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Abstract 
 

A distributed GA is designed for the packet 
switched network routing problem under 
minimal information. The requirements of such a 
problem mean that agents are required to possess 
more intelli gence than was previously the case. 
To this end a distributed GA approach is 
developed and benchmarked against the AntNet 
algorithm under the same information 
constraints. 

1 GENERAL FORMATTING 
INSTRUCTIONS 

Network information systems and telecommunication in 
general rely on a combination of routing strategies and 
protocols to ensure that information sent by a user is 
actually received at the desired remote location. In 
addition, the distributed nature of the problem means that 
multiple users can make requests simultaneously. This 
results in delayed response times, lost information or 
other reductions to the quality of service objectives on 
which users judge network service. Routing is the process 
used to determine how a packet travels from source to 
destination. Protocols are used to implement handshaking 
activities such as error checking and receiver 
acknowledgements. In this work, we are interested in the 
routing problem on computer networks. 

The routing problem has several properties, which make it 
particularly challenging. The problem is distributed in 
nature; hence a solution that assumes access to any form 
of global information is not desirable. The problem is also 
dynamic; hence a solution that is suff icient for presently 
experienced network conditions may well be ineff icient 
under other loads experienced by the network. Moreover, 
the traff ic experienced by networks is subject to widely 
varying load conditions, making ‘ typical’ network 
conditions unrepresentative. 

Traditionally, routing strategies are implemented through 
the information contained in routing tables available at 

each node in the network (Forouzan, 2001). That is, a 
table details the next ‘hop’ a packet takes based on the 
overall destination of the packet. This should not be taken 
to imply that a routing table consists of an exhaustive list 
of all destinations – a form of global information. Instead, 
the table consists of specific entries for the neighboring 
nodes and then a series of default paths for packets with 
any other destination – such as OSPF or BGP4 (Halabi, 
1997). Application of a classical optimization technique 
to such a problem might take the form of first assessing 
the overall pattern of network traff ic, and then defining 
the contents of each routing table such that congestion is 
minimized. This approach does not generally work in 
practice as it simply costs too much to collect the 
information centrally on a regular basis, where regular 
updating is necessary in order to satisfy the dynamic 
nature of network utili zation. We, therefore, see the 
generic objectives of a routing strategy to be both 
dynamically reconfigurable and be based on locally 
available information, whilst also satisfying the user 
quality of service objectives (i.e. a global objective). 

Several approaches have been proposed for addressing 
these objectives including: active networking 
(Tennenhouse et. al.,1997), social insect metaphors (Di 
Caro, Dorigo, 1998), (Heusse et al., 1998) cognitive 
packet networks (Gelenbe et. al.,1999), and what might 
be loosely called other ‘adaptive’ techniques (Corne et. 
al., 2000). The latter typically involve using evolutionary 
or neural techniques to produce a ‘ routing controller’ as 
opposed to a ‘ routing table’ at each node, where the 
controller may require knowledge of the global 
connectivity to ensure a valid route. The global 
information assumption may be avoided by framing the 
problem as a reinforcement-learning context (Boyan, 
Littman, 1994). However, the Q-learning method, on 
which this is based, results in single path solutions for 
each destination. Both the social insect metaphor and the 
cognitive packet approach provide a methodology for 
routing, without such constraints; by utili zing 
probabili stic routing tables and letting the packets 
themselves investigate and report network topology and 
performance. 
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All methods as currently implemented, however, suffer 
from one drawback or another. Cognitive packet networks 
and active networking algorithms attempt to provide 
routing programs at the packet level, hence achieving 
scalable run time eff iciency becomes an issue. To date, 
implementations of ‘ adaptive’ techniques and social 
insect metaphors have relied, at some point, on the 
availabilit y of global information (Liang, et al., 2002). 

The purpose of this work is to investigate the application 
of a genetic algorithm (GA) to build on lessons learnt 
from the social insect metaphor. This represents a major 
departure from previous works attempting to utili ze GAs 
to solve the dynamic routing problem e.g. (Corne D.W., et 
al. 2000). In particular, a distributed GA is defined in 
which populations associated with each node of the 
network are required to co-evolve to solve the problem as 
a whole. Moreover, the GA interaction with the 
environment drives the features measured by the routing 
tables, as opposed to the tables predefining the features 
for measurement (a form of a priori information). Section 
2 introduces the ‘ant’ based social insect metaphor against 
which the proposed approach is compared. Section 3 
introduces the proposed GA-agent scheme. Section 4 
summarizes the network on which experiments are 
performed. Results are presented in section 5 and 
conclusions drawn in section 6.  

