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Abstract 
 
Two novel particle swarm optimization (PSO) 
algorithms are used to track and optimize a 3- 
dimensional parabolic benchmark function 
where the optimum location changes randomly 
and with high severity. The new algorithms are 
based on an analogy of electrostatic energy with 
charged particles. For comparison, the same 
experiment is performed with a conventional 
PSO algorithm. It is found that the best strategy 
for this particular problem involves a 
combination of neutral and charged particles.  

 

1 INTRODUCTION 
Particle Swarm Optimization (PSO) is a population based 
evolutionary technique applied to optimization problems. 
It differs from other population approaches such as 
genetic algorithms, by the inclusion of a solution (or 
particle) velocity, which moves the position of the 
solution in the space of all possible solutions, rather than 
relying on recombination of existing solutions. Linear 
spring forces govern the dynamics of the population (or 
swarm); each particle is attracted to its previous best 
position, and to the global best position attained by the 
swarm, where fitness is quantified by the value of a 
function at that position. These swarms have proven to be 
very successful in finding global optima in various static 
contexts such as the optimization of certain benchmark 
functions (Eberhart and Shi 2001a). 
The real world is rarely static, however, and many 
systems will require frequent re-optimization due to 
system and/or environmental change. The problem of re-
scheduling system resources is an important example of 
this. One important and implicit constraint is the 
requirement to balance the desired error of the solution 
with the need to be prepared to respond rapidly to change. 
For example, to achieve a low error will require a large 
number of iterations/generations, and will leave the 
evolutionary population well adapted to that situation. But 

system and environment change may occur on short time-
scales and may be large enough to leave the population 
ill-adapted to the new problem, so that a solution 
considered good enough may be hard to find within this 
time-scale. 
This work addresses these issues with the use of two 
novel swarm algorithms. These algorithms are tested and 
compared with the conventional PSO algorithm for an 
extreme search problem wherein the optimum location 
(solution) is randomized within a box representing the 
entire dynamic range. 

2 BACKGROUND  
Eberhart and Shi (2001b) have applied the conventional 
PSO algorithm to some dynamic search and optimization 
problems. In their experiments, they use a time-scale of 
100 iterations, and choose as a benchmark the (3-
dimensional) parabolic function and the sphere function 
in 10-dimensions. The optimum location of these 
functions was moved along a line by increments of 0.2% 
and 1% of the dynamic range, with each change occurring 
at 100 iterations. It was found that, under these 
conditions, the PSO algorithm performed at least as well 
as other evolutionary techniques (Angeline 1997, Bäck 
1998).   
One drawback noted by Eberhart and Shi is the lack of a 
strategy for dealing with a wide variety of change. One 
possibility is to randomize the swarm when a change is 
detected. In their work (2001b), the particle positions are 
retained, but the personal and global best positions are 
calculated with respect to the new optimum location. 
Another possibility would be to randomize the swarm 
when a change is detected. In general, a good strategy is 
needed that can account for chaotic rather than linear 
change, and for change that is commensurate with the 
entire range of the dynamic variables, and not just limited 
to one per cent of this range. 
This work investigates the capabilities of two novel 
swarm algorithms to overcome an extreme problem of 
this type. The two new algorithms were originated by the 
authors in quite a different context: the problem of 
artificial improvised music (Blackwell and Bentley 



2002a). It was demonstrated that particle swarms can, if 
suitably interpreted as music, generate interesting 
melodies. Moreover, they can also interact with an 
external musician. External audio events are interpreted 
and placed in the search space, and become targets or 
attractors for the swarm. These targets may change on 
very small time-scales, and by large amounts.  It was 
found in this work that inter-particle repulsion or 
“collision-avoidance” balances the target attractions and 
leads to an extended swarm that follows this change well. 
Various features of the algorithm have been reported in a 
subsequent paper and the suggestion made that they may 
have relevance to optimization problems (Blackwell and 
Bentley, 2002b). 
The particular form of the repulsive force we have 
introduced is identical to the familiar electrostatic inverse 
square law between identically charged particles. In this 
paper we consider two different swarms: the first is 
composed entirely of identically charged particles, and the 
second has an equal number of charged and ‘neutral’ 
particles. Neutral particles do not experience the repulsive 
force. (Within this electrostatic analogy, it could be said 
that conventional PSO algorithms concern only neutral 
particles.) The idea is that the neutral particles will gather 
around the global best position (as if in a nucleus) whilst 
the charged particles will continue to explore the solution 
space as they orbit the nucleus. Hence there will be a 
balance between exploration and exploitation. This type 
of swarm could be termed ‘atomic’ since it has much in 
common with models of the atom. As such, it moves 
away from the original idea of an insect swarm or avian 
flock which inspired much of the early work on particle 
swarms.  

