
AAAA , Ali fe, Adaptive Behavior, Agents, and Ant Colony Optimization

Intelligent Packets for Dynamic Network Routing Using Distributed
Genetic Algorithm

Suihong Liang

abacus@cs.dal.ca

A. Nur Zincir-Heywood

zincir@cs.dal.ca
Faculty of Computer Science

6050 University Avenue,
Hali fax, NS, Canada, B3H 1W5

Malcolm I. Heywood

mheywood@cs.dal.ca
+1 902 4942951

Abstract

A distributed GA is designed for the packet
switched network routing problem under
minimal information. The requirements of such a
problem mean that agents are required to possess
more intelli gence than was previously the case.
To this end a distributed GA approach is
developed and benchmarked against the AntNet
algorithm under the same information
constraints.

1 GENERAL FORMATTING
INSTRUCTIONS

Network information systems and telecommunication in
general rely on a combination of routing strategies and
protocols to ensure that information sent by a user is
actually received at the desired remote location. In
addition, the distributed nature of the problem means that
multiple users can make requests simultaneously. This
results in delayed response times, lost information or
other reductions to the quality of service objectives on
which users judge network service. Routing is the process
used to determine how a packet travels from source to
destination. Protocols are used to implement handshaking
activities such as error checking and receiver
acknowledgements. In this work, we are interested in the
routing problem on computer networks.

The routing problem has several properties, which make it
particularly challenging. The problem is distributed in
nature; hence a solution that assumes access to any form
of global information is not desirable. The problem is also
dynamic; hence a solution that is suff icient for presently
experienced network conditions may well be ineff icient
under other loads experienced by the network. Moreover,
the traff ic experienced by networks is subject to widely
varying load conditions, making ‘ typical’ network
conditions unrepresentative.

Traditionally, routing strategies are implemented through
the information contained in routing tables available at

each node in the network (Forouzan, 2001). That is, a
table details the next ‘hop’ a packet takes based on the
overall destination of the packet. This should not be taken
to imply that a routing table consists of an exhaustive list
of all destinations – a form of global information. Instead,
the table consists of specific entries for the neighboring
nodes and then a series of default paths for packets with
any other destination – such as OSPF or BGP4 (Halabi,
1997). Application of a classical optimization technique
to such a problem might take the form of first assessing
the overall pattern of network traff ic, and then defining
the contents of each routing table such that congestion is
minimized. This approach does not generally work in
practice as it simply costs too much to collect the
information centrally on a regular basis, where regular
updating is necessary in order to satisfy the dynamic
nature of network utili zation. We, therefore, see the
generic objectives of a routing strategy to be both
dynamically reconfigurable and be based on locally
available information, whilst also satisfying the user
quality of service objectives (i.e. a global objective).

Several approaches have been proposed for addressing
these objectives including: active networking
(Tennenhouse et. al.,1997), social insect metaphors (Di
Caro, Dorigo, 1998), (Heusse et al., 1998) cognitive
packet networks (Gelenbe et. al.,1999), and what might
be loosely called other ‘adaptive’ techniques (Corne et.
al., 2000). The latter typically involve using evolutionary
or neural techniques to produce a ‘ routing controller’ as
opposed to a ‘ routing table’ at each node, where the
controller may require knowledge of the global
connectivity to ensure a valid route. The global
information assumption may be avoided by framing the
problem as a reinforcement-learning context (Boyan,
Littman, 1994). However, the Q-learning method, on
which this is based, results in single path solutions for
each destination. Both the social insect metaphor and the
cognitive packet approach provide a methodology for
routing, without such constraints; by utili zing
probabili stic routing tables and letting the packets
themselves investigate and report network topology and
performance.

AAAA , Ali fe, Adaptive Behavior, Agents, and Ant Colony Optimization

All methods as currently implemented, however, suffer
from one drawback or another. Cognitive packet networks
and active networking algorithms attempt to provide
routing programs at the packet level, hence achieving
scalable run time eff iciency becomes an issue. To date,
implementations of ‘ adaptive’ techniques and social
insect metaphors have relied, at some point, on the
availabilit y of global information (Liang, et al., 2002).

The purpose of this work is to investigate the application
of a genetic algorithm (GA) to build on lessons learnt
from the social insect metaphor. This represents a major
departure from previous works attempting to utili ze GAs
to solve the dynamic routing problem e.g. (Corne D.W., et
al. 2000). In particular, a distributed GA is defined in
which populations associated with each node of the
network are required to co-evolve to solve the problem as
a whole. Moreover, the GA interaction with the
environment drives the features measured by the routing
tables, as opposed to the tables predefining the features
for measurement (a form of a priori information). Section
2 introduces the ‘ant’ based social insect metaphor against
which the proposed approach is compared. Section 3
introduces the proposed GA-agent scheme. Section 4
summarizes the network on which experiments are
performed. Results are presented in section 5 and
conclusions drawn in section 6.

