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Abstract

This paper describes a racing procedure for find-
ing, in a limited amount of time, a configuration
of a metaheuristic that performs as good as pos-
sible on a given instance class of a combinatorial
optimization problem. Taking inspiration from
methods proposed in the machine learning litera-
ture for model selection through cross-validation,
we propose a procedure that empirically evalu-
ates a set of candidate configurations by discard-
ing bad ones as soon as statistically sufficient ev-
idence is gathered against them. We empirically
evaluate our procedure using as an example the
configuration of an ant colony optimization algo-
rithm applied to the traveling salesman problem.
The experimental results show that our procedure
is able to quickly reduce the number of candi-
dates, and allows to focus on the most promising
ones.
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by a mixture of rules of thumb. Most often this leads to
tedious and time consuming experiments. In addition, it
is very rare that a configuration is selected on the basis of
some well defined statistical procedure.

The aim of this work is to define an automatic hands-off
procedure for finding a good configuration through sta-
tistically guided experimental evaluations, while minimiz-
ing the number of experiments. The solution we pro-
pose is inspired by a class of methods proposed for solv-
ing the model selection problem in memory-based super-
vised learning (Maron and Moore, 1994; Moore and Lee,
1994). Following the terminology introduced by Maron
and Moore (1994), we callacing method for selection

a method that finds a good configuration (model) from
a given finite pool of alternatives through a sequence of
stepst As the computation proceeds, if sufficient evidence
is gathered that some candidate is inferior to at least another
one, such a candidate is dropped from the pool and the pro-
cedure is iterated over the remaining ones. The elimination
of inferior candidates, speeds up the procedure and allows
a more reliable evaluation of the promising ones.

Two are the main contributions of this paper. First, we give
a formal definition of the metaheuristic configuration prob-

A metaheuristic is a general algorithmic template whosd®M- Second, we show that a metaheuristic can be tuned
components need to be instantiated and properly tuned ififficiently and effectively by a racing procedure. Our re-
order to yield a fully functioning algorithm. The instan- Sults confirm the general validity of the racing algorithms
tiation of such an algorithmic template requires to choose®Nd extend their area of applicability. On a more technical
among a set of different possible components and to assigffVel: Ieft aside the specific application to metaheuristics,
specific values to all free parameters. We will refer to suchVe 9ive some contribution to the general class of racing
an instantiation as eonfiguration Accordingly, we call ~ &/gorithms. In particular, our method adopts blocking de-

configuration problenthe problem of selecting the optimal Si9n (Déan and Voss, 1999) in a nonparametric setting. In
configuration. some sense, therefore, the method fills the gap between Ho-
effding race (Maron and Moore, 1994) and BRACE (Moore
Pract_itioners typically configure their metaheur.istics inanand Lee, 1994): similarly to Hoeffding race it features a
iterative process on the basis of some runs of different connonparametric test, and similarly to BRACE it considers a
figurations that are felt as promising. Usually, such a pro——— o ) )
d !Several metaheuristics involve continuous parameters. This

cess is heavily based on personal experience and is guide > : . .
7)/ P P g would actually lead to an infinite set of candidate configurations.

TThis research was carried out while MB was with Intellek- In practice, typically only a finite set of possible parameter values
tik, Technische Universitt Darmstadt. are considered by discretizing the range of continuous parameters.



blocking design. The occurrence of different instances can be conveniently
: . epresented as the result of random experiments governed
T_he rest of the Paper 1S structured as follows. _Se(_:tlon %y some unknown probability measure, 98y defined on
gives a formal definition of the problem of configuring a oo .
" . X . . tt&e class of the possible instances. In the example discussed
metaheuristic. Section 3 describes the general ideas behin o : :

. . . ) ere, it is reasonable to assume that different experiments
racing algorithms and introduces F-Race, a racing methog . "
specifically designed for matching the peculiar characteriss. < independent and all governed by the same probability
tigs of theymetaﬁeuristic confi ur%l'[ionp roblem. Section 4measure. In Section 2.3, we will briefly discuss how to pos-

'9 'p ' sibly tackle situations in which such assumptions appear
proposes some background information etd A~ MIN- unreasonable
Ant-System and on the traveling salesman problem (TSP), '
which are respectively the metaheuristic and the problenNow, our pizza delivery boy loves metaheuristics and uses
considered in this paper. In particular, the section gives @ne to find a shortest possible tour visiting all the cus-
description of the sub class of TSP instances, and of theomers. Being such a metaheuristic a general algorithmic
candidate configurations glAX-MTIN-Ant-System that template, different configurations are possible (see Sec-
we consider in our experimental evaluation. Section 5 protion 4.2 for a more detailed example). In our setting, the
poses some experimental results, and Section 6 conclud@soblem that the delivery boy has to solve is to find the
the paper. configuration that is expected to yield the best solution to
the instances that hgpically faces. The concept afpi-
cal instance used here informally, has to be understood in
relation to the probability measui@;, and will receive a

