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Abstract

This paper describes a racing procedure for find-
ing, in a limited amount of time, a configuration
of a metaheuristic that performs as good as pos-
sible on a given instance class of a combinatorial
optimization problem. Taking inspiration from
methods proposed in the machine learning litera-
ture for model selection through cross-validation,
we propose a procedure that empirically evalu-
ates a set of candidate configurations by discard-
ing bad ones as soon as statistically sufficient ev-
idence is gathered against them. We empirically
evaluate our procedure using as an example the
configuration of an ant colony optimization algo-
rithm applied to the traveling salesman problem.
The experimental results show that our procedure
is able to quickly reduce the number of candi-
dates, and allows to focus on the most promising
ones.

1 INTRODUCTION

A metaheuristic is a general algorithmic template whose
components need to be instantiated and properly tuned in
order to yield a fully functioning algorithm. The instan-
tiation of such an algorithmic template requires to choose
among a set of different possible components and to assign
specific values to all free parameters. We will refer to such
an instantiation as aconfiguration. Accordingly, we call
configuration problemthe problem of selecting the optimal
configuration.

Practitioners typically configure their metaheuristics in an
iterative process on the basis of some runs of different con-
figurations that are felt as promising. Usually, such a pro-
cess is heavily based on personal experience and is guided

†This research was carried out while MB was with Intellek-
tik, Technische Universität Darmstadt.

by a mixture of rules of thumb. Most often this leads to
tedious and time consuming experiments. In addition, it
is very rare that a configuration is selected on the basis of
some well defined statistical procedure.

The aim of this work is to define an automatic hands-off
procedure for finding a good configuration through sta-
tistically guided experimental evaluations, while minimiz-
ing the number of experiments. The solution we pro-
pose is inspired by a class of methods proposed for solv-
ing the model selection problem in memory-based super-
vised learning (Maron and Moore, 1994; Moore and Lee,
1994). Following the terminology introduced by Maron
and Moore (1994), we callracing method for selection
a method that finds a good configuration (model) from
a given finite pool of alternatives through a sequence of
steps.1 As the computation proceeds, if sufficient evidence
is gathered that some candidate is inferior to at least another
one, such a candidate is dropped from the pool and the pro-
cedure is iterated over the remaining ones. The elimination
of inferior candidates, speeds up the procedure and allows
a more reliable evaluation of the promising ones.

Two are the main contributions of this paper. First, we give
a formal definition of the metaheuristic configuration prob-
lem. Second, we show that a metaheuristic can be tuned
efficiently and effectively by a racing procedure. Our re-
sults confirm the general validity of the racing algorithms
and extend their area of applicability. On a more technical
level, left aside the specific application to metaheuristics,
we give some contribution to the general class of racing
algorithms. In particular, our method adopts blocking de-
sign (Dean and Voss, 1999) in a nonparametric setting. In
some sense, therefore, the method fills the gap between Ho-
effding race (Maron and Moore, 1994) and BRACE (Moore
and Lee, 1994): similarly to Hoeffding race it features a
nonparametric test, and similarly to BRACE it considers a

1Several metaheuristics involve continuous parameters. This
would actually lead to an infinite set of candidate configurations.
In practice, typically only a finite set of possible parameter values
are considered by discretizing the range of continuous parameters.



blocking design.

The rest of the paper is structured as follows. Section 2
gives a formal definition of the problem of configuring a
metaheuristic. Section 3 describes the general ideas behind
racing algorithms and introduces F-Race, a racing method
specifically designed for matching the peculiar characteris-
tics of the metaheuristic configuration problem. Section 4
proposes some background information onMAX–MIN-
Ant-System and on the traveling salesman problem (TSP),
which are respectively the metaheuristic and the problem
considered in this paper. In particular, the section gives a
description of the sub class of TSP instances, and of the
candidate configurations ofMAX–MIN-Ant-System that
we consider in our experimental evaluation. Section 5 pro-
poses some experimental results, and Section 6 concludes
the paper.

