direction of a wall. To these authors,
circular path, or to remain stationary on encountering a wall. .. . -E
element of surprise is necessary for a behaviour to qu
emergent. On the other hand, Damper (2000) points ou

surprise is observer-dependent, and no scientific test shou
ance of th

Whether or not this wall-following is ‘emergent’ depends
upon one’s interpretation of this rather loose term. For in-
stance, Steels (1994) has described wall-following behaviour be relative to the degree of knowledge or ignor
in a robot as ‘emergent’ since it was not explicitly built into  server. Indeed, the behaviour seen here surprised one of
the controller. On the other hand, Ronald, Sipper, and Cap- authors but not the other! So rather than labour the poift
carrere (1999) discount this use of the term because tendency ‘emergence’, we simply emphasise that wall-following
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. 4: Typical spiking activity in the nervous system of
a) Activity in the left forward motor neuron. Initially,
is detected in front of ARBIB so the left forward mo-
es between samples [0, 300]. (b) Activity in the right
e motor neuron occurs just after sample 300. Because
has turned to face a wall, neuron 2 briefly stops fir-

sing neuron 9 to fire. (c) Activity in the right forward
neuron. Together with (a), this shows that ARBIB is
forward during the time between [450, 700].

pgrammed into the controller: only a fitness function
cle avoidance was. This, after all, is our motivation
ng the evolutionary paradigm—so that we are not con-
by the foresight of a human designer.

visualise what is going on as ARBIB explores its
membrane potentials from all neurons are logged to
inspection. A total of 10019 sample points was col-
or each neuron, but only a small subset will be dis-
here. '

, with ARBIB facing towards the top of the environ-
in Figure 3, only range sensor neuron 2 (see Fig. 2)
because this neuron operates in inverse mode, and
is detected. Hence, it fires the left forward motor, as

in Figure 4(a) for samples [0,300]. This activity ori-
ARBIB to the right because the right motor is inactive.
4(b) shows that activity in the right reverse motor is
to the period just after sample 300, because ARBIB
ed to face a wall, briefly stopping neuron 2 from fir-
nd causing sensory neuron 9 to fire. Hence, the robot
ight. Once the wall is out of range of sensory neuron 9,
2 fires again, resuming forward motion in the left mo-
§:neuron 7 has not yet seen the wall, the right forward
s at rest and ARBIB turns right using the left forward
ntil neuron 7 first sees the wall, fires, and the robot
: forward (Fig. 4(a) and (c), samples [450, 700]). So, al-

Figure 5: ARBIB negotiating a test environment using the
evolved spiking nervous system of Figure 2.

"

though each of the three subassemblies is itself very simple,
the overall behaviour can be rather complex.

How different is this ‘nervous system’ from one that we might
have designed manually? First and foremost, it is consider-
ably simpler. The evolutionary solution has just 7 neurons,
whereas our earlier, manually-designed solutions had some
30-50 neurons. Our manual designs have used central pattern
generator circuits (Selverston 1988; Kleinfield and Sompolin-
sky 1989) to give ARBIB a drive to explore its environment,
together with a hardwired obstacle-avoidance reflex which
was modified by learning (classical conditioning). Here, how-
ever, there is no ontogenetic learning so, by focusing crudely
on neuron count, we are not strictly comparing like with like.
Also, the division of the evolved solution into three separate
subassemblies was interesting. All our previous designs fea-
tured a single, complete neural circuit.

4 Real-World Evaluation

Results from the simulations described in Section 3 were ver-
ified using a real Khepera robot. No changes to the evolved
nervous system of Fig. 2 were made.

A Khepera robot in mode 3 (controlled by serial link protocol
at 38400 Baud) was placed into a test environment (Figure 5),
facing away from the nearest wall. The Khepera graphical
user interface (GUI) of Michel (1996) was used as the front-
end for Hi-NOON.

After selection of the real Khepera (through the GUI), ARBIB
started to search for a wall. If nothing was in view, it rotated
until a wall was seen. It then approached the wall, oriented
itself parallel to it, and moved forwards. On encountering a
corner, it adjusted its position and orientation and continued
along the new wall. On one occasion, a new object (a black
coffee jar) was introduced into the environment and directly
in ARBIB’s path. The robot manoeuvred around the object un-
til its top circuit board hit the jar, whereupon it got stuck. At
this point, the first author intervened and unjammed the robot,
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Figure 6: A nervous system that leads to phototaxis instead of wall following when in the presence of a light source.

which then negotiated around the jar, found a wall and con-
tinued its journey around the periphery of the environment.

Hence, a system of spiking neurons evolved for a simulated
robot transfers very well to the real world. This robustness
probably relies largely on the sensory and motor noise which
is deliberately introduced as a feature of the Khepera simula-
tor (cf. Chongstitvatana 1999).