2 ROUTING USING A SOCIAL INSECT 
METAPHORE 

As indicated above, active networking (Tennenhouse et. 
al.,1997) and cognitive packet (Gelenbe et. al.,1999) 
based approaches emphasize a per packet mechanism for 
routing. The aforementioned ‘adaptive’ techniques (Corne 
et. al., 2000) tend to emphasize adding ‘ intelli gence’ to 
the routers leaving the packets unchanged. A social insect 
metaphor provides a middle ground in which the concepts 
of a routing table and data packet still exist, but in 
addition, intelli gent packets – ants – are introduced that 
interact to keep the contents of the routing tables up to 
date. To do so, the operation of ant packets is modeled on 
observations made regarding the manner in which worker 
ants use chemical trails as a method of indirect stigmergic 
communication. Specifically, ants are only capable of 
simple stochastic decisions influenced by the availabilit y 
of previously laid stigmergic trails. The chemical 
denoting a stigmergic trail i s subject to decay over time, 
and reinforcement proportional to the number of ants 
taking the same path. Trail building is naturally a bi-
directional process, ants need to reach the food 
(destination) and make a successful return path, in order 
to significantly reinforce a stigmergic trail (Forward only 
routing has also been demonstrated (Heusse et al., 1998)). 
Moreover, the faster the route, then the earlier the trail i s 
reinforced. An ant on encountering multiple stigmergic 
trails will probabili stically choose the route with greatest 
stigmergic reinforcement. Naturally, this will correspond 
to the ‘f astest’ route to the food (destination). The 
probabili stic nature of the decision, however, means that 

ants are still able to investigate routes with a lower 
stigmergic trial. 

This approach has proved to be a flexible framework for 
solving a range of problems including the traveling sales 
man problem (Dorigo et al., 1996) and the quadratic 
assignment problem (Maniezzo et al., 1999). The work 
reported here follows the ‘AntNet’ algorithm of Di Caro 
and Dorigo (Di Caro, Dorigo, 1998), and is informally 
summarized as follows, 

•  Each node in the network retains a record of packet 
destinations as seen on data packets passing through 
that node. This is used to periodically, but 
asynchronously, launch ‘f orward’ ants with 
destinations stochastically sampled from the collected 
set of destinations; 

•  Once launched, a forward ant uses the routing table 
information to make probabili stic decisions regarding 
the next hop to take at each node. While moving, 
each forward ant collects time stamp and node 
identifier information where this is later used to 
update the routing tables along the path followed; 

•  If a forward ant re-encounters a node previously 
visited before reaching the destination, it is kill ed; 

•  On successfully reaching the destination node, total 
trip time is estimated and the forward ant converted 
into a backward ant; 

•  The backward ant returns to the source using exactly 
the same route as recorded by the forward ant. 
Instead of using the data packet queues, however, the 
backward ant uses a priority queue; 

•  At each node visited by the backward ant the 
corresponding routing table entries are updated to 
reflect the relative performance of the path; 

•  When the backward ant reaches the source, it ‘dies’ . 

Although providing for a robust ant routing algorithm 
under simulation conditions, an assumption is made, 
which inadvertently implies the use of global information  
- knowledge of the number of nodes in the network (Di 
Caro, Dorigo, 1998). The definition of routing tables is, 
such that it is assumed that every node has a unique 
location in the routing table, see Table 1, or a total of L 
(number of neighboring nodes) by K (number of nodes in 
the entire network) entries. In practice, this is never the 
case. To do so would assume that it is first feasible, and 
secondly, should the network configuration ever change, 
then all nodes should be updated with the new 
configuration information. Moreover, as forward ants 
propagate across the network, the amount of information 
they need to ‘carry’ also increases (node identifier and 
time stamp).  
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Table-1 Original Routing Table at any Network Node 
k on the NTTnet  
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In order to avoid the use of global information, the 
authors modify the information provided at the routing 
tables such that the routing tables only detail the 
neighboring nodes, see Table 2, or a total of 2 by L 
entries. Such a limitation, therefore, places greater 
emphasis on the learning capacity of the ant. This is 
particularly significant during step (2) of the ant forward 
pass (section 2.1). Tables 1 and 2 ill ustrate the difference 
in available information for a node in the commonly used 
Japanese benchmark backbone (NTTNet) routing 
problem. 

