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Abstract

A distributed GA is designed for the packet
switched network routing problem under
minimal information. The requirements of such a
problem mean that agents are required to possess
more intelligence than was previously the cae.
To this end a distributed GA approach is
developed and benchmarked against the AntNet
algorithm under the same information
constraints.

1 GENERAL FORMATTING
INSTRUCTIONS

Network information systems and telecommunication in
genera rely on a combination of routing strategies and
protocols to ensure that information sent by a user is
adualy receved at the desired remote locaion. In
additi on, the distributed nature of the problem means that
multiple users can make requests smultaneously. This
results in delayed response times, lost information or
other reductions to the quality of service objedives on
which users judge network service Routing is the process
used to determine how a padket travels from source to
destination. Protocols are used to implement handshaking
adivities such as eror cheking and recever
adknowledgements. In this work, we ae interested in the
routing problem on computer networks.

The routing problem has sveral properties, which make it
particularly challenging. The problem is distributed in
nature; hence asolution that asaumes accessto any form
of global information is not desirable. The problem isalso
dynamic; hence asolution that is aufficient for presently
experienced network conditions may well be inefficient
under other loads experienced by the network. Moreover,
the traffic experienced by networks is subjed to widely
varying load conditions, making ‘typicd’ network
conditi ons unrepresentative.

Traditionally, routing strategies are implemented through
the information contained in routing tables available &

eat node in the network (Forouzan, 200J). That is, a
table detail s the next ‘hop’ a padket takes based on the
overall destination of the padket. This should not be taken
to imply that a routing table @mnsists of an exhaustive list
of all destinations — aform of global information. Instead,
the table cnsists of spedfic entries for the neighboring
nodes and then a series of default paths for padets with
any other destination — such as OSPF or BGP4 (Halabi,
1997. Applicdion of a dasdcd optimizaion technique
to such a problem might take the form of first assessang
the overal pattern of network traffic, and then defining
the mntents of ead routing table such that congestion is
minimized. This approach does not generaly work in
pradice & it simply costs too much to colled the
information centrally on a regular basis, where regular
updating is necessry in order to satisfy the dynamic
nature of network utilization. We, therefore, see the
generic objedives of a routing strategy to be both
dynamicdly reoonfigurable axd be based on locdly
available information, whilst aso satisfying the user
quality of serviceobjedives (i.e. agloba objedive).

Several approaches have been proposed for addressng
these objedives including  adive networking
(Tenrenhouse et. al.,1997), socia insed metaphors (Di
Caro, Dorigo, 1998, (Heuss et al., 1998 cognitive
padket networks (Gelenbe et. al., 1999, and what might
be loosely cdled ather ‘adaptive’ techniques (Corne et.
al., 2000. The latter typicdly involve using evolutionary
or neural techniques to produce a‘routing controller’ as
oppcsed to a ‘routing table at eahy node, where the
controller may require knowledge of the global
connedivity to ensure a valid route. The global
information assumption may be avoided by framing the
problem as a reinforcement-leaning context (Boyan,
Littman, 1994. However, the Q-leaning method, on
which this is based, results in single path solutions for
ead destination. Both the social insed metaphor and the
cognitive padket approach provide a methoddogy for
routing, without such constraints; by utilizing
probabilistic routing tables and letting the padkets
themselves investigate and report network topdogy and
performance
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All methods as currently implemented, however, suffer
from one drawbadk or another. Cognitive padket networks
and adive networking algorithms attempt to provide
routing programs at the padet level, hence atieving
scdable run time dficiency becomes an issle. To date,
implementations of ‘adaptive’ techniques and social
insed metaphors have relied, at some point, on the
avail ability of global information (Liang, et al., 2002).

The purpose of this work is to investigate the gplicaion
of a genetic dgorithm (GA) to build on lesons leant
from the social insed metaphor. This represents a major
departure from previous works attempting to utili ze GAs
to solve the dynamic routing problem e.g. (Corne D.W., et
al. 2000. In particular, a distributed GA is defined in
which populations associated with eadh node of the
network are required to co-evolve to solve the problem as
a whole. Moreover, the GA interadion with the
environment drives the feaures measured by the routing
tables, as oppased to the tables predefining the feaures
for measurement (a form of a priori information). Sedion
2 introduces the ‘ant’ based socia insed metaphor against
which the proposed approach is compared. Sedion 3
introduces the propcsed GA-agent scheme. Sedion 4
summarizes the network on which experiments are
performed. Results are presented in sedion 5 and
conclusions drawn in sedion 6.