3 THE PROBLEM 
The dynamic problem investigated in this work is to find 
the global minimum f(0) of some function f(x-xopt) where 
xopt is the optimum location. For dynamic search, xopt = 
xopt(t), where t is an iteration counter although it could be 
a time variable as determined by the actual dynamic 
environment. Eberhart and Shi (2001b) hold xopt fixed for 
100 iterations at a time, and xopt varies in increments of 
s1, where 1 is the unit vector in n-dimensions (linear 
change) for s = 0.1 and s = 0.5. The dynamic range of the 
variables is [-50, 50] in each dimension. 

4 PARTICLE DYNAMICS 
Within the PSO methodology, the particle dynamics are 
determined by an update rule which modifies particle 
velocities. New positions are then found by adding the 
updated velocity to the current position. The particle 
update algorithm used in this work is given by the 
application of three simple steps:  
 vi ← wvi + c1r1(xpb,i – xi) + c2r2(xgb-xi) (1) 
 if ( |vi| > vmax)  vi ← (vmax / |vi| ) vi                (2) 
 xi ← xi + vi    (3) 

In these rules, i is a particle label and each particle has a 
position x and a velocity v (n-dimensional vectors). The 
inertia weight w, and spring constants c1 and c2 are the 
adjustable parameters of the algorithm. r1 and r2  are 
random numbers drawn from the unit interval, r1, r2 ∈ 
[0,1].  xpb,i is the best position attained by particle i and 
the global best location xgb is the best position attained by 
any particle.   
Rule (1) adds the particle accelerations from the spring 
forces to a damped velocity wvi. Rule (2) clamps the 
velocity to the dynamic range [-vmax, vmax], which serves 
to limit the position increment applied in Rule (3). Notice 
that our rule (2) implements spherically symmetric 
velocity clamping, whereas other PSO algorithms clamp 
the velocity to a box. Since the following experiments 
involve qualitative observations on the spatial distribution 
of particles at any iteration, it is necessary to preserve 
spherical symmetry in the update rules. 

Table 1: Search algorithm 

Initialize a swarm {xi, vi}, i =1,…M, with xi ∈[0, xmax]n 

and vi ∈ [-vmax, vmax]n 

Set all personal best positions to xpb,i to xi
 

t←0 
do: 
     for i = 1 to M 
          if f(xi -xopt) < f(xpb,i -xopt) 
               then xpb,i← xi 

          if f(xpb,i -xopt) < f(xgb-xopt) 
               then xgb← xpb,i  
     endfor 
     if (t%100 = 0) 
          then xopt ∈ [(xmax/2)-L/2, (xmax/2)+L/2]3  
     for i = 1 to M 
          Apply particle update algorithm (1) – (3) 
     endfor 
     t←t+1 
until stopping criterion is met 

 
This clamping is a constraint on global exploration. The 
balance between this and local exploitation of good 
solutions is given by the inertial weight. In the non-
dynamic case it is advantageous to reduce w from 1 down 
to near zero during the course of training run, since this 
allows full exploitation of possible good solutions 
(Eberhart and Shi 2001a). However, in the dynamic case 
it cannot be predicted whether exploration or exploitation 
is needed at any given time. With these factors in mind, 
Eberhart and Shi (2001b) used a value of 1.494 for the 
spring constants and a random inertia weight w ∈  [0.5, 
1]. These values were chosen to agree, on the average, 