Table-2 Proposed Routing Table at any Network Node 
on the NTTnet  

          Neighbor 
           Node 

If used for other 
nodes 
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The following section summarizes the AntNet algorithm. 

2.1 ANTNET ALGORITHM 

It is assumed that routing tables, Tk, exist at each node, k, 
in which a routing decision is made. Tables consist of ‘ n’ 
rows, one row for each neighboring node/link. As far as a 
normal data packet is concerned, if the destination, d, 
from current node, k, is a neighbor then the routing is still 
a stochastic decision. In all other cases, a route is selected 
based on the neighbor node probabiliti es.  

1. New forward ants, Fsd, are created periodically, but 
independently of the other nodes, from source, s, to 
destination node, d, in proportion to the destination 
frequency of passing data packets. Forward ants 
travel the network using the same priority structures 
as data packets, hence are subject to the same delay 
profiles. 

2. Next link in the forward ant route is selected 
stochastically, p’ (j), in proportion to the routing 
table probabiliti es and length of the corresponding 
output queue. 

 

 

 

where p(j) is the probabilit y of selecting node j as 
the next hop; α weights the significance given to 
local queue length verses global routing information, 
p(j); l j is proportional to the inverse of queue length 
at destination ‘ j’ normalized to the unit interval; and 
Nk is the number of links from node k. 

3. On visiting a node different from the destination, a 
forward ant checks for a buffer with the same 
identifier as itself. If such a buffer exists, the ant 
must be entering a cycle and dies. If this is not the 
case, then the ant saves the previously visited node 
identifier and time stamp at which the ant was 
serviced by the current node in a buffer with the 
forward ant’s identifier. The total number of buffers 
at a node is managed by attaching “an age”  to buffer 
space and allowing backward ants to free the 
corresponding buffer space. 

4. When the current node is the destination, k = d, then 
the forward ant is converted into a backward ant, Bds. 
The information recorded at the forward ant buffer is 
then used to retrace the route followed by the 
forward ant.  

5. At each node visited by the backward ant, routing 
table probabiliti es are updated using the following 
rule, 

IF (node was in the path of the ant) 
THEN p(i) = p(i) + r { 1 – p(i)}  
ELSE p(i) = p(i) – r P(i) 
where r ∈  (0, 1] is the reinforcement factor central to 
expressing path quality (length), congestion and 
underlying network dynamics. 

As indicated above, the reinforcement factor should be a 
factor of trip time and local statistical model of the node 
neighborhood. To this end (Di Caro, Dorigo, 1998) 
recommend the following relationship, 

where Wbest is the best case trip time to destination d over 
a suitable temporal horizon, W; tant is the actual trip time 
taken by the ant; I inf = Wbest; Isup = µkd + { σkd / [W (1 – 
γ)]0.5} . 

The estimates for mean, µkd, and variant, σkd, of the trip 
time are also made iteratively, using the trip time 
information, okd. Thus, 

µkd = µkd + η(okd – µkd) 

(σkd)
2 = (σkd)

2 + η { (okd – µd)
2 – (σkd)

2}  

Trip time information is now updated incrementally based 
on the recorded trip duration between current node, k, and 
ultimate destination, d. This means that it is no longer 
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necessary to carry all node and duration information as a 
‘stack’ to the target duration as in the original model (Di 
Caro, Dorigo, 1998). Only the previous node information 
is therefore carried by each ant. 

3 GENETIC ALGORITHM BASED 
SCHEME TO ROUTING  

Simulation of the above AntNet scheme has been shown 
to provide a robust alternative to six standard routing 
algorithms – OSPF, SPF, BF, Q-R, P-QR and Daemon 
(Di Caro, Dorigo, 1998). However, this is not without 
utili zing routing tables in the AntNet algorithm, which 
provide entries for all nodes on the network. In practice, 
such (global) information is not actually available. In 
(Liang et al. 2002), the AntNet algorithm is benchmarked 
with routing tables configured with information regarding 
their neighbors alone; Table 2 as opposed to Table 1. The 
performance of such a system is then deemed 
unacceptable. Specifically 55% of packets are lost where 
‘ lost’ in this work is defined as any packet (data or ant) 
that visits the same node more than once. In order to 
address this problem, we are, therefore interested in the 
abilit y of route finding packets learning to find paths 
independently from the routing table information. By 
doing so, we do not rely on the capacity of the routing 
tables alone to retain information regarding all nodes in 
the network.  