2 ROUTING USING A SOCIAL INSECT
METAPHORE

As indicated above, active networking (Tennenhouse et.
al.,1997) and cognitive packet (Gelenbe et. al.,1999)
based approaches emphasize a per packet mechanism for
routing. The aforementioned ‘adaptive’ techniques (Corne
et. al., 2000) tend to emphasize adding ‘ intelli gence’ to
the routers leaving the packets unchanged. A social insect
metaphor provides a middle ground in which the concepts
of a routing table and data packet still exist, but in
addition, intelli gent packets – ants – are introduced that
interact to keep the contents of the routing tables up to
date. To do so, the operation of ant packets is modeled on
observations made regarding the manner in which worker
ants use chemical trails as a method of indirect stigmergic
communication. Specifically, ants are only capable of
simple stochastic decisions influenced by the availabilit y
of previously laid stigmergic trails. The chemical
denoting a stigmergic trail i s subject to decay over time,
and reinforcement proportional to the number of ants
taking the same path. Trail building is naturally a bi-
directional process, ants need to reach the food
(destination) and make a successful return path, in order
to significantly reinforce a stigmergic trail (Forward only
routing has also been demonstrated (Heusse et al., 1998)).
Moreover, the faster the route, then the earlier the trail i s
reinforced. An ant on encountering multiple stigmergic
trails will probabili stically choose the route with greatest
stigmergic reinforcement. Naturally, this will correspond
to the ‘f astest’ route to the food (destination). The
probabili stic nature of the decision, however, means that

ants are still able to investigate routes with a lower
stigmergic trial.

This approach has proved to be a flexible framework for
solving a range of problems including the traveling sales
man problem (Dorigo et al., 1996) and the quadratic
assignment problem (Maniezzo et al., 1999). The work
reported here follows the ‘AntNet’ algorithm of Di Caro
and Dorigo (Di Caro, Dorigo, 1998), and is informally
summarized as follows,

• Each node in the network retains a record of packet
destinations as seen on data packets passing through
that node. This is used to periodically, but
asynchronously, launch ‘f orward’ ants with
destinations stochastically sampled from the collected
set of destinations;

• Once launched, a forward ant uses the routing table
information to make probabili stic decisions regarding
the next hop to take at each node. While moving,
each forward ant collects time stamp and node
identifier information where this is later used to
update the routing tables along the path followed;

• If a forward ant re-encounters a node previously
visited before reaching the destination, it is kill ed;

• On successfully reaching the destination node, total
trip time is estimated and the forward ant converted
into a backward ant;

• The backward ant returns to the source using exactly
the same route as recorded by the forward ant.
Instead of using the data packet queues, however, the
backward ant uses a priority queue;

• At each node visited by the backward ant the
corresponding routing table entries are updated to
reflect the relative performance of the path;

• When the backward ant reaches the source, it ‘dies’ .

Although providing for a robust ant routing algorithm
under simulation conditions, an assumption is made,
which inadvertently implies the use of global information
- knowledge of the number of nodes in the network (Di
Caro, Dorigo, 1998). The definition of routing tables is,
such that it is assumed that every node has a unique
location in the routing table, see Table 1, or a total of L
(number of neighboring nodes) by K (number of nodes in
the entire network) entries. In practice, this is never the
case. To do so would assume that it is first feasible, and
secondly, should the network configuration ever change,
then all nodes should be updated with the new
configuration information. Moreover, as forward ants
propagate across the network, the amount of information
they need to ‘carry’ also increases (node identifier and
time stamp).

AAAA , Ali fe, Adaptive Behavior, Agents, and Ant Colony Optimization







î





−+−
−

+





=

)()(infinfsup

infsup
21 ItII

II
c

t

W
cr

antant

best

Table-1 Original Routing Table at any Network Node
k on the NTTnet

All Network Nodes
(Possible Destinations)

P1,1 P1,2 ------ P1,55

P2,1 P2,2 ------ P2,55

------ ------ ------ ------

O
ut

go
in

g
L

in
ks

(E

ac
h

 n
o

de
 h

as

L
ne

ig
h

b
or

in
g

li
nk

s)

PL,1 PL,2 ------ PL,55

In order to avoid the use of global information, the
authors modify the information provided at the routing
tables such that the routing tables only detail the
neighboring nodes, see Table 2, or a total of 2 by L
entries. Such a limitation, therefore, places greater
emphasis on the learning capacity of the ant. This is
particularly significant during step (2) of the ant forward
pass (section 2.1). Tables 1 and 2 ill ustrate the difference
in available information for a node in the commonly used
Japanese benchmark backbone (NTTNet) routing
problem.