2 ROUTING USING A SOCIAL INSECT
METAPHORE

As indicaed above, adive networking (Tennenhouse et.
al., 1997 and cognitive padket (Gelenbe et. al.,1999
based approaches emphasize aper padket mechanism for
routing. The gorementioned ‘adaptive’ techniques (Corne
et. al., 2000 tend to emphasize alding ‘intelligence to
the routers leaving the padkets unchanged. A social insed
metaphor provides a midde ground in which the concepts
of a routing table and data padket still exist, but in
addition, intelligent padkets — ants — are introduced that
interad to keep the cntents of the routing tables up to
date. To doso, the operation of ant pacetsis modeled on
obhservations made regarding the manner in which worker
ants use dhemicd trail s as a method o indired stigmergic
communication. Spedficdly, ants are only capable of
simple stochastic dedsions influenced by the avail ability
of previoudy laid stigmergic trails. The demicd
denoting a stigmergic trail is subjed to decay over time,
and reinforcement propartional to the number of ants
taking the same path. Tral building is naturally a bi-
diredional process ants need to readh the food
(destination) and make asuccessul return path, in order
to significantly reinforce astigmergic trail (Forward only
routing hes also been demonstrated (Heuss et al., 1998).
Moreover, the faster the route, then the ealier the trail is
reinforced. An ant on encountering multiple stigmergic
trails will probabhli stically choase the route with greaest
stigmergic reinforcement. Naturally, this will correspond
to the ‘fastest’ route to the food (destination). The
probabili stic nature of the dedsion, however, means that

ants are sill able to investigate routes with a lower
stigmergic trial.

This approach has proved to be aflexible framework for
solving a range of problems including the traveling sales
man problem (Dorigo et al., 1996 and the quadratic
assgnment problem (Maniezao et al., 1999. The work
reported here follows the ‘AntNet’ algorithm of Di Caro
and Dorigo (Di Caro, Dorigo, 1998, and is informally
summarized as foll ows,

e Eacdh node in the network retains a record of packet
destinations as e on data padkets passng through
that node. This is used to periodicdly, but
asynchronoudly, launch ‘forward” ants with
destinations gochasticadly sampled from the wlleded
set of destinations;

e Once launched, a forward ant uses the routing table
information to make probabili stic dedsions regarding
the next hop to take & ead node. While moving,
eah forward ant colleds time stamp and node
identifier information where this is later used to
update the routing tables along the path foll owed;

e |If a forward ant re-encounters a node previousy
visited before reading the destination, it iskill ed;

* On succesdully reading the destination node, total
trip time is estimated and the forward ant converted
into a backward ant;

* The backward ant returns to the source using exadly
the same route @& recrded by the forward ant.
Instead of using the data padket queues, however, the
badward ant uses a priority queue;

e At eah node visited by the badkward ant the
corresponding routing table entries are updated to
refled the relative performance of the path;

*  When the backward ant reades the source, it ‘dies’.

Although providing for a robust ant routing algorithm
under simulation conditions, an asaumption is made,
which inadvertently implies the use of global information
- knowledge of the number of nodes in the network (Di
Caro, Dorigo, 1998. The definition of routing tables is,
such that it is assumed that every node has a unique
locaion in the routing table, see Table 1, or atotal of L
(number of neighboring rodes) by K (number of nodes in
the entire network) entries. In pradice this is never the
case. To do so would asuume that it is first feasible, and
seoondly, should the network configuration ever change,
then al nodes dwould be updated with the new
configuration information. Moreover, as forward ants
propagate acossthe network, the anourt of information
they nea to ‘cary’ also increases (hode identifier and
time stamp).
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Table-1 Original Routing Table & any Network Node
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In order to avoid the use of global information, the
authors modify the information provided at the routing
tables auch that the routing tables only detail the
neighboring rodes, see Table 2, or a total of 2 by L
entries. Such a limitation, therefore, places greder
emphasis on the leaning cgpadty of the ant. This is
particularly significant during step (2) of the ant forward
pass(sedion 2.1). Tables 1 and 2 ill ustrate the difference
in avail able information for a node in the commonly used
Japanese benchmark badbone (NTTNet) routing
problem.