2 CONFIGURING A METAHEURISTIC

This section introduces and defines the general problem
of configuring a metaheuristic. Before proposing a formal
definition, it is worth outlining briefly, with the help of an
example, the type of problem setting to which our proce-
dure applies. Namely, our methodology is meant to be ap-
plied to repetitive problems, that is, problems where many
similar instances appear over time.

2.1 An Example: Delivering Pizza

The example we propose is admittedly simplistic and does
not cover all possible aspects of the configuration problem;
still it has the merit of highlighting those elements that are
essential for the discussion that follows.

Let us consider the followingpizza delivery problem. Or-
ders are collected for a (fixed) time period of, say, 30 min-
utes. At the end of the time period, a pizza delivery boy
has some limited amount of time for scheduling a reason-
ably short tour that visits all the customers that have called
in the last 30 minutes. Then the boy leaves and delivers
the pizzas following a chosen route. The time available for
scheduling may be constant or may be expressed as a func-
tion of some characteristic of the instance itself, for exam-
ple the size which in the pizza delivery problem might be
measured by the number of customers to visit.

In such a setting, every 30 minutes a new instance of an
optimization problem is given, and a solution as good as
possible has to be found in a limited amount of time. It
is very likely that every instance will be different from all
previous ones in the location of the customers that need
to be visited. Further, a certain variability in the instance
size, that is the number of customers to be served, is to be
expected, too.

The occurrence of different instances can be conveniently
represented as the result of random experiments governed
by some unknown probability measure, sayPI , defined on
the class of the possible instances. In the example discussed
here, it is reasonable to assume that different experiments
are independent and all governed by the same probability
measure. In Section 2.3, we will briefly discuss how to pos-
sibly tackle situations in which such assumptions appear
unreasonable.

Now, our pizza delivery boy loves metaheuristics and uses
one to find a shortest possible tour visiting all the cus-
tomers. Being such a metaheuristic a general algorithmic
template, different configurations are possible (see Sec-
tion 4.2 for a more detailed example). In our setting, the
problem that the delivery boy has to solve is to find the
configuration that is expected to yield the best solution to
the instances that hetypically faces. The concept oftypi-
cal instance, used here informally, has to be understood in
relation to the probability measurePI , and will receive a
clear mathematical meaning presently.

SincePI is unknown, the only information that can be used
for finding the best configuration must be extracted from a
sample of previously seen instances. By adopting the ter-
minology used in machine learning, we will use the ex-
pressiontraining instancesto denote the available previous
instances. On the basis of such training instances, we will
look for the configuration that is expected to have the best
performance over thewholeclass of possible instances.

The fact of extending results obtained on a usually small
training set to a possibly infinite set of instances is a
genuinegeneralization, as intended in supervised learn-
ing (Mitchell, 1997). In the context of metaheuristics con-
figuration, generalization is fully justified by the assump-
tion that the same probability measurePI governs the se-
lection of all the instances: both those used for training and
those that will be solved afterwards. The training instances
are in this sense representative of the whole set of instances.

2.2 The Formal Statement

In order to give a formal definition of the general problem
of configuring a metaheuristic, we consider the following
objects:

• Θ is the finite set of candidate configurations.

• I is the possibly infinite set of instances.

• PI is a probability measure over the setI of instances:
With some abuse of notation, we indicate withPI(i)
the probability that the instancei is selected for being
solved.2

2Since a probability measure is associated to (sub)sets and not



• t : I → < is a function associating to every instance
the computation time that is allocated to it.

• c(θ, i) = c(θ, i, t(i)) is a random variable represent-
ing the cost of the best solution found by running con-
figurationθ on instancei for t(i) seconds.3

• C ⊂ < is the range ofc, that is, the possible values
for the cost of the best solution found in a run of a
configurationθ ∈ Theta on an instancei ∈ I.

• PC is a probability measure over the setC: With the
notation4 PC(c|θ, i), we indicate the probability that
c is the cost of the best solution found by running for
t(i) seconds configurationθ on instancei.