with Clerc’s analysis for convergence (Clerc 1999), and 
to provide a balance between exploration and 
exploitation.  
The PSO algorithm for the dynamic problem investigated 
here is given in table 1.  
In order to introduce the notion of charge – and hence 
collision avoidance – all that needs to be done is to 
modify the rule for particle accelerations, rule (1). The 
grounds for this extension, and a full description of the 
effects of the various parameters on particle motion, are 
given in (Blackwell, 2001) and (Blackwell and Bentley, 
2002b). In those studies, an additional acceleration 
towards the swarm centre was also implemented, but this 
is not used here.  
The necessary amendment to the particle update 
algorithm is an extra particle acceleration ai given by 
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where rij = xi – xj , rij = | xi – xj| and each  particle has a 
charge of magnitude Qi. Neutral particles are assigned a 
charge Qi = 0 and so will not contribute to the sum in (4). 
A charged particle i will have Qi > 0 and will experience 
the repulsive effects from all other charged particles j ≠ i. 
Repulsion is only experienced for separations within the 
shell pcore  < rij < p. The lower cut-off pcore is a safeguard 
against the singularity of the inverse square law. The 
upper cut off p is a tunable parameter allowing the 
domain of influence of the repulsion to be controlled. 

The charged particle update algorithm, which replaces the 
particle update algorithm within the search algorithm 
(Table 1), is given by replacing rule (1) with: 
 vi ← wvi + c1r1(xpb,i – xi) + c2r2(xgb-xi) + ai (1') 
It is worth noting that since the particles are updated in 
turn (i.e. from i = 1 to i = M), contributions to ai can 
involve non-updated particle positions (j  > i) as well as 
updated positions (j < i). This was found to give better 
avoidance in earlier experiments.  

5 EXPERIMENTS 
The experiments were conducted on the parabolic 
function in n = 3 dimensions, f(x-xopt) = (x-xopt) • (x-xopt). 
The task is made dynamic by placing xopt in a cube of side 
L and then randomly re-positioning it to another point in 
this cube every 100 iterations. The severity s therefore 
varies randomly from zero up to (√3)L. With L set to 
2vmax, this gives a severity of up to 2√3 times the dynamic 
range. The parameter xmax solely determines the initial 
distribution of the particle velocities and positions and 
plays no part in subsequent updates after the first jump in 
xopt. The values of the spatial parameters set out in Table 
2.  

Table 2: Spatial parameters 

L xmax vmax M 

64 128 32 20 

 
The values of the electrostatic parameters pcore, p and Q 
are set out in Table 3. 
 

Table 3: Electrostatic parameters 

pcore p Q 

1 √3xmax 16 

 
The values of the PSO parameters w, c1 and c2 are those 
used by Eberhart and Shi (2001b). The inertia weight w 
varies randomly between 0.5 and 1.0, so that the mean 
0.75 is close to the Clerc constriction factor 0.729 (Clerc 
1999). The spring constants c1 and c2 are set to 1.494, also 
in accordance with Clerc’s analysis. 
In all these experiments, 50 optimum jumps are made, (or 
5000 iterations of the system). In addition to the 
numerical data produced by these experiments, a three 
dimensional animation was set up which enabled a 
qualitative assessment of the three swarms. 
For comparison, four experiments were performed:  
I Neutral swarm. 
The first experiment uses the conventional PSO 
algorithm, which is implemented by setting the charge on 
all 20 particles to zero (i.e. each particle is neutral).  
II Charged swarm. 
In the second experiment, all 20 particles carry the same 
charge, Q. In other words, all particles experience 
repulsive forces from the other particles. 
III Atomic swarm. 
The third experiment evaluates the atomic swarm, where 
10 particles have charge Q and the remaining half are 
neutral.  
IV Neutral swarm, one optimum jump. 
The fourth experiment is identical to Experiment 1 except 
that just 200 iterations were allowed. The positions and 
velocities of the particles were saved to file for analysis of 
individual particle motion. 
  



 
 

Figure 1: Neutral swarm 
 
 

 
 

Figure 3: Charged swarm 
 
 

 
 

Figure 5: Atomic swarm 
 

 
 

Figure 2: Neutral swarm, average best values per 100 
iterations. 
 

 
 

Figure 4: Charged swarm, average best values per 
100 iterations. 
 