The objective of this work is to investigate a scenario in 
which the entries themselves are identified dynamically. 
This will be a first step towards a co-evolutionary model 
capable of evolving solutions to the packet switched 
routing problem. The ants, in this case, take the form of 
individuals from a distributed Genetic Algorithm (GA), 
hereafter referred to as GA-agents. Individual 
chromosomes travel the network using a string of next 
hop offsets, e.g., { 1, 5, 0, 4, 2, 3, 5} over the interval [0, 
[0, L], where ‘L’ is selected to enable indexing of node 
connectivity. In all the experiments of section 5, ‘L’ is set 
to 6. On entering a node, genes (offsets) are used to 
identify the next link using a clockwise count, with 
respect to the port the GA-agent entered the node i.e. the 
next link is selected as a modulus of (gene % # of links). 
Such a representation is then independent of the specific 
network connectivity, unlike say the GA approach in 
(Munetomo et al., 1997). For each node encountered, the 
gene, used to select the next link, is incremented and a 
record is made of the node ID. The process naturally 
continues until the GA-agent executes its last gene, at 
which point it becomes a backward agent, returning to its 
original source node. In the special case of a GA-agent 
attempting to return down the same link as it entered a 
node, the router randomly selects the next hop from the 
available links, and changes the gene to the new value 
(deterministic mutation). If no next hop is available, then 
the chromosome is truncated, and the GA-agent becomes 
a backward agent (see the algorithm “processing agents“). 
Note, unlike the AntNet algorithm, modification of 
routing tables only takes place once the GA-agents have 

returned to their original source, and modifications only 
affect the source node routing table. The above 
representation supports single point crossover, resulting in 
variable length individuals. Mutation randomly selects a 
gene and adds/ subtracts an integer such that the new gene 
is still i n the interval [0, 6]. 

Table 3 – GA-agent Routing Table 

Agent ID Agent Fitness Trip Time (ms) and node ID 

95 0.32 (3, J), (9, C), (21, W) 

234 0.39 (1,B), (7, A),…, (432, Y) 

… … … 

31 0.71 (5,C), (9, K), …, (871, X) 

 

At initialization, a router sends out half of the population 
of GA-agents to explore the network. Once the number of 
returned GA-agents reaches four, the fitness of the four 
agents is evaluated; the best two agents are then chosen – 
as in a steady state tournament (See algorithm “updating 
routing table & population” ).  

The fitness function measures the popularity of nodes 
visited as well as the time taken to reach nodes 
encountered by GA-agents. Both of these properties are 
measured with respect to the original source node. 
Popularity of destination ‘ i’ at node ‘k’ (NPk(i)) is a 
dynamic property, measured at the original source node 
by recoding the frequency of different data packet 
destinations as seen by the source node over a fixed time 
window (50 seconds in this case), or 

NPk(i) = Dest(i) / TDk 

Where TDk is the total number of data packets passing 
through node ‘k’ ; and Dest(i) is the number of data 
packets with destination ‘ i’ . 

Chromosomes, which find shortest paths to frequently 
used destinations, are therefore favored. The ensuing 
fitness function taking the form,  

 ∑for each explored node i NPk(i)× trip_timei  

∑for each explored node I  trip_timei  

 

(1) 

The routing table in the GA approach consists of a short 
list of returned agents, every entry corresponds to an 
evaluated returned agent path. On routing a data packet, 
the router checks the table for a path that had experienced 
shortest trip time to the desired destination (third column 
of Table 3); if such an entry is not found, the entry with 
the highest fitness, Table 3 column 2, will be selected as 
the default next node for this data packet. The first two 
columns in the routing table are used during ranking and 
replacement of winning chromosomes. 