Table-2 Proposed Routing Table & any Network Node

on the NTTnet
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The foll owing sedion summarizes the AntNet algorithm.

21 ANTNET ALGORITHM

It is assumed that routing tables, Ty, exist at ead node, k,
in which a routing dedsion is made. Tables consist of ‘n’
rows, one row for ead neighboring rode/link. Asfar asa
normal data padet is concerned, if the destination, d,
from current node, k, is a neighbor then the routing is dill
a stochastic dedsion. In all other cases, arouteis sleded
based on the neighbor node probabiliti es.

1. New forward ants, Fy, are aeaed periodicdly, but
independently of the other nodes, from source, s, to
destination node, d, in propartion to the destination
frequency of passng data padkets. Forward ants
travel the network using the same priority structures
as data padkets, hence ae subjed to the same delay
profil es.

2. Next link in the forward ant route is sleded
stochasticdly, p'(j), in propation to the routing
table probabiliti es and length of the crresponding
output queue.

p(j) +al,
1+a(N, |-1)

where p(j) is the probability of seleding rode | as
the next hop; a weights the significance given to
locd queue length verses global routing information,
p@); I; is propartional to the inverse of queue length
at destination ‘j’ normalized to the unit interval; and
Ny is the number of links from node k.

3. On visiting a node different from the destination, a
forward ant cheds for a buffer with the same
identifier as itself. If such a buffer exists, the ant
must be entering a ¢/cle and des. If this is not the
case, then the ant saves the previously visited node
identifier and time stamp a which the ait was
serviced by the aurrent node in a buffer with the
forward ant’s identifier. The total number of buffers
at a node is managed by attaching “an age” to buffer
space ad alowing badkward ants to free the
corresponding buffer space

4, When the aurrent node is the destination, k = d, then
the forward ant is converted into a badkward ant, Bgs.
The information recorded at the forward ant buffer is
then used to retrace the route followed by the
forward ant.

5. At ead node visited by the badkward ant, routing
table probabiliti es are updated using the following
rule,

IF (node wasin the path of the ant)

THEN p(i) = p(i) +r {1 —p(i)}

ELSE p(i) = p(i) —r P(i)

wherer [ (0, 1] isthe reinforcement fadtor central to
expressng path quality (length), congestion and
underlying retwork dynamics.

As indicaed above, the reinforcement fador should be a
fador of trip time and locd statisticd model of the node
neighborhood To this end (Di Caro, Dorigo, 1998
recommend the foll owing relationship,

_ pwes ol
" E* H- .nf§+(tam .m)E

where W[m is the best case trip time to destination d over
a suitable temporal horizon, W; t art is the adual trip time
taken by the at; lin = Woes; lsip = Mo + {0ka / [W (1 =
I}

The estimates for mean, [, and variant, oq, of the trip
time ae dso made iteratively, using the trip time
information, o,4. Thus,

Hig = Hig + (O — Hia)
(0k)’ = (010)” + N { (0w — He)* — (01}

p'(J)=

Trip time information is now updated incrementally based
on the recorded trip duration between current node, k, and
ultimate destination, d. This means that it is no longer
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necessary to cary al node and duration information as a
‘stadk’ to the target duration as in the original model (Di
Caro, Dorigo, 1998. Only the previous node information
istherefore caried by ead ant.

3 GENETIC ALGORITHM BASED
SCHEME TO ROUTING

Simulation of the eove AntNet scheme has been shown
to provide arobust alternative to six standard routing
algorithms — OSPF, SPF, BF, Q-R, P-QR and Daemon
(Di Caro, Dorigo, 1998. However, this is not without
utilizing routing tables in the AntNet algorithm, which
provide entries for al nodes on the network. In pradice,
such (global) information is not adualy available. In
(Liang et al. 2002, the AntNet algorithm is benchmarked
with routing tables configured with information regarding
their neighbors alone; Table 2 as oppcsed to Table 1. The
performance of such a system is then deamed
unaccetable. Spedficdly 55% of padkets are lost where
‘logt’ in this work is defined as any padet (data or ant)
that visits the same node more than once In order to
address this problem, we ae, therefore interested in the
ability of route finding padets leaning to find paths
independently from the routing table information. By
doing so, we do not rely on the cgadty of the routing
tables alone to retain information regarding all nodes in
the network.