• C(θ) = C(θ|Θ, I, PI , PC , t) is the criterion that needs
to be optimized with respect toθ. In the most general
case it measures in some sense the desirability ofθ.

On the basis of these concepts, the problem of configuring
a metaheuristic can be formally described by the 6-tuple
〈Θ, I, PI , PC , t, C〉. The solution of this problem is the
configurationθ∗ such that:

θ∗ = arg min
θ
C(θ). (1)

As far as the criterionC is concerned, different alternatives
are possible. In this paper, we consider the optimization
of the expected value of the costc(θ, i). Such a criterion
is adopted in many different applications and, besides be-
ing quite natural, it is often very convenient from both the
theoretical and the practical point of view. Formally:

C(θ) = EI,C

[
c(θ, i)

]
=
∫
I

∫
C

c(θ, i) dPC(c|θ, i) dPI(i),

(2)
where the expectation is considered with respect to both
PI andPC , and the integration is taken in the Lebesgue
sense (Billingsley, 1986).

The measuresPI andPC are usually not explicitly avail-
able and the analytical solution of the integrals in Equa-
tion 2, one for each configurationθ, is not possible. In
order to overcome such a limitation, the integrals defined
in Equation 2 will be estimated in a Monte Carlo fashion
on the basis of a training set of instances, as it will be ex-
plained in Section 3.

to single elements, the correct notation should bePI({i}). Our
notational abuse consists therefore in using the same symboli
both for the elementi ∈ I, and for the singleton{i} ⊂ I.

3In the following, for the sake of a lighter notation, the depen-
dency ofc on t will be often implicit.

4The same remark as in Note 2 applies here.

2.3 Further Considerations and Possible Extensions

The formal configuration problem, as described in Sec-
tion 2.2, assumes that, as far as a given instance is con-
cerned, no information on the performance of the various
candidate configurations can be obtained prior to their ac-
tual execution on the instance itself. In this sense, the in-
stances area priori indistinguishable.

In many practical situations, it is knowna priori that var-
ious types of instances with different characteristics may
arise. In such a situation all possible prior knowledge
should be used to cluster the instances into homogeneous
classes and to find, for each class, the most suitable config-
uration.

The case mentioned in Section 2.1, in which it is not rea-
sonable to accept that all instances are extracted indepen-
dently and according to the same probability measure, can
possibly be handled in a similar way. Often, some temporal
correlation is observed among instances. In other words,
temporal patterns can be observed on previous instances
that bringa priori information on the characteristics of the
current instance. This phenomenon can be handled by as-
suming that the instances are generated by a process akin
to a time-series. Also in this case, different configuration
problems should be formulated: Each class of instances to
be treated separately would be composed by instances that
follow in time a given pattern and that are therefore sup-
posed to share similar characteristics. The aim is again to
match the hypothesis ofa priori indistinguishability of in-
stances within each of the different configuration problems
in which the original one is reformulated.

3 A RACING ALGORITHM

Before giving a definition of a racing algorithm for solv-
ing the problem given in Equation 1, it is convenient to
describe a somewhat naivebrute-forceapproach for high-
lighting some of the difficulties associated with the config-
uration problem.

A brute-force approach to the problem defined in Equa-
tion 1 consists in estimating the quantities defined in Equa-
tion 2 by means of asufficiently largenumber of runs of
each candidate on asufficiently largeset of training in-
stances. The candidate configuration with the smallest es-
timated quantity is then selected.

However, such abrute-forceapproach presents some draw-
backs: First, the size of the training set must be defined
prior to any computation. A criterion is missing to avoid
considering, on the one hand, too few instances, which
could prevent from obtaining reliable estimates, and on the
other hand, too many instances, which would then require
a great deal of useless computation. Second, no criterion
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Figure 1: A visual representation of the amount of com-
putation needed by the two methods. The surface of the
dashed rectangle represents the amount of computation for
brute-force, the shadowed area the one for racing.

is given for deciding how many runs of each configuration
on each instance should be performed in order to cope with
the stochastic nature of metaheuristics. Finally, the same
computational resources are allocated to each configura-
tion: manifestly poor configurations are thoroughly tested
to the same extent as the best ones are.

