
adjusted based on the rating (Davis, 1989). In the do-
main of evolutionary optimization of learning systems,
such a procedure was successfully applied by Igel and
Kreutz (1999, 2001) for the adaptation of the proba-
bilities to apply different mutation operators. In our
context, this procedure is not suitable, because the
number of different operators needed to represent the
various learning times would be too high. Further,
the learning operators strongly differ in their compu-
tational costs. To allow for an ongoing probability
adaptation, none of these operators should be allowed
to become extinct. Hence, even when some expensive
operators are not suitable in the current phase of opti-
mization, they have to be applied every now and then
and may dominate the average computational com-
plexity. Simulations support this assumption.

Instead of the operator approach, we adapt the learn-
ing time more directly. To explore different learning

strategies, the value of τ
(g)
i is drawn independently for

each individual from a Poisson distribution with the
expectation m(g).1 The parameter m(g) is subject to
adaptation, which permits a smooth adjustment of the
learning periods. The expectation of the learning time
in adaptation cycle g + 1 is given by

m(g+1) = max
[

(1 − γ)m(g) + γ τ̃ (g), mmin

]

. (1)

The variable γ ∈ [0, 1] determines the influence of τ̃ (g),
the value which would have been the most suitable
choice of m(g) in the last adaptation cycle. In the
end, (1) is a weighted average over the whole history,
but the influence of past generations is exponentially
suppressed depending on γ. This weighted average
is similar to the evolution path in the CMA evolu-
tion strategy. The lower bound mmin in (1) enables a
minimum diversity of the learning times to allow for
continuing adaptation.

Now one is only left with the estimation of τ̃ (g). The
efficiency of learning for τ iterations is measured by the
benefit B(g)(τ) (Tuson and Ross, 1998), normalized
to the costs of learning c(τ) as proposed by Igel and
Kreutz (1999):

B(g)(τ) =
1

N
(g)
τ

∑

ι

max

[

φ(parent(ι)) − φ(ι)

c(τ)
, 0

]

.

(2)

1The Poisson distribution of τ
(g)
i ∈ � 0 is given by

p
τ
(g)
i

=
(m(g))τ

(g)
i

τ
(g)
i

!
e−m(g)

. As the expectation as well as

the variance are equal to m
(g), the width of the distribu-

tion increases with its expectation.

The sum runs over all N
(g)
τ offspring ι in adaptation

cycle g that have been trained for τ iterations; φ(.)
assigns each individual a fitness value. As an alterna-
tive to (2), one might relate B(g)(τ) only to the fitness
gain achieved by learning, i.e., the difference of the off-
spring’s fitness before and after learning replaces the
numerator in (2). However, (2) has empirically proven
to be more efficient, as it allows for evaluating the
number of iterations in the context of mutations. For
instance, it is able to take into account the time nec-
essary to counterbalance mutational disturbances.

The computational costs c(τ) depend on the imple-
mentation of the feed-forward neural network. For
simplicity, we utilize an approximation. It takes
roughly twice as much time to calculate the gradient
of the network error with respect to all weights than
to compute the network’s error itself (Rummelhart
et al., 1986): First, the input is “propagated forward”
through the network and thereafter it is “propagated
backward” through it. Additionally, one “forward-
propagation” has to be performed after the last it-
eration of learning to calculate the individual’s fitness
φ(ι). As we use “propagations” as the unit of the costs,
we set

c(τ) = 2τ + 1 . (3)

The learning time τ̃ (g) should be the time for which
the improvements have been maximal in the near past
and therefore might also be in the near future. This
seems to be fulfilled for τ̃ (g) = arg

[

maxτ

{

B(g)(τ)
}]

.
However, this might not be optimal, as in the next gen-
erations not only learning times equal to τ̃ (g) are ap-
plied, but also learning times randomly drawn from a
Poisson distribution. In the limiting case of an isolated

maximum of B(g)(τ̃ (g)), learning times τ
(g+1)
i = τ̃ (g)

would yield a maximum improvement, but slightly dif-
fering learning times would mainly lead to an explo-
ration of bad strategies. Therefore, we do not consider
the maximum of B(g)(τ), but the maximum of

b(g)(τ) =

∞
∑

τ ′=0

B(g)(τ ′) ·
ττ ′

τ ′!
e−τ , (4)

the convolution of B(g)(τ) with the Poisson distribu-
tion with mean τ . The value of b(g)(τ) is an esti-
mation of the expected improvement in the case of
m(g) = τ , as the distribution of learning times is taken
into account. As a side effect, the convolution yields a
smoothing of B(g)(τ), which makes the evaluation of
the benefit more robust. Finally, the estimation of the
optimal learning time is given by

τ̃ (g) = arg
[

max
τ

[

b(g)(τ)
]]

. (5)
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