Table-2 Proposed Routing Table at any Network Node
on the NTTnet

 Neighbor
 Node

If used for other
nodes

P1,1 P1,d , d
� �

P2,2 P2,d ,d � �

------ ------

O
ut

go
in

g
L

in
ks

(E

ac
h

no
de

 h
as

L

 n
ei

gh
b

or
in

g
lin

ks
)

PL,L PL,d , d � �

The following section summarizes the AntNet algorithm.

2.1 ANTNET ALGORITHM

It is assumed that routing tables, Tk, exist at each node, k,
in which a routing decision is made. Tables consist of ‘ n’
rows, one row for each neighboring node/link. As far as a
normal data packet is concerned, if the destination, d,
from current node, k, is a neighbor then the routing is still
a stochastic decision. In all other cases, a route is selected
based on the neighbor node probabiliti es.

1. New forward ants, Fsd, are created periodically, but
independently of the other nodes, from source, s, to
destination node, d, in proportion to the destination
frequency of passing data packets. Forward ants
travel the network using the same priority structures
as data packets, hence are subject to the same delay
profiles.

2. Next link in the forward ant route is selected
stochastically, p’ (j), in proportion to the routing
table probabiliti es and length of the corresponding
output queue.

where p(j) is the probabilit y of selecting node j as
the next hop; α weights the significance given to
local queue length verses global routing information,
p(j); l j is proportional to the inverse of queue length
at destination ‘ j’ normalized to the unit interval; and
Nk is the number of links from node k.

3. On visiting a node different from the destination, a
forward ant checks for a buffer with the same
identifier as itself. If such a buffer exists, the ant
must be entering a cycle and dies. If this is not the
case, then the ant saves the previously visited node
identifier and time stamp at which the ant was
serviced by the current node in a buffer with the
forward ant’s identifier. The total number of buffers
at a node is managed by attaching “an age” to buffer
space and allowing backward ants to free the
corresponding buffer space.

4. When the current node is the destination, k = d, then
the forward ant is converted into a backward ant, Bds.
The information recorded at the forward ant buffer is
then used to retrace the route followed by the
forward ant.

5. At each node visited by the backward ant, routing
table probabiliti es are updated using the following
rule,

IF (node was in the path of the ant)
THEN p(i) = p(i) + r { 1 – p(i)}
ELSE p(i) = p(i) – r P(i)
where r ∈ (0, 1] is the reinforcement factor central to
expressing path quality (length), congestion and
underlying network dynamics.

As indicated above, the reinforcement factor should be a
factor of trip time and local statistical model of the node
neighborhood. To this end (Di Caro, Dorigo, 1998)
recommend the following relationship,

where Wbest is the best case trip time to destination d over
a suitable temporal horizon, W; tant is the actual trip time
taken by the ant; I inf = Wbest; Isup = µkd + { σkd / [W (1 –
γ)]0.5} .

The estimates for mean, µkd, and variant, σkd, of the trip
time are also made iteratively, using the trip time
information, okd. Thus,

µkd = µkd + η(okd – µkd)

(σkd)
2 = (σkd)

2 + η { (okd – µd)
2 – (σkd)

2}

Trip time information is now updated incrementally based
on the recorded trip duration between current node, k, and
ultimate destination, d. This means that it is no longer

()1||1

)(
)('

−+
+

=
k

j

N

ljp
jp

α
α

AAAA , Ali fe, Adaptive Behavior, Agents, and Ant Colony Optimization

necessary to carry all node and duration information as a
‘stack’ to the target duration as in the original model (Di
Caro, Dorigo, 1998). Only the previous node information
is therefore carried by each ant.

3 GENETIC ALGORITHM BASED
SCHEME TO ROUTING

Simulation of the above AntNet scheme has been shown
to provide a robust alternative to six standard routing
algorithms – OSPF, SPF, BF, Q-R, P-QR and Daemon
(Di Caro, Dorigo, 1998). However, this is not without
utili zing routing tables in the AntNet algorithm, which
provide entries for all nodes on the network. In practice,
such (global) information is not actually available. In
(Liang et al. 2002), the AntNet algorithm is benchmarked
with routing tables configured with information regarding
their neighbors alone; Table 2 as opposed to Table 1. The
performance of such a system is then deemed
unacceptable. Specifically 55% of packets are lost where
‘ lost’ in this work is defined as any packet (data or ant)
that visits the same node more than once. In order to
address this problem, we are, therefore interested in the
abilit y of route finding packets learning to find paths
independently from the routing table information. By
doing so, we do not rely on the capacity of the routing
tables alone to retain information regarding all nodes in
the network.