3.1 Racing Algorithms: The Idea

Racing algorithms are designed to provide a better alloca-
tion of computational resources among candidate configu-
rations and therefore to overcome the last of the three above
described drawbacks of brute-force. At the same time, the
racing framework indirectly allows for a clean solution to
the first two problems of brute-force, that is the problems
of fixing the number of instances and the number of runs to
be considered.

To do so, racing algorithms sequentially evaluate candidate
configurations and discard poor ones as soon as statistically
sufficient evidence is gathered against them. The elimi-
nation of inferior candidates speeds up the procedure and
allows to evaluate the promising configurations on more
instances and to obtain more reliable estimates of their be-
havior. Figure 1 visualizes the two different ways of allo-
cating computational resources to candidate configurations
that are adopted by brute-force and by racing algorithms.

Let us suppose that a random sequence of training in-
stancesi is available, where the generick-th term ik is
drawn fromI according toPI , independently for eachk.
We assume thati can be extended at will and at a negligi-
ble cost, by sampling further fromI.

With the notationck(θ, i) we indicate an array ofk terms
whose genericl-th one is the costc(θ, il) of the best solu-
tion found by configurationθ on instanceil in a run oft(il)
seconds. It is clear therefore that, for a givenθ, the array

ck of lengthk can be obtained fromck−1 by appending to
the latter the cost concerning thek-th instance ini.

A racing algorithm tackles the optimization problem in
Equation 1 by generating a sequence of nested sets of can-
didate configurations:

Θ0 ⊇ Θ1 ⊇ Θ2 ⊇ . . . ,

starting fromΘ0 = Θ. The step from a setΘk−1 to Θk

is obtained by possibly discarding some configurations that
appear to be suboptimal on the basis of information avail-
able at stepk.

At step k, when the set of candidates still in the race
is Θk−1, a new instanceik is considered. Each candidate
θ ∈ Θk−1 is executed onik and each observed costc(θ, ik)
is appended to the respectiveck−1 to form the different ar-
raysck(θ, i), one for eachθ. Stepk terminates defining set
Θk by dropping fromΘk−1 the configurations that appear
to be suboptimal in the light of some statistical test that
compares the arraysck(θ, i) for all θ ∈ Θ. The description
of the test considered in this paper is given in Section 3.2.
It should be noticed here that, for anyθ, each component
of the arrayck(θ, i), that is, any costc(θ, i) of the best
solution found by a single run ofθ over one generici ex-
tracted according toPI , is an estimate ofC(θ), as defined in
Equation 2. The sampling average ofck(θ, i) is therefore
itself an estimate ofC(θ) and can be used for comparing
the performance yielded by different configurations.

The above described procedure is iterated and stops ei-
ther when all configurations but one are discarded, or
when some predefined total timeT of computation is
reached. That is, the procedure would stop before consid-
ering the(k + 1)-th instance if

∑k
l=1 t(il+1)

∣∣Θl

∣∣ > T.

3.2 F-Race

The racing algorithm we propose, F-Race in the following,
is based on the Friedman test, a statistical method for hy-
pothesis testing also known as Friedman two-way analysis
of variance by ranks (Conover, 1999).

For giving a description of the test, let us assume that F-
Race has reached stepk, andn = |Θk−1| configurations
are still in the race. The Friedman test assumes that the
observed costs arek mutually independentn-variate ran-
dom variables(ck(θ1, il), c

k(θ2, il), . . . , c
k(θn, il)) called

blocks (Dean and Voss, 1999) where each block corre-
sponds to the computational results on instanceil for each
configuration in the race at stepk. Within each block
the quantitiesck(θ, il) are ranked from the smallest to the
largest. Average ranks are used in case of ties. For each
configurationθj ∈ Θk−1, letRlj be the rank ofθj within
block l, andRj =

∑k
l=1Rlj the sum of the ranks over all



instancesil, with 1 ≤ l ≤ k. The Friedman test considers
the following statistic (Conover, 1999):

T =

(n− 1)
n∑
j=1

(
Rj −

k(n+ 1)
2

)2

k∑
l=1

n∑
j=1

R2
lj −

kn(n+ 1)2

4

.