The above constitutes our basic GA-agent approach. In 
addition, three further concepts are introduced. The first is 
that of demes. This provides a mechanism for passing 
useful chromosomes between neighboring nodes. To do 
so, every node will propagate best-case chromosomes to 
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neighboring nodes every 500 or 700ms (tunable 
parameter, see “propagate freq” in section 5). Secondly, 
in order to avoid stagnation in the routing tables, an 
incremental penalty is applied to each entry of the routing 
table (see the algorithm “updating routing table & 
population“). The motivation for such an aging 
mechanism is to ensure that routing tables remain 
sensitive to the dynamic nature of the environment (e.g., 
changes to network topology, network node/link failure, 
network congestion). Such a mechanism is introduced 
during updates to routing tables: making every routing 
table entry a bit smaller in fitness, and a bit longer in trip 
time, or 

fitness agent in routing table = original fitness × c2; 

trip_time every node of every entry = original_trip_time / c2; 

where c2 is a constant ∈  (0.0, 1.0)     (2) 

Finally, when initializing the populations of chromosomes 
at each node, nodes with a higher connectivity naturally 
represent a larger search problem. Thus, the number of 
chromosomes per population is initialized in proportion to 
the square of the number of neighbors. 

The algorithm is outlined as follows: (c1, c2, and c3 are 
constants.) 

init 

initialize first generation of agents; 
#agents = #links2 × c1; 
string of offsets of an agent - { 3, 1, 4, 5, 2, …}  
clear routing table; 
clear flow pattern stats; 
send out half population of individuals; 

processing agents 

if (case of backward agent) 
then if (agent arrives at the source) 

then if (agent timeout) 
  then (kill agent); 

else (put into “back” list); 
   end if 

else if (next hop is down) 
then (kill agent); 
else (forward to the link) 
end if 

end if 
 else agent records the trip time info; 

retrieve offset from the next unused 
gene position; 
if (corresponding link is available and 
no loop caused) 

  then (send the agent to the link); 
else (randomly [each available link 
has equal probabilit y] select an available 
link [without entering a loop]); 
end if 

  if (no such link found) 
 then (convert the agent into a 

backward agent) 

  else      (set the offset to the new value); 
   (send agent to the link); 
  end if 

 end if 

updating routing table & population (once 4 agents 
return to the same source, i.e. steady state tournament) 

update the performance table by aging mechanism: 
fitness of agent = original fitness × c2; 
trip time to every node of every entry = original  
trip time / c2; 
use the fitness function to evaluate the fitness of 
backward agents; 
select the best two agents as parents; 
put/update the fitness of parent agents in the 
routing table; 
delete the entries of the worst two agents in the 
routing table; 
use standard crossover and mutation on the parents 
to generate two children; 
put the children into the population; 
delete the worst two agents from the population; 
if (current time > last clear time + c3) 
then (clear flow statistics) 
randomly launch 4 agents from the population to 
explore the network; 

routing data packets 

if (routing table is empty) 
then (randomly choose a link to forward) 
else (search the routing table for the shortest 
trip time to the desired destination) 

if (no entry found for the desired 
destination) 
then (choose fittest entry); 
end if 

end if 
if (no route is found) 
then (discard the packet) 
end if 
 

3.1 DATA STRUCTURES 

Every agent consists of a string of next hop offsets, and 
time stamp records. Every router consists of an incoming 
buffer, a processing buffer (stores a packet at a time), and 
an outgoing buffer for each neighboring router. For the 
GA approach, every router has a population of 
chromosomes, a routing table, a flow pattern statistics 
table, and a fitness table. The number of chromosomes 
per population is in direct proportion to the square of 
number of neighbors. The routing table, which is updated 
whenever four chromosomes return, consists of current 
fittest individuals, c.f (1). The flow pattern estimates the 
popularity of data packets passing through the node, c.f. 
(2). The fitness table stores the fitness of every 
chromosome, currently a member of the routing table.  
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Figure-1: Japanese Backbone - NTTnet (55 nodes) 

 

To simulate and test the GA-agent algorithm, an event 
driven simulation environment is developed (C++ on 
UNIX system). Specifically, the Japanese Internet 
backbone (NTTNET – see figure 1) is modeled, where 
this represents a narrow long configuration in which the 
degree of connectivity is low (from 1 to 5), when 
compared to the US backbone. Hence the Japanese 
network provides a more demanding configuration for 
testing routing algorithms, as higher degrees of 
connectivity lower the possibilit y of packet loss due to 
loops, timeouts, i.e., in a narrow long shaped network, 
once a packet is forwarded in a wrong direction, it might 
never have the chance to be routed to the desired 
destination. 