The objedive of this work is to investigate ascenario in
which the entries themselves are identified dynamicdly.
This will be afirst step towards a m-evolutionary model
cgoable of evolving solutions to the padket switched
routing problem. The aits, in this case, take the form of
individuals from a distributed Genetic Algorithm (GA),
heredter referred to as GA-agents. Individual
chromosomes travel the network using a string of next
hop dfsets, eg., {1, 5, 0, 4, 2, 3, 5} over the interval [0,
[O, L], where ‘L’ is sleded to enable indexing of node
connedivity. In all the experiments of sedion 5, ‘L’ is st
to 6. On entering a node, genes (offsets) are used to
identify the next link using a dockwise @unt, with
resped to the port the GA-agent entered the node i.e. the
next link is sleded as a modulus of (gene % # of links).
Such a representation is then independent of the spedfic
network conredivity, unlike say the GA approach in
(Munetomo et al., 1997). For eac node encountered, the
gene, used to seled the next link, is incremented and a
record is made of the node ID. The process naturally
continues until the GA-agent exeautes its last gene, at
which paint it becomes a badkward agent, returning to its
origina source node. In the spedal case of a GA-agent
attempting to return down the same link as it entered a
node, the router randomly seleds the next hop from the
available links, and changes the gene to the new value
(deterministic mutation). If no next hop is available, then
the cdhromosome is truncated, and the GA-agent becmes
a badkward agent (seethe dgorithm “processng agents').
Note, unlike the AntNet agorithm, modificaion of
routing tables only takes place once the GA-agents have

returned to their origina source, and modifications only
affed the source node routing table. The &ove
representation supparts sngle point crossover, resultingin
variable length individuals. Mutation randomly seleds a
gene and adds/ subtrads an integer such that the new gene
is dill i ntheinterval [0, 6].

Table 3— GA-agent Routing Table

Agent ID | Agent Fitness | Trip Time (ms) and node ID
95 0.32 (3,9,(9,0), (21, W)

234 0.39 (1,B), (7, A),..., (432 Y)
31 0.71 (5,0), (9,K), ..., (871 X)

At initialization, a router sends out half of the population
of GA-agents to explore the network. Once the number of
returned GA-agents reades four, the fitness of the four
agents is evaluated; the best two agents are then chosen —
as in a stealy state tournament (See dgorithm “updating
routing table & population™).

The fitness function measures the popularity of nodes
visted as well as the time taken to read nodes
encountered by GA-agents. Both of these properties are
measured with resped to the original source node.
Popularity of destination ‘i’ at node ‘K (NP(i)) is a
dynamic property, measured at the original source node
by recoding the frequency of different data packet
destinations as e by the source node over a fixed time
window (50 seconds in this case), or

NP(i) = Dest(i) / TDx

Where TDy is the total number of data packets passng
through rode ‘K'; and Dest(i) is the number of data
padkets with destination ‘i’.

Chromosomes, which find shortest paths to frequently
used destinations, are therefore favored. The esuing
fitnessfunction taking the form,

Zfor each explored nocei Npk(i) X tl’ip_ti me,
Zfor each explored noce | trlp_tlm (1)

The routing table in the GA approach consists of a short
list of returned agents, every entry corresponds to an
evaluated returned agent path. On routing a data padet,
the router chedks the table for a path that had experienced
shortest trip time to the desired destination (third column
of Table 3); if such an entry is not found, the entry with
the highest fitness Table 3 column 2, will be seleded as
the default next node for this data padket. The first two
columns in the routing table ae used during ranking and
replacement of winning chromosomes.