The objective of this work is to investigate a scenario in
which the entries themselves are identified dynamically.
This will be a first step towards a co-evolutionary model
capable of evolving solutions to the packet switched
routing problem. The ants, in this case, take the form of
individuals from a distributed Genetic Algorithm (GA),
hereafter referred to as GA-agents. Individual
chromosomes travel the network using a string of next
hop offsets, e.g., { 1, 5, 0, 4, 2, 3, 5} over the interval [0,
[0, L], where ‘L’ is selected to enable indexing of node
connectivity. In all the experiments of section 5, ‘L’ is set
to 6. On entering a node, genes (offsets) are used to
identify the next link using a clockwise count, with
respect to the port the GA-agent entered the node i.e. the
next link is selected as a modulus of (gene % # of links).
Such a representation is then independent of the specific
network connectivity, unlike say the GA approach in
(Munetomo et al., 1997). For each node encountered, the
gene, used to select the next link, is incremented and a
record is made of the node ID. The process naturally
continues until the GA-agent executes its last gene, at
which point it becomes a backward agent, returning to its
original source node. In the special case of a GA-agent
attempting to return down the same link as it entered a
node, the router randomly selects the next hop from the
available links, and changes the gene to the new value
(deterministic mutation). If no next hop is available, then
the chromosome is truncated, and the GA-agent becomes
a backward agent (see the algorithm “processing agents“).
Note, unlike the AntNet algorithm, modification of
routing tables only takes place once the GA-agents have

returned to their original source, and modifications only
affect the source node routing table. The above
representation supports single point crossover, resulting in
variable length individuals. Mutation randomly selects a
gene and adds/ subtracts an integer such that the new gene
is still i n the interval [0, 6].

Table 3 – GA-agent Routing Table

Agent ID Agent Fitness Trip Time (ms) and node ID

95 0.32 (3, J), (9, C), (21, W)

234 0.39 (1,B), (7, A),…, (432, Y)

… … …

31 0.71 (5,C), (9, K), …, (871, X)

At initialization, a router sends out half of the population
of GA-agents to explore the network. Once the number of
returned GA-agents reaches four, the fitness of the four
agents is evaluated; the best two agents are then chosen –
as in a steady state tournament (See algorithm “updating
routing table & population”).

The fitness function measures the popularity of nodes
visited as well as the time taken to reach nodes
encountered by GA-agents. Both of these properties are
measured with respect to the original source node.
Popularity of destination ‘ i’ at node ‘k’ (NPk(i)) is a
dynamic property, measured at the original source node
by recoding the frequency of different data packet
destinations as seen by the source node over a fixed time
window (50 seconds in this case), or

NPk(i) = Dest(i) / TDk

Where TDk is the total number of data packets passing
through node ‘k’ ; and Dest(i) is the number of data
packets with destination ‘ i’ .

Chromosomes, which find shortest paths to frequently
used destinations, are therefore favored. The ensuing
fitness function taking the form,

 ∑for each explored node i NPk(i)× trip_timei

∑for each explored node I trip_timei

(1)

The routing table in the GA approach consists of a short
list of returned agents, every entry corresponds to an
evaluated returned agent path. On routing a data packet,
the router checks the table for a path that had experienced
shortest trip time to the desired destination (third column
of Table 3); if such an entry is not found, the entry with
the highest fitness, Table 3 column 2, will be selected as
the default next node for this data packet. The first two
columns in the routing table are used during ranking and
replacement of winning chromosomes.

The above constitutes our basic GA-agent approach. In
addition, three further concepts are introduced. The first is
that of demes. This provides a mechanism for passing
useful chromosomes between neighboring nodes. To do
so, every node will propagate best-case chromosomes to

AAAA , Ali fe, Adaptive Behavior, Agents, and Ant Colony Optimization

neighboring nodes every 500 or 700ms (tunable
parameter, see “propagate freq” in section 5). Secondly,
in order to avoid stagnation in the routing tables, an
incremental penalty is applied to each entry of the routing
table (see the algorithm “updating routing table &
population“). The motivation for such an aging
mechanism is to ensure that routing tables remain
sensitive to the dynamic nature of the environment (e.g.,
changes to network topology, network node/link failure,
network congestion). Such a mechanism is introduced
during updates to routing tables: making every routing
table entry a bit smaller in fitness, and a bit longer in trip
time, or

fitness agent in routing table = original fitness × c2;

trip_time every node of every entry = original_trip_time / c2;

where c2 is a constant ∈ (0.0, 1.0) (2)

Finally, when initializing the populations of chromosomes
at each node, nodes with a higher connectivity naturally
represent a larger search problem. Thus, the number of
chromosomes per population is initialized in proportion to
the square of the number of neighbors.