Under the null hypothesis that all possible rankings of the
candidates within each block are equally likely,T is ap-
proximativelyχ2 distributed withn−1 degrees of freedom.
If the observedT exceeds the1− α quantile of such a dis-
tribution, the null is rejected, at the approximate levelα, in
favor of the hypothesis that at least one candidate tends to
yield a better performance than at least one other.

If the null is rejected, we are justified in performing pair-
wise comparisons between individual candidates. Candi-
datesθj andθh are considered different if

|Rj −Rh|√
2k(1− T

k(n−1) )
(∑k

l=1
∑n
j=1R

2
lj−

kn(n+1)2
4

)
(k−1)(n−1)

> t1−α/2,

wheret1−α/2 is the 1 − α/2 quantile of the Student’st
distribution (Conover, 1999).

In F-Race, if at stepk the null of the aggregate comparison
is not rejected, all candidates inΘk−1 pass toΘk. On the
other hand, if the null is rejected, pairwise comparisons are
executed between the best candidate and each other one.
All candidates that result significatively worse than the best
are discarded and will not appear inΘk.

3.3 Discussion on the Role of Ranking in F-Race

In F-Race, ranking plays an important two-fold role. The
first one is connected with the nonparametric nature of a
test based on ranking. The main merit of nonparametric
analysis is that it does not require to formulate hypothe-
ses on the distribution of the observations. Discussions
on the relative pros and cons of the parametric and non-
parametric approaches can be found in most textbooks on
statistics (Larson, 1982). For an organic presentation of the
topic, we refer the reader, for example, to Conover (1999).
Here we limit ourselves to mention some widely accepted
facts about parametric and nonparametric hypothesis test-
ing: When the hypotheses they formulate are met, para-
metric tests have a higher power than nonparametric ones
and usually require much less computation. Further, when
a large amount of data is available the hypotheses for the
application of parametric tests tend to be met in virtue of
the central limit theorem. Finally, it is well known that the
t-test, the classical parametric test that is of interest here,
is robust against departure from some of its hypotheses,

namely the normality of data: When the hypothesis of nor-
mality is not strictly met t-testgracefullylooses power.

For what concerns the metaheuristics configuration prob-
lem, we are in a situation in which these arguments look
suspicious. First, since we wish to reduce as soon as possi-
ble the number of candidates, we deal with very small sam-
ples and it is exactly on these small samples, for which the
central limit theorem cannot be advocated, that we wish to
have the maximum power. Second, the computational costs
are not really relevant since in any case they are negligible
compared to the computational cost of executing configura-
tions of the metaheuristic in order to enlarge the available
samples. Section 5 shows that the doubts expressed here
find some evidential support in our experiments.

A second role played by ranking in F-Race is to imple-
ment in a natural way a blocking design (Dean and Voss,
1999). The variation in the observed costsc is due to dif-
ferent sources: Metaheuristics are intrinsically stochastic
algorithms, the instances might be very different one from
the other, and finally some configurations perform better
than others. This last source of variation is the one that
is of interest in the configuration problem while the oth-
ers might be considered as disturbing elements. Blocking
is an effective way for normalizing the costs observed on
different instances. By focusing only on the ranking of
the different configurations within each instance, blocking
eliminates the risks that the variation due to the difference
among instances washes out the variation due to the differ-
ence among configurations.

