
Evolution of Asynchronous Cellular Automata:
Finding the Good Compromise

Mathieu S. Capcarrere

Logic Systems Laboratory

School of Computer and Communication Sciences

Swiss Federal Institute of Technology, Lausanne

CH-1015 Lausanne, Switzerland

E.mail: mathieu.capcarrere@epfl.ch

ABSTRACT

One of the prominent features of the Cellular Automata
(CA) model is its synchronous mode of operation, meaning
that all cells are updated simultaneously. But this feature
is far from being realistic from a biological point of view as
well as from a computational point of view. Past research
has mainly concentrated on studying Asynchronous CAs
in themselves, trying to determine what behaviors were an
“artifact” of the global clock. In this paper, I propose to
evolve Asynchronous CAs that compute successfully one of
the well-studied task for regular CAs: The synchronization
task. As I will show evolved solutions are both unexpected
and best for certain criteria than a perfect solution.

The model used is fully asynchronous. Each cell has the
same probability pf of not updating its state at each step.

THE ADVANTAGES OF REDUNDANT

CELLULAR AUTOMATA

The extremely weak capabilities of binary CAs to cope with
even limited asynchrony called for the use of redundant CA
to deal with full asynchrony. I call redundant CA, a CA
which uses more states in the asynchronous mode than
is necessary in the synchronous mode to solve the same
task. The idea behind redundancy is that the information
in a CA configuration is not only the current state and the
topology, but also the timing.

A Simple and Perfect Time-Stamping Method

If we are looking for a method to perfectly correct asyn-
chrony, then all information should be maintained. That
is to say, all the 3-tuples (c, i, t), where c is the state of
cell i at time t, of the synchronous case should be recon-
structible in the asynchronous case. A time-stamp added
to each cell so that the cell may know if it is ahead of one
of its neighbors does the trick. The minimum value of the
time-stamp, not to confuse between being ahead or being
late, is 3. If each cell stores both its current and last state,
the new CA is both able to know if it can update and how
it should update. Thus we can design a 3 ∗ q

2 state CA
that simulates perfectly, whatever pf , a q-state CA.

CO-EVOLUTION OF SYNCHRONIZING

CELLULAR AUTOMATA

The evolution of binary CAs does not produce very good
results on real asynchrony. In the previous section, a sim-

ple method to deal perfectly with full asynchrony was de-
signed using 3 ∗ q

2 states. However if we consider a task
like the synchronization task, we have a perfect example of
a lossy task, i.e., a task where there is no need to maintain
absolutely the full information present in the synchronous
case to solve the problem in the asynchronous case. The
question is then to find the good compromise between the
number of states needed, i.e., between the q states neces-
sary in the synchronous case, and the 3 ∗ q2 we know to be
sufficient to simulate perfectly the synchronous CA in the
asynchronous mode. I thus proposed here to try to evolve
4-state CAs, following the cellular programming approach
developed by Sipper.

Globally the evolutionary runs are very successful, and if
we consider a fitness of 0.98, for pf < .01, as equivalent
to a fitness of 1.0 in the synchronous case1, the success
rate is equivalent to the evolution of binary CAs in the
synchronous case.

CONCLUDING REMARKS

CA asynchrony was often studied in itself in the past liter-
ature and it was often concluded that the global behavior
from a CA, the emergent behavior, was an artifact of the
global clock. This conclusion was not wrong in itself but
rather the wrong standpoint on a reality. Time is part of
the visual information contained in a CA. Now if we tackle
the asynchrony problem with this idea of restoring all the
information, then as we saw, we can easily design a totally
asynchronous CA that simulates exactly, with no loss of
information, any synchronous CA. However this presents
two main problems. First, the required number of states
is quite higher the original number of states. Second, it
is visually different from the original CA. The visual effi-
ciency of the original CA is lost. Evolution may then be
used to limit both these problems. As presented, the cellu-
lar programming algorithm was very successful at finding
4-state solutions that were both economic and still visually
efficient. Actually, it’s all a question of the possible com-
promise between the information loss and the necessity to
maintain that information.2.

1The faults introduce necessarily some cells in the
wrong state.

2Details on this work may be found in Mathieu S. Cap-
carrere. Cellular Automata and Other Cellular Systems:
Design & Evolution. Phd Thesis No 2541, Swiss Federal
Institute of Technology, Lausanne, 2002.