The algorithm is outlined as follows: (c1, c2, and c3 are
constants.)

init

initialize first generation of agents;
#agents = #links2 × c1;
string of offsets of an agent - { 3, 1, 4, 5, 2, …}
clear routing table;
clear flow pattern stats;
send out half population of individuals;

processing agents

if (case of backward agent)
then if (agent arrives at the source)

then if (agent timeout)
 then (kill agent);

else (put into “back” list);
 end if

else if (next hop is down)
then (kill agent);
else (forward to the link)
end if

end if
 else agent records the trip time info;

retrieve offset from the next unused
gene position;
if (corresponding link is available and
no loop caused)

 then (send the agent to the link);
else (randomly [each available link
has equal probabilit y] select an available
link [without entering a loop]);
end if

 if (no such link found)
 then (convert the agent into a

backward agent)

 else (set the offset to the new value);
 (send agent to the link);
 end if

 end if

updating routing table & population (once 4 agents
return to the same source, i.e. steady state tournament)

update the performance table by aging mechanism:
fitness of agent = original fitness × c2;
trip time to every node of every entry = original
trip time / c2;
use the fitness function to evaluate the fitness of
backward agents;
select the best two agents as parents;
put/update the fitness of parent agents in the
routing table;
delete the entries of the worst two agents in the
routing table;
use standard crossover and mutation on the parents
to generate two children;
put the children into the population;
delete the worst two agents from the population;
if (current time > last clear time + c3)
then (clear flow statistics)
randomly launch 4 agents from the population to
explore the network;

routing data packets

if (routing table is empty)
then (randomly choose a link to forward)
else (search the routing table for the shortest
trip time to the desired destination)

if (no entry found for the desired
destination)
then (choose fittest entry);
end if

end if
if (no route is found)
then (discard the packet)
end if

3.1 DATA STRUCTURES

Every agent consists of a string of next hop offsets, and
time stamp records. Every router consists of an incoming
buffer, a processing buffer (stores a packet at a time), and
an outgoing buffer for each neighboring router. For the
GA approach, every router has a population of
chromosomes, a routing table, a flow pattern statistics
table, and a fitness table. The number of chromosomes
per population is in direct proportion to the square of
number of neighbors. The routing table, which is updated
whenever four chromosomes return, consists of current
fittest individuals, c.f (1). The flow pattern estimates the
popularity of data packets passing through the node, c.f.
(2). The fitness table stores the fitness of every
chromosome, currently a member of the routing table.

AAAA , Ali fe, Adaptive Behavior, Agents, and Ant Colony Optimization

Figure-1: Japanese Backbone - NTTnet (55 nodes)

To simulate and test the GA-agent algorithm, an event
driven simulation environment is developed (C++ on
UNIX system). Specifically, the Japanese Internet
backbone (NTTNET – see figure 1) is modeled, where
this represents a narrow long configuration in which the
degree of connectivity is low (from 1 to 5), when
compared to the US backbone. Hence the Japanese
network provides a more demanding configuration for
testing routing algorithms, as higher degrees of
connectivity lower the possibilit y of packet loss due to
loops, timeouts, i.e., in a narrow long shaped network,
once a packet is forwarded in a wrong direction, it might
never have the chance to be routed to the desired
destination.

4 SIMULATION ENVIRONMENT

The event driven simulation models the network as
routers (nodes) and links. Every router has an incoming
buffer, a memory space for processing packets, and an
outgoing buffer for each link to its neighboring routers. A
priority queue is used to store the events. Both AntNet
(local routing table information, Table 2) and GA-agent
algorithms are simulated under the same environmental
conditions. That is, an event generator is used to generate
the events, such as new packet time of generation, or
routers availabilit y. The following are the parameters used
in the simulation,

• Network topology takes the form of the Japanese
backbone, figure 1;

• Forward ants are launched every 300ms;

• The AntNet algorithm is given 5 seconds at the
beginning of the simulation to converge the initial
routing tables, during this period, routing packets
(ants or GA-agents) are the only packets traversing
the network;

• Data packets are generated by Poisson distribution
(mean of 35ms);

• The parameters for the GA based scheme are given as
the first 5 rows of tables 4 - 7, where 4 (columns 2 -
5) different GA based agent structures are simulated;

• Any packets, including data packets, are kill ed should
they encounter a previously visted node. Given the
probabili stic nature of the routing tables this
represents a rather harsh constraint, but in doing so is
utili zed to emphasize the properties of different
routing strategies. In addition packets that are routed
down links representing a fault condition are
distinguished separately as lost packets.