5 An Atypical Result—Phototaxis

One of the evolved nervous systems produced entirely atypi-
cal behaviour when evaluated (both in simulation and in the
real robot). This nervous system, shown in Figure 6, not only
gave rise to wall following but to phototaxis also. Like the
circuit of Figure 2, it has 7 neurons grouped into 3 separate
subassemblies. However, unlike the earlier nervous system, it
has developed a light sensory neuron presynaptic to a motor
neuron (which is also postsynaptic to a distance sensory neu-
ron). This additional sensory modality makes ARBIB head to-
wards a nearby light source (phototaxis) in preference to wall-
following, and so in a sense it has a behavioural hierarchy.

Figure 7 depicts simulated behaviour of ARBIB equipped with
this nervous system. Initially positioned at the bottom right
of the virtual environment, away from the side and facing to-
wards the top of the frame, the only sensory neuron that fires
will be neuron 2 because it is configured for inverse mode
(i.e., firing inversely proportional to sensed distance). Hence,
the left forward motor fires and turns ARBIB to the right un-
til sensory neuron 6 detects the wall, fires the right forward
motor, and the robot follows the wall. As ARBIB approaches
the right hand side of the environment, sensory neuron 2 stops

Left, forward motor

........................... SR SV
Distance sense(4)
. H
Right, forward moto:
................... 2 @ Light sense(2)
R

- EVOLUTIONARY RQ

Interneuron Right, reverse motor

Left, reverse motor

Distance sense(3)

Figure 7: When controlling a simulated robot, the nervou:
system of Figure 6 leads to atypical phototaxis towards a cl
ter of (simulated) lights, in addition to wall following.

firing and so does the left forward motor. A wall is now de
tected by sensory neuron 9 causing the left reverse motor &
fire and the robot turns left, ready to follow the right hand sid
wall of the environment. Once sensory neuron 2 starts firin
again, ARBIB moves forward. Eventually it reaches the top @
the wall (now at the top right hand corner of the frame), seB
sory neuron 9 fires, and ARBIB turns left to follow the ne
wall. However, as it approaches the light source (on its left
sensory neuron 12 fires, and coupled with activity in senso
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8: (a) Activity in distance sensory neuron 6, and (b) ac-
in light sensory neuron 12. When both are depolarising
ht forward motor, the latter fires and ARBIB turns to
e light source.

n 6 (see Fig. 8(a) and (b) around sample 4000) causes
in the robot’s path—it starts to arc towards the light
se of increased activity in the right forward motor (the
now excited by sensory neurons 6 and 12). Sensory
n 6 eventually stops firing when it is too far away from
1 to be depolarised. However, the right forward motor
-excited by sensory neuron 12 and so ARBIB moves for-
owards the lamps. On colliding with the lamps, sensory
turon 9 fires and the robot turns left. ARBIB now starts to
around the cluster of (simulated) light sources.

owing the test in a simulated environment, this nervous
m was tested with a real Khepera. The real robot showed
ic wall-following behaviour but consistently showed
taxis by abandoning this and heading towards a lamp
in its vicinity.

“onclusion and Future Work

ave described an application of evolutionary computa-
0 the construction of a spiking-neuron controller for the
B autonomous robot. To our knowledge, this is the first
pt to evolve a spiking nervous system for a behaving
. The normal mechanisms of ontogenetic learning in
B were disabled for this study. Ten runs of the evolu-
process were conducted with evaluation of fitness in
imulated environment. Evaluation was biased to favour
le avoidance. Seven out of ten runs resulted in ro-
wall-following behaviour. Two nervous systems were
ed from these seven runs, and their operation exam-

Both had just 7 neurons—considerably simpler than
f our previously-designed neural controllers for ARBIB,
ugh these more complex circuits featured ontogenetic
ing. One of the two selected nervous systems was found
omote phototaxis (light seeking). It is unclear whether
I-following and phototaxis count as ‘emergent behaviour’
_bt, but our approach does seem to offer at least the chance
producing novel, useful behaviours. In both cases, a real

Khepera was tested with the evolved controllers and behaved
entirely as expected from the simulations.

Future work will reintroduce the mechanisms of ontogenetic
learning based on synaptic plasticity, to understand how this
interacts with evolution. There is, of course, good reason to
expect benefits from this interaction, as renewed interest in
the Baldwin effect (Baldwin 1896; Richards 1987) is making
clear. The basic insight is that the ability of an individual to
learn can promote fitness so as to improve chances of selec-
tion, and can be genetically transmitted without the learned
information itself being transmitted in Lamarckian fashion.
The advantages that this confers have been confirmed by sev-
eral neural network simulations (Hinton and Nowlan 1987;
Gruau and Whitley 1993; Nolfi, Parisi, and Elman 1994; Nolfi
1999).
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