The &ove ongitutes our basic GA-agent approach. In
additi on, threefurther concepts are introduced. Thefirst is
that of demes. This provides a mechanism for passng
useful chromosomes between neighbaing nodes. To do
S0, every node will propagate best-case dhromosomes to
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neighboring rmodes every 500 o 700ms (tunable
parameter, see “propagate freq” in sedion 5). Secondly,
in order to avoid stagnation in the routing tables, an
incremental penalty is applied to ead entry of the routing
table (see the dgorithm “updating routing table &
population“). The motivation for such an aging
medhanism is to ensure that routing tables remain
sensitive to the dynamic nature of the environment (e.g.,
changes to network topdogy, network node/link failure,
network congestion). Such a mechanism is introduced
during yodates to routing tables: making every routing
table entry a bit smaller in fitness and a bit longer in trip
time, or

fitNESS agent in routing tavle = Original fitnessx c2;
trip_time every nade of every entry = OFiginal_trip_time/ c2;
where @ isa constant [ (0.0, 1.0) )]

Finaly, when initiali zing the populations of chromosomes
at eat node, nodes with a higher connedivity naturally
represent a larger seach problem. Thus, the number of
chromosomes per population isinitialized in propartion to
the square of the number of neighbors.

The dgorithm is outlined as follows: (¢, ¢, and c; are
constants.)

init
initiali zefirst generation of agents;
#agents = #links® x ¢;;
string of offsetsof anagent-{3, 1, 4,5, 2, ...}
clea routing table;

clea flow pattern stats;
send out half population of individuals;

processing agents

if (case of badkward agent)
then if (agent arrives at the source)

then if (agent timeout)
then (kill agent);
ese (put into “bad” list);
end if

else if (next hopisdown)
then  (kill agent);
else  (forward tothelink)
end if

end if

ese agent records the trip time info;
retrieve offset from the next unused
gene position;
if (corresponding link is available and
no loop caused)
then (send the aent to the link);
ese  (randomly [ead available link
has equal probability] seled an available
link [without entering aloop]);

end if
if (no such link found)
then (convert the agent into a

badkward agent)

else  (set the off set to the new value);
(send agent to the link);
end if
end if

updating routing table & population (once 4 agents
return to the same source i.e. steady state tournament)

update the performance table by aging mechanism:
fitnessof agent = original fitnessx c2;

trip time to every node of every entry = origina
triptime/ c2;

use the fitness function to evaluate the fitness of
badkward agents;

seled the best two agents as parents;

put/update the fitness of parent agents in the
routing table;

delete the entries of the worst two agents in the
routing table;

use standard crossover and mutation on the parents
to generate two children;

put the dnildren into the population;

delete the worst two agents from the population;

if (current time > last clea time + c3)

then (clea flow dtatistics)

randomly launch 4 agents from the population to
explore the network;

routing data packets

if (routing table is empty)

then (randomly choose alink to forward)

else (seach the routing table for the shortest
trip time to the desired destination)

if (no entry found for the desired
destination)
then (choose fittest entry);
end if
end if
if (no route isfound)
then (discard the padket)
end if

31 DATA STRUCTURES

Every agent consists of a string of next hop dfsets, and
time stamp reoords. Every router consists of an incoming
buffer, a processng buffer (stores a padcet at atime), and
an outgoing buffer for ead neighboring router. For the
GA approach, every router has a population of
chromosomes, a routing table, a flow pattern statistics
table, and a fitness table. The number of chromosomes
per population is in dired propartion to the square of
number of neighbors. The routing table, which is updated
whenever four chromosomes return, consists of current
fittest individuas, c.f (1). The flow pattern estimates the
popularity of data padcets passng through the node, c.f.
(2). The fitness table stores the fitness of every
chromosome, currently a member of the routing table.
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Figure-1: Japanese Badkbone - NTTnet (55 nodes)

To smulate ad test the GA-agent algorithm, an event
driven simulation environment is developed (C++ on
UNIX system). Spedficdly, the Japanese Internet
badbone (NTTNET — see figure 1) is modeled, where
this represents a narrow long configuration in which the
degree of conredivity is low (from 1 to 5), when
compared to the US badkbone. Hence the Japanese
network provides a more demanding configuration for
testing routing algorithms, as higher degrees of
connedivity lower the posdbility of padet loss due to
loops, timeouts, i.e., in a narrow long shaped network,
once apadket is forwarded in a wrong diredion, it might
never have the chance to be routed to the desired
destination.