4 SIMULATION ENVIRONMENT  

The event driven simulation models the network as 
routers (nodes) and links. Every router has an incoming 
buffer, a memory space for processing packets, and an 
outgoing buffer for each link to its neighboring routers. A 
priority queue is used to store the events. Both AntNet 
(local routing table information, Table 2) and GA-agent 
algorithms are simulated under the same environmental 
conditions. That is, an event generator is used to generate 
the events, such as new packet time of generation, or 
routers availabilit y. The following are the parameters used 
in the simulation, 

•  Network topology takes the form of the Japanese 
backbone, figure 1; 

•  Forward ants are launched every 300ms; 

•  The AntNet algorithm is given 5 seconds at the 
beginning of the simulation to converge the initial 
routing tables, during this period, routing packets 
(ants or GA-agents) are the only packets traversing 
the network; 

•  Data packets are generated by Poisson distribution 
(mean of 35ms); 

•  The parameters for the GA based scheme are given as 
the first 5 rows of tables 4 - 7, where 4 (columns 2 - 
5) different GA based agent structures are simulated; 

•  Any packets, including data packets, are kill ed should 
they encounter a previously visted node. Given the 
probabili stic nature of the routing tables this 
represents a rather harsh constraint, but in doing so is 
utili zed to emphasize the properties of different 
routing strategies. In addition packets that are routed 
down links representing a fault condition are 
distinguished separately as lost packets. 

The simulation length is 1250s. As a result, 1985536 data 
packets are generated within 1250s. The queue length is 
the total number of waiting packets per second, which 
includes the data packets and the routing packets. In this 
paper, the routing packets refer to the ants in the AntNet 
algorithm, and to the GA-agents in the GA approach. 

5 RESULTS  

On measuring the performance of a routing algorithm, we 
focus on: 

•  Network throughput, which is defined as number of 
data packet bytes successfully received at their 
destination in a two second window; 

•  Total time to deliver all the data packets (finish time); 

•  Number of arrived data packets; 

•  Number of ‘ kill ed’ and ‘ lost’ packets; 

•  Average trip time of arrived data packets. 

Two sets of experiments are conducted, in both cases 
using a series of network scenarios designed to investigate 
operation under changing network conditions. The first 
set of experiments investigates parameters associated with 
the distributed GA. The second of experiments takes one 
set of these parameters and reduces the degree of 
exploration/ exploitation (mutation/ crossover 
respectively). 

There are a total of 4 scenarios in each set of experiments, 
in the first case all routers remain available. The 
remaining scenarios investigate plasticity of the network 
by removing different router combinations. First, router 
34 is removed at a time step of 500s. From figure 1, it is 
apparent that router 34 represents a significant node in the 
topology, although alternative paths certainly exist. In the 
third scenario, two routers are removed, whereas in 
scenario four the same two routers are removed but 
asynchronously. 

5.1 PARAMETERIZATION OF DISTRIBUTED 
GA 

In the case of routing using GA-agents, there are six basic 
parameters, 

1. Agents / link2 – c1, determines the population of 
chromosomes per node. The implication being that 
there are O(L2) locations in each routing table, 
where L is the number of neighboring nodes; 

6 
13 

19 

34 

42 

49 
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2. Aging – c2, rate by which fitness of individuals 
currently populating the routing tables decay; 

3. Propagate ratio – the number of chromosomes 
exchanged between populations, expressed as a % of 
node population size; 

4. Propagate freq – rate of exchange of chromosomes 
between populations; 

5. Flow clear freq – c3, time interval over which data 
packet destination statistics are collected; 

6. Crossover and Mutation – the results in this section 
utili ze maximum crossover and mutation rates in 
order to encourage continuous investigation of 
alternative routes. Section 5.2 considers the case of a 
more classical section of crossover and mutation 
thresholds. 

These are initially selected to enable quali fication of the 
sensitivity to population size, rate of aging etc. and 
remain the same across all experiments; Tables 4 to 7, 
columns 2 - 5. Table 8 summarizes the same information 
for the AntNet algorithm under a ‘ local’ routing table 
configuration. Thus, Local AntNet utili zes tables of 
length O(L), significantly less than the GA-agent case. 

Table 4 – No Network Failure. 

# Agents / link2 32 32 40 48 

Aging 0.8 0.9 0.9 0.9 

Propagate ratio 5% 3% 3% 2% 

Propagate freq 500ms 500ms 700ms 700ms 

Flow clear freq 50s 50s 50s 50s 

Finish time (s) 1,252 1,253 1,252 1,267 

Arrived Packets 
(AP) (×1000) 

1,619 1,585 1,583 1,560 

Avg. trip time 
for AP (ms) 

742 905 678 1,236 

# kill ed packets 366,533 400,351 402,517 385,750 

# lost packets 0 0 0 0 

# Agents (×103) 1,690 1,028 801 475 

 

Table 5 – Router 34 is Down at 500s. 