The work proposed in this paper was openly and largely in-
spired by some algorithms proposed in the machine learn-
ing community (Maron and Moore, 1994; Moore and Lee,
1994) but it is precisely in the adoption of a statistical test
based on ranking that it diverges from previously published
works. Maron and Moore (1994) proposed Hoeffding Race
that adopts a nonparametric approach but does not consider
blocking. In a following paper, Moore and Lee (1994) de-
scribe BRACE that adopts blocking but discards the non-
parametric setting in favor of a Bayesian approach. Other
relevant work was proposed by Gratch et al. (1993) and by
Chien et al. (1995) who consider blocking in a parametric
setting.

This paper, to the best of our knowledge, is the first work
in which blocking is considered in a nonparametric set-
ting. Further, in all the above mentioned works blocking
was always implemented through multiple pairwise paired
comparisons (Hsu, 1996), and only in the more recent
one (Chien et al., 1995) correction for multiple tests is con-
sidered. F-Race is the first racing algorithm to implement
blocking through ranking and to adopt an aggregate test
over all candidates, to be performed prior to any pairwise
test.



4 MAX–MIN-ANT-SYSTEM FOR TSP

In this paper we illustrate F-Race by using as an example
the configuration ofMAX–MIN-Ant-System (MMAS)
(Stützle and Hoos, 1997; Stützle and Hoos, 2000), a par-
ticular Ant Colony Optimization algorithm (Dorigo and Di
Caro, 1999; Dorigo and Stützle, 2002), over a class of in-
stances of the Traveling Salesman Problem (TSP).

4.1 A Class of TSP Instances

Given a complete graphG = (N,A, d) with N being the
set ofn = |N | nodes,A being the set of arcs fully connect-
ing the nodes, andd being the weight function that assigns
each arc(i, j) ∈ A a lengthdij , the Traveling Salesman
Problem (TSP) is the problem of finding a shortest closed
tour visiting each node ofG once. We assume the TSP
is symmetric, that is, we havedij = dji for every pair of
nodesi andj.

The TSP is extensively studied in literature and that serves
as a standard benchmark problem (Johnson and McGeoch,
1997; Lawler et al., 1985; Reinelt, 1994). For our study
we randomly generate Euclidean TSP instances with a ran-
dom distribution of city coordinates and a random num-
ber of cities. Euclidean TSPs were chosen because such
instances are used in a large number of experimental re-
searches on the TSP (Johnson and McGeoch, 1997; John-
son et al., 2001). In our case, city locations are randomly
chosen according to a uniform distribution in a square of
dimension10.000×10.000, and the resulting distances are
rounded to the nearest integer. The number of cities in each
instance is chosen as an integer randomly sampled accord-
ing to a uniform distribution in the interval[300, 500]. We
generated a total number of 400 such instances for our ex-
periments reported in Section 5.

4.2 MAX–MIN-Ant-System

Ant Colony Optimization (ACO) (Dorigo et al., 1999;
Dorigo and Di Caro, 1999; Dorigo and Stützle, 2002) is a
population-based approach inspired by the foraging behav-
ior of ants for the solution of hard combinatorial optimiza-
tion problems. In ACO, artificial ants implement stochastic
construction procedures that are biased by pheromone trails
and heuristic information on the problem being solved. The
solutions obtained by the ants may then be improved by
applying some local search routine. ACO algorithms typ-
ically follow the high-level procedure given in Figure 2.
MMAS (Sẗutzle and Hoos, 1996, 1997; Stützle and Hoos,
2000) is currently one of the best performing ACO algo-
rithms for the TSP.

MAX–MIN-Ant-System constructs tours as follows: Ini-
tially, each of them ants is put on some randomly chosen

procedureAnt Colony Optimization
Init pheromones, calculate heuristic
while(termination condition not met)do
p = ConstructSolutions(pheromones, heuristic)
p = LocalSearch(p) % optional
GlobalUpdateTrails(p)

end
endAnt Colony Optimization

Figure 2: Algorithmic skeleton of ACO for static
combinatorial optimization problems.

city. At each construction step, antk applies a probabilistic
action choice rule. In particular, when being at cityi, antk
chooses to go to a yet unvisited cityj at thetth iteration
with a probability of

pkij(t) =
[τij(t)]α · [ηij ]β∑
l∈Nki

[τil(t)]α · [ηil]β
, if j ∈ N k

i ; (3)

whereηij = 1/dij is ana priori available heuristic value,
α andβ are two parameters which determine the relative
influence of the pheromone trail and the heuristic informa-
tion, andN k

i is the feasible neighborhood of antk, that is,
the set of cities which antk has not yet visited; ifj /∈ N k

i ,
we havepkij(t) = 0.