4 SIMULATION ENVIRONMENT

The event driven simulation models the network as
routers (nodes) and links. Every router has an incoming
buffer, a memory space for processng padkets, and an
outgoing buffer for ead link to its neighboring routers. A
priority queue is used to store the events. Both AntNet
(locd routing table information, Table 2) and GA-agent
algorithms are simulated under the same environmental
conditions. That is, an event generator is used to generate
the events, such as new padet time of generation, or
routers avail ability. The following are the parameters used
in the simulation,

* Network topdogy takes the form of the Japanese
badkbone, figure 1,

e Forward ants are launched every 300ms;

e The AntNet algorithm is given 5 seconds at the
beginning of the simulation to converge the initial
routing tables, during this period, routing padets
(ants or GA-agents) are the only padkets traversing
the network;

e Data padets are generated by Poisson distribution
(mean of 35ms);

*  The parameters for the GA based scheme ae given as
the first 5 rows of tables 4 - 7, where 4 (columns 2 -
5) different GA based agent structures are simulated;

e Any padkets, including data padkets, are kill ed should
they encounter a previoudy visted node. Given the
probabilistic nature of the routing tables this
represents a rather harsh constraint, but in doing so is
utilized to emphasize the properties of different
routing strategies. In addition padkets that are routed
down links representing a fault condition are
distinguished separately as lost packets.

The simulation length is 1250s. As a result, 1985536 dta
padkets are generated within 1250s. The queue length is
the total number of waiting padets per second, which
includes the data packets and the routing padkets. In this
paper, the routing padkets refer to the ants in the AntNet
algorithm, and to the GA-agentsin the GA approadh.

5 RESULTS

On measuring the performance of a routing algorithm, we
focus on:

* Network throughput, which is defined as number of
data padket bytes siccesdully receved at their
destination in atwo second window;

» Total timeto deliver all the data padkets (finish time);
*  Number of arrived data padets;

e Number of ‘killed’ and ‘lost’ padets;

» Averagetrip time of arrived data padkets.

Two sets of experiments are mnducted, in both cases
using a series of network scenarios designed to investigate
operation urder changing retwork conditions. The first
set of experiments investigates parameters associated with
the distributed GA. The second of experiments takes one
set of these parameters and reduces the degree of
exploration/ exploitation (mutation/ crossover
respedively).

There ae atotal of 4 scenariosin ead set of experiments,
in the first case dl routers remain available. The
remaining scenarios investigate plasticity of the network
by removing different router combinations. First, router
34 isremoved at atime step of 500s. From figure 1, it is
apparent that router 34 represents a significant node in the
topdogy, although aternative paths certainly exist. In the
third scenario, two routers are removed, wheress in
scenario four the same two routers are removed hbut
asynchronoudly.

51 PARAMETERIZATION OF DISTRIBUTED
GA

In the case of routing Lsing GA-agents, there ae six basic
parameters,

1. Agents / link? — c;, determines the population of
chromosomes per node. The implicaion being that
there ae O(L? locations in eat routing table,
where L isthe number of neighboring rodes;
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2. Aging — c,, rate by which fitness of individuals
currently populating the routing tables decyy;

3. Propagate ratio — the number of chromosomes
exchanged between populations, expressed as a % of
node population size

4. Propagate freq — rate of exchange of chromosomes
between populations;

5. Flow clea freq — cs, time interval over which data
padket destination statistics are mlleded;

6. Crosover and Mutation — the results in this dion
utilize maximum crossover and mutation rates in
order to encourage ntinuous investigation of
dternative routes. Sedion 5.2 considersthe cae of a
more dasscd sedion of crosver and mutation
thresholds.

These ae initially seleded to enable qualificaion of the
sengitivity to population size, rate of aging etc. and
remain the same acoss all experiments, Tables 4 to 7,
columns 2 - 5. Table 8 summarizes the same information
for the AntNet algorithm under a ‘locd’ routing table
configuration. Thus, Locd AntNet utilizes tables of
length O(L), significantly lessthan the GA-agent case.

Table 4 — No Network Failure.

Avag. trip time 2,014 2,613 3,156 2,668
for AP (ms)

#killed padkets | 617,064 665188 630479 590732
# lost packets 21,922 21922 21,923 21,918

#Agents(x10°) | 1,801 1,087 966 552

Table 6 — Routers 49 & 13 are Down at 500s.