 
 

Figure 6:Atomic swarm, average best values per 100 
iterations. 
 
 
 
 



6 RESULTS 
The results for the experiments on the neutral, charged 
and atomic swarms are shown in Figures 1 to 6. In each 
case, two graphs have been prepared, plotted as a function 
of iteration number t: the best value found by the swarm, 
f(xgb - xopt), and the average best value over the 50 
problem optimum jumps (i.e., average best per 100 
iterations, from optimum jump to the iteration before the 
next optimum jump).  

6.1 EXPERIMENT I: NEUTRAL SWARM 
The best value attained after 100 iterations, i.e. just before 
the first optimum jump, is of the order of 10-8. This is at 
least two orders of magnitude lower than the best value 
obtained in the first 100 iterations of an equivalent 
experiment (Eberhart and Shi 2001b figure 1, p98), 
although comparable to the best values obtained in 
subsequent optimum positions. The discrepancy is 
presumably due to initial conditions, although the 
spherically symmetric clamping rule may play a part. 
However, the results depart significantly at the first 
optimum jump, due to the increased severity. The 
remarkable feature of Figure 1 is the small spikes at the 
optimum jump followed by a leveling of the graph for 
some tens of iterations, after a short fall. This plateau in 
best values sometimes then drops before the next 
optimum jump, but often does not. For example, there is a 
run from t = 2100 to 2500 where the initial short fall is 
not improved upon. The plot of the averages over the 50 
optimum jumps shows an average best of 125 at 100 
iterations. The slope at this point is -3.2, indicating only a 
slow improvement (3% per iteration) with increasing 
iteration. 
The 3D animations showed a very unusual feature. For 
the first 100 iterations, the particles were clumped very 
closely around the optimum. At the optimum jump, 
however, the particles moved along a line in the general 
direction of the new optimum, and then began to oscillate 
along this line about a point close, but not adjacent to the 
new optimum. After some tens of iterations the 
oscillations would cease and the particles would begin to 
swarm towards the new optimum, although they might 
not reach it before the next jump. This behavior was 
repeated invariably at each optimum jump, and in repeats 
of this experiment. 

6.2 EXPERIMENT II: CHARGED SWARM 
Figure 3 shows the best values over the 5000 iterations. 
By comparison with Figure 1, the spikes are now long, 
showing an improved best value by a factor of 103 after 
just a few iterations at each jump. The leveling out now 
occurs at a much smaller best value, a feature illustrated 
in Figure 4 which shows the average best values. In 
Figure 4, the lowest average best value obtained is 0.226, 
and the slope at this point is -2.10x10-3 showing an 
improvement of 1% per iteration at this point. 

The animations revealed typical swarming behavior: at 
each optimum jump the swarm moved towards the new 
optimum, with irregular motion about the swarm centre. 
After a few iterations the swarm centre was coincident 
with the optimum and the particle motion continued to be 
chaotic and spherically symmetric about this point, with 
particles amplitudes of some tens of units. These pictures 
agreed with previous swarm experiments (Blackwell and 
Bentley, 2001b). 

6.3 EXPERIMENT III: ATOMIC SWARM. 
Once more, the plot of best values, Figure 5, shows spikes 
at each optimum jump, but the spikes drop to a much 
lower best value, in the range 10-4 to 10-8 in 49 of the 50 
jumps. The figure does not show the plateaus that are a 
feature of Figures 1 and 3. The plot of average best 
values, Figure 6, shows a much improved average best at 
100 iterations of 1.12x10-4, with a slope of -1.21 x 10-5 or 
11% of the best value per iteration at this point. The 
average global best just before the next optimum jump is 
at least 6 orders of magnitude better than the neutral 
swarm and about 2000 times better than the charged 
swarm. 
In order to distinguish charged from neutral particles for 
the purposes of the animation, the particles were colored 
red (charged) and blue (neutral). At each optimum jump, 
the animations displayed the particles moving in an 
irregular swarming motion towards the optimum, 
followed by a long period where the blue neutral particles 
clumped around the optimum, moving ever slower with 
very small amplitude, surrounded with a ‘cloud’ of 
charged red particles, moving much like the charged 
swarm described in II. The picture was very reminiscent 
of representations of an atomic nucleus surrounded by an 
electron cloud.    