After all ants have constructed a solution, the pheromone
trails are updated according to

τij(t+ 1) = (1− ρ) · τij(t) + ∆τbest
ij , (4)

where∆τbest
ij = 1/Lbest if arc (i, j) ∈ Tbest and zero

otherwise. HereTbest is either theiteration-bestsolution
T ib, or theglobal-bestsolutionTgb andLbest is the cor-
responding tour length. Experimental results showed that
the best performance is obtained by gradually increasing
the frequency of choosingTgb for the pheromone trail up-
date (Sẗutzle and Hoos, 2000).

In MMAS, lower and upper limitsτmin andτmax on the
possible pheromone strengths on any arc are imposed to
avoid search stagnation. The pheromone trails inMMAS
are initialized to their upper pheromone trail limitsτmax,
leading to an increased exploration of tours at the start of
the algorithms.

In our experimental study, we have chosen a number
of configurations that differ in particular parameter set-
tings forMMAS. We focused on alternative settings for
the main algorithm parameters as they were identified
in earlier studies, in particular we considered values of
α ∈ {1, 1.25, 1.5, 2}, m ∈ {1, 5, 10, 25}, β ∈ {0, 1, 3, 5},
ρ ∈ {0.6, 0.7, 0.8, 0.9}. Each possible combination of the
parameter settings leads to one particular algorithm config-



uration, leading to a total number of4×4×4×4 = 256 con-
figurations. In our experiments each solution is improved
by a 2.5-opt local search procedure (Bentley, 1992).

5 EXPERIMENTAL RESULTS

In this section we propose a Monte Carlo evaluation of
F-Race based on a resampling technique (Good, 2001).

For comparison, we consider two other instances of racing
algorithms both based on a paired t-test. They are therefore
parametric, and they adopt a blocking design. We refer
to them astn-Raceand tb-Race. The first does not adopt
any correction for multiple-tests, while the second adopts
the Bonferroni correction and is thereforenot unlike the
method described by Chien et al. (1995).

The goal is to select anas good as possibleconfigura-
tion out of the 256 configurations of theMAX–MIN-Ant-
System described in Section 4.2.

Each configuration was executed once on each of the 400
instances for10s on a CPU Athlon 1.4GHz with 512 MB
of RAM, for a total time of about 12 days to allow in a
following phase the application of the resampling analysis.
The costs of the best solution found in each of these exper-
iments were stored in a two-dimensional400 × 256 array.
In the following, when saying that werun configurationj
over instancei, we will simply mean that we execute the
pseudo-experimentthat consists in reading the value in po-
sition (i, j) from the array of the results.

From the 400 instances, we extract 1000 pseudo-samples
each of which is obtained by re-ordering randomly the orig-
inal instances. Each pseudo-sample is used for apseudo-
trial , that is, for simulating a run of a racing algorithm: One
after the other the instances are considered and, on the ba-
sis of the results of pseudo-experiments, configurations are
progressively discarded. Each algorithm stops after execut-
ing 5 × 256 pseudo-experiments.5 Upon time expiration,
the best candidate in the pseudo-trial is selected and it is
tested on 10 instances that werenot used during the selec-
tion itself. The results obtained on these previously unseen
instances are recorded and are used for comparing the three
racing methods. To summarize, after 1000 pseudo-trials a
vector of 10 × 1000 components is obtained for each of
F-Race, tn-Race, and tb-Race. It is important to note that
the three algorithms face the same pseudo-samples and that
the candidates selected in each pseudo-trial by each algo-
rithm are tested on the same unseen instances. The generic
i-th components of the three10×1000 vectors refers there-
fore to the results obtained by the champions of the three

5In such a time, by definition, brute-force would be able to
test the 256 candidates on only 5 instances. The5× 256 pseudo-
experiments simulate 3.5 hours of actual computation on the com-
puter used for producing the results proposed here.

races respectively, where the three races were conducted on
the basis of the same pseudo-sample: We are therefore jus-
tified in using paired statistical tests when comparing the
three races among them.