# Agents / link2 32 32 40 48 

Aging 0.8 0.9 0.9 0.9 

Propagate ratio 5% 3% 3% 2% 

Propagate freq 500ms 500ms 700ms 700ms 

Flow clear freq 50s 50s 50s 50s 

Finish time (s) 1,417 1,307 1,444 1,494 

Arrived Packets 
(AP) (×1000) 

1,346 1,298 1,333 1,373 

Avg. trip time 
for AP (ms) 

2,014 2,613 3,156 2,668 

# kill ed packets 617,064 665,188 630,479 590,732 

# lost packets 21,922 21,922 21,923 21,918 

# Agents (×103) 1,801 1,087 966 552 

 

Table 6 – Routers 49 & 13 are Down at 500s. 

# Agents / link2 32 32 40 48 

Aging 0.8 0.9 0.9 0.9 

Propagate ratio 5% 3% 3% 2% 

Propagate freq 500ms 500ms 700ms 700ms 

Flow clear freq 50s 50s 50s 50s 

Finish time (s) 1,254 1,445 1,258 1,520 

Arrived packets 
(AP) (×1000) 

1,317 1,369 1,402 1,504 

Avg. trip time 
for AP (ms) 

947 1,301 850 1,759 

# kill ed packets 623,539 571,390 539,747 438,378 

# lost packets 44,466 44,882 43,658 43,496 

# Agents (×103) 1,543 973 754 514 

 

Table 7 – Router 13 is down at 300s, Router 49 is down at 
500s, and both are up at 800s. 

# Agents / link2 32 32 40 48 

Aging 0.8 0.9 0.9 0.9 

Propagate ratio 5% 3% 3% 2% 

Propagate freq 500ms 500ms 700ms 700ms 

Flow clear freq 50s 50s 50s 50s 

Finish time (s) 1,535 1,261 1,496 1,437 

Arrived packets 
(AP) (×103) 

1,410 1,334 1,441 1,458 

Avg. trip time 
for AP (ms) 

2088 1202 470 2018 

# kill ed packets 551,218 627,596 520,989 503,873 

# lost packets 23,953 23,426 23,401 23,085 

# Agents (×103) 1,447 1,043 896 648 

 

Performance is quali fied in terms of two basic parameters, 
time taken for all packets to be received (or lost) and the 
number of packets successfully received. Naturally, the 
former should be minimized and the latter maximized. In 
the case of experiment 1 – no network failures – the time 
for all packets to be accounted for is essentially the same, 
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irrespective of parameter or algorithm. An immediate 
difference is recognized, however, in the number of 
arrived packets. The AntNet algorithm can only 
successfully route 55% of those in the GA-agent 
approach. This observation is repeated across all the 
remaining scenarios. Moreover, in terms of ‘ kill ed’ 
packets this means that less than 50% of the packets in the 
local version of the AntNet algorithm revisit sites 
previously encountered. 

Table 8 – AntNet with Local Information Only 

No network failure 

Finish time (s) 1,267 

Arrived packets (AP) 903 (×103) 

Avg. trip time of AP (ms) 398 

# kill ed packets 1,082,652 

# lost packets 0 

# of Ants 218 (×103) 

Router 34 down at 500s 

Finish time (s) 1,369 

Arrived packets (AP) 813 (×103) 

Avg. trip time of AP (ms) 2,899 

# kill ed packets 1,138,860 

# lost packets 32,763 

# of Ants  219 (×103) 

Routers 49 & 13 down at 500s 

Finish time (s) 1,300 

Arrived packets (AP) 827 (×103) 

Avg. trip time of AP (ms) 1,617 

# kill ed packets 1,114,729 

# lost packets 43,682 

# of Ants 219 (×103) 

Routers 13 down at 300s, Router 49 down at 500s, both up at 
800s 

Finish time (s) 1,272 

Arrived packets (AP) 863 (×103) 

Avg. trip time of AP (ms) 1,254 

# kill ed packets 1,099,283 

# lost packets 23,209 

# of Ants 219 (×103) 

 

In terms of specific parameter settings, the GA-agent 
approach appears to consistently route the most packets 
successfully when the number of agents per link is highest 

and propagation ratio least. (Investigation of GA-agents 
without demes, however, performs very badly.) It is also 
noticed that although a maximum allowable length of 30 
genes per individual is permitted, chromosomes never 
reach this limit. Instead a preference of chromosome 
lengths of 10 or less genes is found for nodes with a low 
level of connectivity and 15 to 25 for individuals with a 
connectivity of 3 or more. 

