Metric	Description	Reference
C factor	Measure of relative dominance of solutions generated	Zitzler and Thiele (1999)
	by one algorithm over another	
V1	Measure of the coverage including the known best extreme points	Ranjithan et al. (2001)
V2	Measure of the coverage excluding the known best extreme points	Ranjithan et al. (2001)
Spread	Measure of the maximum range covered by the noninferior solutions	Ranjithan et al. (2001)
D factor	Measure of the degree of dominance of solutions generated	Figure 2
	by one algorithm over another	

Figure 1: An Example of Two-objective Noninferior Tradeoff to Illustrate the Computation of metrics. d_i represents the distance between two adjacent solutions

 $di = Max \{ dij : j = 1, 2, ..., m \}$, where *m* is the number of solutions it dominates in the set NDS_{MOEA-2} . Then the following aggregate value $D_{1/2}$ is used to define the degree of dominance of MOEA-1 over MOEA-2.

$$D_{1/2} = \frac{\sum_{i=1}^{N} di}{N}$$
(2)

where N is the total number of solutions in the set NDS_{MOEA-1} . The corresponding value for $D_{2/1}$ can be computed similarly.

A summary of the performance metrics used in this paper for the comparison of different algorithms is shown in Table 1. These metrics, although described here for only a two-objective case, are extended for the higher dimensional MO problem presented in this paper.

Figure 2: An Example of Two-objective Noninferior Tradeoff to Illustrate the Computation of D factor