The simulation length is 1250s. As a result, 1985536 data
packets are generated within 1250s. The queue length is
the total number of waiting packets per second, which
includes the data packets and the routing packets. In this
paper, the routing packets refer to the ants in the AntNet
algorithm, and to the GA-agents in the GA approach.

5 RESULTS

On measuring the performance of a routing algorithm, we
focus on:

• Network throughput, which is defined as number of
data packet bytes successfully received at their
destination in a two second window;

• Total time to deliver all the data packets (finish time);

• Number of arrived data packets;

• Number of ‘ kill ed’ and ‘ lost’ packets;

• Average trip time of arrived data packets.

Two sets of experiments are conducted, in both cases
using a series of network scenarios designed to investigate
operation under changing network conditions. The first
set of experiments investigates parameters associated with
the distributed GA. The second of experiments takes one
set of these parameters and reduces the degree of
exploration/ exploitation (mutation/ crossover
respectively).

There are a total of 4 scenarios in each set of experiments,
in the first case all routers remain available. The
remaining scenarios investigate plasticity of the network
by removing different router combinations. First, router
34 is removed at a time step of 500s. From figure 1, it is
apparent that router 34 represents a significant node in the
topology, although alternative paths certainly exist. In the
third scenario, two routers are removed, whereas in
scenario four the same two routers are removed but
asynchronously.

5.1 PARAMETERIZATION OF DISTRIBUTED
GA

In the case of routing using GA-agents, there are six basic
parameters,

1. Agents / link2 – c1, determines the population of
chromosomes per node. The implication being that
there are O(L2) locations in each routing table,
where L is the number of neighboring nodes;

6
13

19

34

42

49

AAAA , Ali fe, Adaptive Behavior, Agents, and Ant Colony Optimization

2. Aging – c2, rate by which fitness of individuals
currently populating the routing tables decay;

3. Propagate ratio – the number of chromosomes
exchanged between populations, expressed as a % of
node population size;

4. Propagate freq – rate of exchange of chromosomes
between populations;

5. Flow clear freq – c3, time interval over which data
packet destination statistics are collected;

6. Crossover and Mutation – the results in this section
utili ze maximum crossover and mutation rates in
order to encourage continuous investigation of
alternative routes. Section 5.2 considers the case of a
more classical section of crossover and mutation
thresholds.

These are initially selected to enable quali fication of the
sensitivity to population size, rate of aging etc. and
remain the same across all experiments; Tables 4 to 7,
columns 2 - 5. Table 8 summarizes the same information
for the AntNet algorithm under a ‘ local’ routing table
configuration. Thus, Local AntNet utili zes tables of
length O(L), significantly less than the GA-agent case.

Table 4 – No Network Failure.

Agents / link2 32 32 40 48

Aging 0.8 0.9 0.9 0.9

Propagate ratio 5% 3% 3% 2%

Propagate freq 500ms 500ms 700ms 700ms

Flow clear freq 50s 50s 50s 50s

Finish time (s) 1,252 1,253 1,252 1,267

Arrived Packets
(AP) (×1000)

1,619 1,585 1,583 1,560

Avg. trip time
for AP (ms)

742 905 678 1,236

kill ed packets 366,533 400,351 402,517 385,750

lost packets 0 0 0 0

Agents (×103) 1,690 1,028 801 475

Table 5 – Router 34 is Down at 500s.

Agents / link2 32 32 40 48

Aging 0.8 0.9 0.9 0.9

Propagate ratio 5% 3% 3% 2%

Propagate freq 500ms 500ms 700ms 700ms

Flow clear freq 50s 50s 50s 50s

Finish time (s) 1,417 1,307 1,444 1,494

Arrived Packets
(AP) (×1000)

1,346 1,298 1,333 1,373

Avg. trip time
for AP (ms)

2,014 2,613 3,156 2,668

kill ed packets 617,064 665,188 630,479 590,732

lost packets 21,922 21,922 21,923 21,918

Agents (×103) 1,801 1,087 966 552

Table 6 – Routers 49 & 13 are Down at 500s.

Agents / link2 32 32 40 48

Aging 0.8 0.9 0.9 0.9

Propagate ratio 5% 3% 3% 2%

Propagate freq 500ms 500ms 700ms 700ms

Flow clear freq 50s 50s 50s 50s

Finish time (s) 1,254 1,445 1,258 1,520

Arrived packets
(AP) (×1000)

1,317 1,369 1,402 1,504

Avg. trip time
for AP (ms)

947 1,301 850 1,759

kill ed packets 623,539 571,390 539,747 438,378

lost packets 44,466 44,882 43,658 43,496

Agents (×103) 1,543 973 754 514

Table 7 – Router 13 is down at 300s, Router 49 is down at
500s, and both are up at 800s.