# Agents/ link? 32 32 40 48
Aging 0.8 0.9 0.9 0.9
Propagate ratio 5% 3% 3% 2%
Propagate freq 500ms 500ms 700ms 700ms
Flow clea freq 50s 50s 50s 50s
Finish time (9) 1,254 1,445 1,258 1,520
Arrived padets 1,317 1,369 1,402 1,504
(AP) (x1000
Avag. trip time 947 1,301 850 1,759
for AP (ms)
#Kkilled packets | 623539 571,390 539747 438378
# lost packets 44,466 44,882 43,658 43,496
# Agents (x10°) | 1,543 973 754 514

Table 7 — Router 13isdown at 300s, Router 49 is down at
500s, and bah are up at 800Cs.

# Agents/ link? 32 32 40 48
Aging 0.8 0.9 0.9 0.9
Propagate ratio 5% 3% 3% 2%
Propagate freq 500ms 500ms 700ms 700ms
Flow clea freq 50s 50s 50s 50s
Finish time (s) 1,535 1,261 1,496 1,437
Arrived packets 1,410 1,334 1,441 1,458
(AP) (x10°)
Avg. trip time 2088 1202 470 2018
for AP (ms)
#killed packets | 551,218 627596 520989 503873
# lost padkets 23953 23426 23401 23,085
#Agents(x10°) | 1447 1,043 896 648

# Agents/ link? 32 32 40 48
Aging 0.8 0.9 0.9 0.9

Propagate ratio 5% 3% 3% 2%
Propagate freq 500ms 500ms 700ms 700ms
Flow clea freq 50s 50s 50s 50s
Finish time (9) 1,252 1,253 1,252 1,267

Arrived Padkets 1,619 1,585 1,583 1,560
(AP) (x1000
Avag. trip time 742 905 678 1,236

for AP (ms)

#Kkilled packets | 366533 400351 402517 385750
# lost packets 0 0 0 0

# Agents (x10°) | 1,690 1,028 801 475

Table 5— Router 34is Down at 500s.
# Agents/ link? 32 32 40 48
Aging 0.8 0.9 0.9 0.9

Propagate ratio 5% 3% 3% 2%
Propagate freq 500ms 500ms 700ms 700ms
Flow clear freq 50s 50s 50s 50s
Finish time (s) 1,417 1,307 1,444 1,494
Arrived Packets | 1,346 1,298 1,333 1,373
(AP) (x1000

Performanceis qualified in terms of two basic parameters,
time taken for all padkets to be receved (or lost) and the
number of padkets successully recaved. Naturaly, the
former should be minimized and the latter maximized. In
the cae of experiment 1 — no network fail ures — the time
for all padketsto be acounted for is esentialy the same,
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irrespedive of parameter or algorithm. An immediate
difference is remgnized, however, in the number of
arrived padkets. The AntNet algorithm can only
succesdully route 55% of those in the GA-agent
approach. This observation is repeded acoss al the
remaining scenarios. Moreover, in terms of ‘killed
padkets this means that lessthan 50% of the padcketsin the
locd version of the AntNet algorithm revisit sites

previously encountered.

Table 8 — AntNet with Locd Information Only

No network failure

Finish time (9) 1,267
Arrived padkets (AP) 903(x10%)
Avg. trip time of AP (ms) 398

#kill ed padkets 1,082652
# lost padkets 0

# of Ants 218(x10%)

Router 34 dawvn at 500

Finish time (s) 1,369
Arrived padkets (AP) 813(x10%)
Avg. trip time of AP (ms) 2,899
#kill ed packets 1,138860
# lost padkets 32,763

# of Ants 219(x10%)

Routers 49 & 13 down at 5008

and propagation ratio least. (Investigation of GA-agents
without demes, however, performs very badly.) It is also
noticed that although a maximum allowable length of 30
genes per individual is permitted, chromosomes never
read this limit. Instead a preference of chromosome
lengths of 10 a lessgenes is found for nodes with a low
level of connedivity and 15to 25for individuals with a
connedivity of 3 or more.