On the basis of a paired Wilcoxon test we can state that
F-Race is significatively better, at a significance level of
5%, than both tn-Race and tb-Race.6

Some insight on this result can be obtained from the fol-
lowing observation. By early dropping the less interesting
candidates, F-Race is able to perform more experiments on
the more promising candidates. On the 1000 pseudo-trials
considered, at the moment in which the computation time
was up and a decision among the surviving candidate had
to be taken, the set of survivors was on average composed
by 7.9 candidates and such survivors had been tested on av-
erage on77.9 instances. In the case of tn-Race, the average
size of the set of survivors upon expiration of computation
time was31.1, while the number of instances seen by such
survivors was on average18.2. For tb-Race the numbers
are253.8 and5, respectively. In this sense, F-Race proved
to be the bravest of the three, while tb-Race appeared to
be extremely conservative and on average it dropped only
slightly more than2 candidates before the time limit.

On the basis of our Monte Carlo evaluation, some stronger
statement can be pronounced on the quality of the results
obtained by F-Race. We have shown above that the perfor-
mance of F-Race was good in arelativesense: F-Race pro-
duced better results than its competitors. We state now that,
in a precise sense to be defined presently, the performance
of F-Race wasabsolutelygood. We compare F-Race with
Cheat, a brute-force method that, rather unfairly, uses in
each pseudo-trial the same number of instances used by F-
Race and on these instances runs all the candidate config-
urations. In doing so, Cheat allows itself an enormously
large amount of computation time. In our experiments,
Cheat has performed on average about19950 experiments
per trial which is equivalent to about55 hours of computa-
tion against the3.5 hour available to F-Race. The selection
operated by Cheat is theoptimumthat can be obtained from
the fixed set of training instances, and considering only one
run of each configuration on each instance. F-Race can be
seen as an approximation of Cheat: The set of experiment
performed by F-Race is aproper subsetof the experiments
performed by Cheat.

Now, in the statistical analysis of the results obtained by
our Monte Carlo experiments, we were not able to reject
the null that F-Race and Cheat produce equivalent results.
Also in this case, we have worked at the significance level
of 5%: neither Wilcoxon test nor t-test were able to show
significance.

6The same conclusion can be drawn on the basis of a paired
t-test.



6 CONCLUSIONS

The paper has given a formal definition of the problem of
configuring a metaheuristic and has presented F-Race, an
algorithm belonging to the class of racing algorithms pro-
posed in the machine learning community for solving the
model selection problem (Maron and Moore, 1994).

In giving a formal definition of the configuration problem,
we have stressed the important role played by the probabil-
ity measure defined on the class of the instances. Without
such a concept, it is impossible to give a meaning to the
generalization process that is implicit when a configuration
is selected on the basis of its performance on a limited set
of instances.

F-Race, the algorithm we propose in this paper, is the spe-
cialization of the generic class of racing algorithms to the
configuration of metaheuristics. The adoption of the Fried-
man test, which is nonparametric and two-way, matches
indeed the specificities of the configuration problem. As
shown by the experimental results proposed in Section 5,
F-Race obtains better results than its competitors that adopt
a parametric approach. This better performance can be in-
deed explained by the ability of discarding inferior candi-
dates earlier and faster than the competitors. Still, we do
not feel like using these results for claiming a generalpre-
sumedsuperiority of F-Race against its fellow racing algo-
rithms. Rather, we wish to stress the appeal of the racing
idea in itself, and we want to interpret our results as an evi-
dence that this idea is extremely promising for configuring
metaheuristics and should be further investigated.
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