6.4 EXPERIMENT IV: NEUTRAL SWARM, ONE 
OPTIMUM JUMP. 

A further experiment was conducted on the neutral swarm 
to give greater insight on the linear non-swarming 
behavior of the particles just after the optimum jump, as 
observed in the animation. Just two hundred iterations 
were completed, allowing a single optimum jump to 
occur.  
At t =100, the 20 particles were clumped very tightly 
around xo, and moving slowly.  Between t = 100 and t  = 
120, all the particles followed a very similar trajectory. 
For this reason, some results for just a single particle, 
particle 0, will be presented. Table 4 shows x, y and z 
components of the optimum location, global best location 
and position and velocity of particle 0 at iteration 99, just 
before the effects of the optimum jump have influenced 
the particle dynamics. 



 

 
 

Figure 7: Position of particle 0 for t = 100 to t = 120 
 

 
 

Figure 8: Snapshots at t = 114 and t = 115 
 

 
 

Figure 9: Position of particle 0 for t = 110 to t = 140 
 
 
 

 
Table 4: Opt., best & particle 0 components at t = 99. 

 xopt( 100) xgb(100) x0(100) v0(100) 

x 95.71089 95.710884 95.5921 0.61443764 

y 65.98201 65.98204 65.87358 0.52882737 

z 56.992935 56.992916 57.107887 -0.58677804 

 
Figure 7 shows the positions of particle 0 (circles) and the 
global best (+’s) for iterations t = 100 to t = 120. The 
optimum location is depicted with a triangle. Figure 8 
shows just two snapshots at t = 114 and t = 115. Finally, 
Figure 9 shows the position of particle 0 and global best 
between iterations 110 and 140. For the purpose of the 
subsequent analysis, a line showing the stable trajectory 
and its end point has been marked on the figure. 

7 ANALYSIS 
The strange behavior of the neutral swarm just after the 
optimum jump is the crucial difference between 
Experiments I and II. This analysis section will start with 
a possible explanation for this phenomenon. 
The situation for the neutral swarm just at and after the 
optimum jump must be studied, and the optimum jump of 
Experiment IV is a good place to start. At t = 100, the 
closest particle, k, to the new optimum location will now 
be at the new global best. Particle k will at this stage 
experience no acceleration, and therefore its next location 
is xk(100) = xk (99) + wvk(99). Notice that the velocity 
vk(99) is unlikely to be pointing towards xopt(100). 
However, if vk(99) has some component that lies along 
xopt(100) – xk(99) then the new position xk(100) will 
improve upon the previous position and may even be the 
new global best when the updates at this iteration are 
completed. Suppose this is so. Then, by a similar 
argument, xk(101) will lie along the same trajectory xk 
(100) - xk(99). Meanwhile the other particles, which were 
at their personal bests at t = 99, will experience 
accelerations towards xk (99) of magnitude c1 r1| xk(99) – 
xi(99) |. This will not be a large acceleration, but it will 
give the new velocity vector vi(100), an additional 
component along the trajectory defined by xk (100) - xk 
(99). At the next iteration, if the above scenario is played 
out, velocity components along the trajectory of particle k 
will again be reinforced.  
Of course there may well be some jostling for leadership, 
but occasionally a leader will be found whose trajectory 
defines a line of global bests. The remaining particle 
velocities are pulled ever more in the direction of this 
trajectory and the accelerations place them ever closer to 
positions along this trajectory. The result is collinear 
motion along a line that is closing on xopt but is not 
necessarily coincident with xopt. The leadership may then 
be exchanged, but motion along this line will always be 
reinforced until a final global best position is found which 