Agents / link2 32 32 40 48

Aging 0.8 0.9 0.9 0.9

Propagate ratio 5% 3% 3% 2%

Propagate freq 500ms 500ms 700ms 700ms

Flow clear freq 50s 50s 50s 50s

Finish time (s) 1,535 1,261 1,496 1,437

Arrived packets
(AP) (×103)

1,410 1,334 1,441 1,458

Avg. trip time
for AP (ms)

2088 1202 470 2018

kill ed packets 551,218 627,596 520,989 503,873

lost packets 23,953 23,426 23,401 23,085

Agents (×103) 1,447 1,043 896 648

Performance is quali fied in terms of two basic parameters,
time taken for all packets to be received (or lost) and the
number of packets successfully received. Naturally, the
former should be minimized and the latter maximized. In
the case of experiment 1 – no network failures – the time
for all packets to be accounted for is essentially the same,

AAAA , Ali fe, Adaptive Behavior, Agents, and Ant Colony Optimization

irrespective of parameter or algorithm. An immediate
difference is recognized, however, in the number of
arrived packets. The AntNet algorithm can only
successfully route 55% of those in the GA-agent
approach. This observation is repeated across all the
remaining scenarios. Moreover, in terms of ‘ kill ed’
packets this means that less than 50% of the packets in the
local version of the AntNet algorithm revisit sites
previously encountered.

Table 8 – AntNet with Local Information Only

No network failure

Finish time (s) 1,267

Arrived packets (AP) 903 (×103)

Avg. trip time of AP (ms) 398

kill ed packets 1,082,652

lost packets 0

of Ants 218 (×103)

Router 34 down at 500s

Finish time (s) 1,369

Arrived packets (AP) 813 (×103)

Avg. trip time of AP (ms) 2,899

kill ed packets 1,138,860

lost packets 32,763

of Ants 219 (×103)

Routers 49 & 13 down at 500s

Finish time (s) 1,300

Arrived packets (AP) 827 (×103)

Avg. trip time of AP (ms) 1,617

kill ed packets 1,114,729

lost packets 43,682

of Ants 219 (×103)

Routers 13 down at 300s, Router 49 down at 500s, both up at
800s

Finish time (s) 1,272

Arrived packets (AP) 863 (×103)

Avg. trip time of AP (ms) 1,254

kill ed packets 1,099,283

lost packets 23,209

of Ants 219 (×103)

In terms of specific parameter settings, the GA-agent
approach appears to consistently route the most packets
successfully when the number of agents per link is highest

and propagation ratio least. (Investigation of GA-agents
without demes, however, performs very badly.) It is also
noticed that although a maximum allowable length of 30
genes per individual is permitted, chromosomes never
reach this limit. Instead a preference of chromosome
lengths of 10 or less genes is found for nodes with a low
level of connectivity and 15 to 25 for individuals with a
connectivity of 3 or more.

5.2 PARAMETERIZATION OF CROSSOVER
AND MUTATION

As a final experiment, one instance of the distributed
parameter set is investigated under a classical crossover
and mutation rate of 90% crossover and 10% mutation.
As identified in section 5.1, lower agent per link counts
result in less packets being delivered. Table 9 reports the
case of 32 agents/ link, an aging factor of 0.9, a
propagation ration of 3% and a frequency of 500ms
(column 3 in tables 4 to 7).

On comparison with the same parameterization under
100% crossover and mutation, the number of ‘ kill ed’ or
‘ lost’ packets decreases by 33% to 8%, and the trip time
improves in each scenario other than no network failure.
Moreover, the case of 90% crossover and 10% mutation
betters all combined ‘kill ed-lost’ packet counts of any of
the distributed GA parameters investigated in section 5.1.
The implication being that more data packets are routed to
the destination without either encountering a faulty link or
a previously visited node. The principle penalty, however,
appears to be an increase in the number of GA-agents
introduced. Future work will naturally investigate whether
this trend holds for other distributed GA
parameterizations (the case of 48 agents per link appears
to utili ze less GA-agents).