52 PARAMETERIZATION OF CROSSOVER
AND MUTATION

As a final experiment, one instance of the distributed
parameter set is investigated under a dasdcd crossover
and mutation rate of 90% crossover and 10% mutation.
As identified in sedion 5.1, lower agent per link counts
result in less padkets being delivered. Table 9 reports the
case of 32 agents link, an aging fador of 0.9, a
propagation ration of 3% and a frequency of 500ms
(column 3intables4to 7).

On comparison with the same parameterization urder
100% crossover and mutation, the number of ‘killed’ or
‘lost’ padkets deaeases by 33% to 8%, and the trip time
improves in eat scenario ather than no network failure.
Moreover, the cae of 90% crosover and 10% mutation
betters all combined ‘kill ed-lost’” padket courts of any of
the distributed GA parameters investigated in sedion 5.1.
The impli cation being that more data padkets are routed to
the destination without either encountering a faulty link or
a previously visited node. The principle penalty, however,
appeas to be an increase in the number of GA-agents
introduced. Future work will naturally investigate whether
this trend holds for other distributed GA
parameterizaions (the cae of 48 agents per link appeas

Finish time (s) 1,300 to utili zelessGA-agents).
Arrived padkets (AP) 827(x10°) Table 9 — GA-agent with Crossover of 90%, Mutation
Avg. trip time of AP (ms) 1,617 10%
#Kill ed packets 1114729 No retwork fail ure
#lost packets 43682 Finish time (9) 1,252
7 o Anis 219 (x10) Arrived padkets (AP) 1,693(x10%
Routers 13 dawn at 300s, Router 49 dawn at 500s, both upat Avg. trip time of AP (ms) 1171
800 #kill ed padkets 292723
Finish time (9) 1,272 # lost padkets 0
Arrived padkets (AP) 863(x10°% # of Agents 961 (x10%
Avg. trip time of AP (ms) 1,254 Router 34 down at 500s
#kill ed padkets 1,099,283 Finish time (s) 1,507
#lost pacets 23,209 Arrived padkets (AP) 1,401 (x10%
# of Ants 219(x10°) Avg. trip time of AP (ms) 356
#kill ed padkets 562751
In terms of spedfic parameter settings, the GA-agent #lost packets 21,924
approach appeas to consistently route the most padets
successully when the number of agents per link is highest # of Agents 1,170(x10)
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Routers 49 & 13 down at 500s
Finish time (9) 1,252
Arrived padkets (AP) 1,417 (x10%)
Avg. trip time of AP (ms) 861
#kill ed padkets 523673
# lost padkets 44,658
# of Agents 1,025(x10%
Routers 13 down at 300s, Router 49 dawvn at 500s, both upat

800s

Finish time (s) 1,252
Arrived padkets (AP) 1,555 (x10%
Avg. trip time of AP (ms) 1,012
# lost padkets 406840
#kill ed packets 23,861
# of Ants 1,083(x10%

6 CONCLUSIONS

As indicaed in the introduction, network routing
problems force an interesting set of constraints, which
present a suitable test-bed for problem solving wsing co-
evolutionary techniques. In this work, we enphasize the
case in which routing table fedures, as well as content,
are evolved. Thus, we ae not privy to a priori knowledge
regarding the number of nodes in the network. The
AntNet algorithm (Di Caro et al., 1998 does not perform
efficiently and the GA representation cannot make use of
global knowledge of network connedivity, as has been
the cae in the past (Munetomo et al., 1997). Such an
environment implies that padkets responsible for updating
network connedivity requires more aitonomy than were
previously adknowledged to solve padket switched
routing problems. As a first attempt at addressng these
problems diredly, we utilize a representation that is
independent of spedfic network connedivity patterns and
distributed in its operation (multi-population model with
chromosomes physicdly traveling the network). Such a
system improves on the AntNet algorithm when
constrained to a ‘locd’ table representation, Table 2 (see
(Liang et al., 2002 for a detailed discusdon of AntNet
under ‘locd’ and ‘global’ routing table mnstraints), or be
it whilst utilizing larger routing tables. The principle
drawbadk for the GA-agent is the seach efficiency of the
ensuing routing table where a seach as oppcsed to an
indexing process is now necessary. Future work will
expand the interadion between chromosomes to fadlit ate
a more -evolutionary approach to the development of
routing palicies and develop a better organization to the
routing table structure. Moreover, the relationship
between routing table size and performance requires
further investigation.
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