is near to the point of closest approach between the 
trajectory – the ‘end-point’ - and xopt. Animations of many 
runs of the swarm provide empirical evidence that this 
scenario invariably occurs. 
The stable trajectory is clearly seen in Figure 7. Figure 8 
shows two snapshots that illustrate the attraction of the 
particles to the trajectory. At t = 114, particle 0 is 
displaced from the global best position. The acceleration 
is sufficient to place it very close to xgb(114) at t = 115, 
but the global best has now moved along the stable 
trajectory to xgb(115). 
Consider now what happens when the global best is near 
to the end-point. Velocities perpendicular to the stable 
trajectory will be very small so that accelerations towards 
xopt(100) will also be correspondently small. Moreover, 
the dissipative effects of the inertia weight will also be 
progressively slowing particle motion down. The result is 
that it may take a long time for the swarm to move away 
from the end of the stable trajectory, and the global best 
will hardly improve in the remaining iterations before the 
next optimum jump. The particle motion is now a spring-
like oscillation along the stable trajectory, centered on the 
end-point. The stable trajectory and end-point are 
depicted in Figure 9 which shows the position of particle 
0 and global best between iterations 110 and 140. 
This analysis can be applied to the results of Experiment 1 
(Figure 1). The plateau show that the global best scarcely 
improves over some tens of iterations. This is due to the 
collinear motion followed by oscillation about the end-
point of the stable trajectory. In fact, there is a particularly 
bad run between iterations 2100 and 2500 when the 
particles never improve on their global best, which 
corresponds to an optimum value of 1000. This is 11 
orders of magnitude from the best that the swarm is 
capable of finding (10-8). It is these high values that push 
up the average best value found (Figure 2).  
The charged swarm is less affected by this pathology 
since the collision avoiding acceleration will push 
particles away from the stable trajectory. In fact 
animations never show linear collapse; instead, the swarm 
maintains a near spherical shape, much more reminiscent 
of an insect swarm. However, this also has its drawbacks. 
Figure 3 does show some horizontal portions, for global 
bests in the range 10-1 to 1. The repulsions now work 
against exploitation so that better solutions than this are 
found in only 7 of the 50 optimum jumps. 
The atomic swarm also does not suffer from the 
pathology of the neutral swarm. The charged particles 
allow for fast targeting, after which the neutral particles 
can continue searching the solution space in the near 
vicinity of the global best. Indeed, at the 100th iteration, 
the rate of improvement of best value is 11%, which 
shows that significant improvement can still occur. The 
corresponding rates for the neutral swarm and the charged 
swarm are 3% and 1%, indicating only slow progress is 
possible.    

8 CONCLUSIONS 
This work presents a new particle swarm algorithm based 
on an analogy of electrostatic energy. In addition, a 
dynamic search problem has been formulated that is more 
representative of real-world problems. The experiments 
considered here suggest that atomic particle swarms may 
offer a good strategy for dealing with such severe 
dynamic optimization over short time scales. Certainly 
this has been the case for the dynamic three dimensional 
parabolic function considered here, where the average 
best value obtained over 50 optimum jumps was, by the 
100th iteration, 1.12x10-4. This compares very well with 
the equivalent figure of 125 for the conventional PSO 
algorithm. 
The poor behavior of the conventional (i.e., neutral) 
particle swarm seems to be due to a curious pathology of 
‘linear collapse’, just after problem optimum jump. This 
was observed in animations and analysis suggests that the 
cause is the establishment of a linear trajectory that links 
global best positions and serves as an attractor for the 
swarm. At the end of this stable trajectory is a stable 
global best position, which can be some way from the 
optimum location, and from which the swarm has 
difficulty improving upon.  
The charged particle swarm has the advantage that the 
particle trajectories are always around an extended swarm 
shape, allowing good global search. The maintenance of 
an extended swarm was the reason for the use of collision 
avoidance in the earlier work on improvised music 
(Blackwell and Bentley 2002a,b). In this context, it is 
desirable to have a very fast swarm response to a 
changing audio input, yet undesirable for the swarm to 
cluster too closely around a target – this would lead to 
dull melodies and parody. The downside is that the 
particle repulsions prevent detailed exploration of the 
search space.  
However, experiments suggest that a swarm of neutral 
and charged particles (reminiscent to representations of 
the atom) does not suffer from linear collapse, and always 
allows for detailed exploitation. The advantage of an 
atomic swarm over randomizing strategies (e.g., where 
the particle positions are randomized when an problem 
optimum shift is noticed) is one of simplicity. No further 
analysis is needed to tell just when a change has occurred, 
and how the swarm should respond to this change.  
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