Table 9 – GA-agent with Crossover of 90%, Mutation
10%

No network failure

Finish time (s) 1,252

Arrived packets (AP) 1,693 (×103)

Avg. trip time of AP (ms) 1,171

kill ed packets 292,723

lost packets 0

of Agents 961 (×103)

Router 34 down at 500s

Finish time (s) 1,507

Arrived packets (AP) 1,401 (×103)

Avg. trip time of AP (ms) 356

kill ed packets 562,751

lost packets 21,924

of Agents 1,170 (×103)

AAAA , Ali fe, Adaptive Behavior, Agents, and Ant Colony Optimization

Routers 49 & 13 down at 500s

Finish time (s) 1,252

Arrived packets (AP) 1,417 (×103)

Avg. trip time of AP (ms) 861

kill ed packets 523,673

lost packets 44,658

of Agents 1,025 (×103)

Routers 13 down at 300s, Router 49 down at 500s, both up at
800s

Finish time (s) 1,252

Arrived packets (AP) 1,555 (×103)

Avg. trip time of AP (ms) 1,012

lost packets 406,840

kill ed packets 23,861

of Ants 1,083 (×103)

6 CONCLUSIONS

As indicated in the introduction, network routing
problems force an interesting set of constraints, which
present a suitable test-bed for problem solving using co-
evolutionary techniques. In this work, we emphasize the
case in which routing table features, as well as content,
are evolved. Thus, we are not privy to a priori knowledge
regarding the number of nodes in the network. The
AntNet algorithm (Di Caro et al., 1998) does not perform
eff iciently and the GA representation cannot make use of
global knowledge of network connectivity, as has been
the case in the past (Munetomo et al., 1997). Such an
environment implies that packets responsible for updating
network connectivity requires more autonomy than were
previously acknowledged to solve packet switched
routing problems. As a first attempt at addressing these
problems directly, we utili ze a representation that is
independent of specific network connectivity patterns and
distributed in its operation (multi -population model with
chromosomes physically traveling the network). Such a
system improves on the AntNet algorithm when
constrained to a ‘ local’ table representation, Table 2 (see
(Liang et al., 2002) for a detailed discussion of AntNet
under ‘ local’ and ‘global’ routing table constraints), or be
it whilst utilizing larger routing tables. The principle
drawback for the GA-agent is the search eff iciency of the
ensuing routing table where a search as opposed to an
indexing process is now necessary. Future work will
expand the interaction between chromosomes to facilit ate
a more co-evolutionary approach to the development of
routing policies and develop a better organization to the
routing table structure. Moreover, the relationship
between routing table size and performance requires
further investigation.

Acknowledgments

A. Nur Zincir-Heywood and Malcolm I. Heywood
gratefully acknowledge the support of the Individual
Research Grants from the Natural Sciences and
Engineering Research Council of Canada.

References

Boyan J.A., Littman M.L., “Packet Routing in
Dynamically Routing Networks: A Reinforcement
Learning Approach,” Advances in Neural Information
Processing Systems, Volume 6, pp 671-678, 1994.

Corne D.W., Oates M.J., Smith G.D.,
Telecommunications Optimization: Heuristic and
Adaptive Techniques. John Wiley & Sons, isbn 0-471-
98855-3, 2000.

Di Caro G., Dorigo M., “AntNet: Distributed
Stigmergetic Control for Communications Networks,”
Journal of Artificial Intelli gence Research, 9, pp 317-365,
1998.

Dorigo M., Maniezzo V., Colorni A., “Ant System:
Optimization by a Colony of Cooperating Agents,” IEEE
Transactions on Systems, Man and Cybernetics – B, 26(1)
pp 29-41, Feb 1996.

Forouzan B. A., “Data Communications and
Networking” , Mc-Graw Hill , ISBN 0-07-232204-7, 2001.

Gelenbe E., Xu Z., Seref E., “Cognitive Packet
Networks,” Proceeding of 11th IEEE International
Conference on Tools with Artificial Intelli gence, pp 47-
54, 1999.

Halabi B., Internet Routing Architectures, Cisco Press,
ISBN 1-56205-652-2, 1997.

Heusse M., Snyers D., Guerin S., Kuntz P., “Adaptive
Agent-driven Routing and Load Balancing in
Communication Networks,” Advances in Complex
Systems, 1, pp 237-254, 1998.

Liang S., Zincir-Heywood A.N., Heywood M.I., “The
Effect of Routing under Local Information using a Social
Insect Metaphor,” IEEE International Congress on
Evolutionary Computation, May 2002.

Maniezzo V., Colorni A., “The Ant System Applied to the
Quadratic Assignment Problem,” IEEE Transactions on
Knowledge and Data Engineering, 11(5), pp 769-778,
Sept/ Oct 1999.

Munetomo M., Takai Y., Sato Y., “An Adaptive Network
Routing Algorithm Employing Path Genetic Operators,”
Proceedings of the 7th International Conference on
Genetic Algorithms, pp 643-649, 1997.

Tennenhouse D., Smith J., Sincoskie W., Wetherall D.,
Minden G., “A Survey of Active Network Research,”
IEEE Communications Magazine, 35(1), pp 80-86, Jan
1997.