5.2 PARAMETERIZATION OF CROSSOVER 
AND MUTATION 

As a final experiment, one instance of the distributed 
parameter set is investigated under a classical crossover 
and mutation rate of 90% crossover and 10% mutation. 
As identified in section 5.1, lower agent per link counts 
result in less packets being delivered. Table 9 reports the 
case of 32 agents/ link, an aging factor of 0.9, a 
propagation ration of 3% and a frequency of 500ms 
(column 3 in tables 4 to 7). 

On comparison with the same parameterization under 
100% crossover and mutation, the number of ‘ kill ed’ or 
‘ lost’ packets decreases by 33% to 8%, and the trip time 
improves in each scenario other than no network failure. 
Moreover, the case of 90% crossover and 10% mutation 
betters all combined ‘kill ed-lost’ packet counts of any of 
the distributed GA parameters investigated in section 5.1. 
The implication being that more data packets are routed to 
the destination without either encountering a faulty link or 
a previously visited node. The principle penalty, however, 
appears to be an increase in the number of GA-agents 
introduced. Future work will  naturally investigate whether 
this trend holds for other distributed GA 
parameterizations (the case of 48 agents per link appears 
to utili ze less GA-agents). 

Table 9 – GA-agent with Crossover of 90%, Mutation 
10% 

No network failure 

Finish time (s) 1,252 

Arrived packets (AP) 1,693 (×103) 

Avg. trip time of AP (ms) 1,171 

# kill ed packets 292,723 

# lost packets 0 

# of Agents 961 (×103) 

Router 34 down at 500s 

Finish time (s) 1,507 

Arrived packets (AP) 1,401 (×103) 

Avg. trip time of AP (ms) 356 

# kill ed packets 562,751 

# lost packets 21,924 

# of Agents  1,170 (×103) 
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Routers 49 & 13 down at 500s 

Finish time (s) 1,252 

Arrived packets (AP) 1,417 (×103) 

Avg. trip time of AP (ms) 861 

# kill ed packets 523,673 

# lost packets 44,658 

# of Agents 1,025 (×103) 

Routers 13 down at 300s, Router 49 down at 500s, both up at 
800s 

Finish time (s) 1,252 

Arrived packets (AP) 1,555 (×103) 

Avg. trip time of AP (ms) 1,012 

# lost packets 406,840 

# kill ed packets 23,861 

# of Ants 1,083 (×103) 

6 CONCLUSIONS 

As indicated in the introduction, network routing 
problems force an interesting set of constraints, which 
present a suitable test-bed for problem solving using co-
evolutionary techniques. In this work, we emphasize the 
case in which routing table features, as well as content, 
are evolved. Thus, we are not privy to a priori knowledge 
regarding the number of nodes in the network. The 
AntNet algorithm (Di Caro et al., 1998) does not perform 
eff iciently and the GA representation cannot make use of 
global knowledge of network connectivity, as has been 
the case in the past (Munetomo et al., 1997). Such an 
environment implies that packets responsible for updating 
network connectivity requires more autonomy than were 
previously acknowledged to solve packet switched 
routing problems. As a first attempt at addressing these 
problems directly, we utili ze a representation that is 
independent of specific network connectivity patterns and 
distributed in its operation (multi -population model with 
chromosomes physically traveling the network). Such a 
system improves on the AntNet algorithm when 
constrained to a ‘ local’ table representation, Table 2 (see 
(Liang et al., 2002) for a detailed discussion of AntNet 
under ‘ local’ and ‘global’ routing table constraints), or be 
it whilst utilizing larger routing tables. The principle 
drawback for the GA-agent is the search eff iciency of the 
ensuing routing table where a search as opposed to an 
indexing process is now necessary. Future work will 
expand the interaction between chromosomes to facilit ate 
a more co-evolutionary approach to the development of 
routing policies and develop a better organization to the 
routing table structure. Moreover, the relationship 
between routing table size and performance requires 
further investigation. 
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