) o ) clear mathematical meaning presently.
This section introduces and defines the general problem

of configuring a metaheuristic. Before proposing a formalSinceP; is unknown, the only information that can be used
definition, it is worth outlining briefly, with the help of an for finding the best configuration must be extracted from a
example, the type of problem setting to which our proce-sample of previously seen instances. By adopting the ter-
dure applies. Namely, our methodology is meant to be apminology used in machine learning, we will use the ex-
plied to repetitive problems, that is, problems where manypressiortraining instanceso denote the available previous
similar instances appear over time. instances. On the basis of such training instances, we will
look for the configuration that is expected to have the best
performance over thetholeclass of possible instances.

2 CONFIGURING A METAHEURISTIC

2.1 An Example: Delivering Pizza
The fact of extending results obtained on a usually small
The example we propose is admittedly simplistic and doegraining set to a possibly infinite set of instances is a
not cover all pOSSible aspects of the Configuration prOblemgenuinegenera|izatiom as intended in Supervised learn-
still it has the merit of hlghllghtlng those elements that areing (Mitche”, 1997) In the context of metaheuristics con-
essential for the discussion that follows. figuration, generalization is fully justified by the assump-
tion that the same probability measuPg governs the se-
ders are collected for a (fixed) time period of, say, 30 min-lection of all Fhe instances: both those used fqr trajning and
those that will be solved afterwards. The training instances

utes. At the end of the time period, a pizza delivery boy" ™>% " A )
has some limited amount of time for scheduling a reason@'€ N this sense representative of the whole set of instances.

ably short tour that visits all the customers that have called

in the last 30 minutes. Then the boy leaves and deliver@.2 The Formal Statement

the pizzas following a chosen route. The time available for ) _

scheduling may be constant or may be expressed as a funi® orde_r to gvea formal d(_efmmon of the_general problt_em
tion of some characteristic of the instance itself, for exam-° configuring a metaheuristic, we consider the following
ple the size which in the pizza delivery problem might be ®PI€Cts:

measured by the number of customers to visit.

Let us consider the followinpizza delivery problem. Or-

_ ) _ e O is the finite set of candidate configurations.
In such a setting, every 30 minutes a new instance of an

optimization problem is given, and a solution as good as e I is the possibly infinite set of instances.
possible has to be found in a limited amount of time. It
is very likely that every instance will be different from alll
previous ones in the location of the customers that need
to be visited. Further, a certain variability in the instance
size, that is the number of customers to be served, is to be
expected, too. 2Since a probability measure is associated to (sub)sets and not

e P;is a probability measure over the datf instances:
With some abuse of notation, we indicate with(:)
the probability that the instandas selected for being
solved?



e t: I — Ris a function associating to every instance 2.3 Further Considerations and Possible Extensions

the computation time that is allocated to it.
The formal configuration problem, as described in Sec-

e c(6,i) = c(6,i,t(i)) is a random variable represent- tion 2.2, assumes that, as far as a given instance is con-
ing the cost of the best solution found by running con-cerned, no information on the performance of the various
figurationd on instance for ¢(i) seconds. candidate configurations can be obtained prior to their ac-

tual execution on the instance itself. In this sense, the in-

e C' C R is the range of, that is, the possible values Stances ara priori indistinguishable.

for the cost of the best solution found in a run of an many practical situations, it is knowan priori that var-
configuratiory) € T'heta on an instance € . ious types of instances with different characteristics may
arise. In such a situation all possible prior knowledge
e Pc is a probability measure over the get With the  should be used to cluster the instances into homogeneous

notatior? Pc(c|6,7), we indicate the probability that classes and to find, for each class, the most suitable config-
c is the cost of the best solution found by running for yration.

t(i) seconds configuratichion instance. ) _ ) ) o
The case mentioned in Section 2.1, in which it is not rea-

o C(0) = C(0|0,1, Py, Po,t) is the criterion that needs sonable to accept that all instances are extracted indepen-
to be optimized with respect # In the most general dently and according to the same probability measure, can

case it measures in some sense the desirabilify of possibly be_handled in a similar way. Often, some temporal
correlation is observed among instances. In other words,

temporal patterns can be observed on previous instances
On the basis of these concepts, the problem of configuringnat bringa priori information on the characteristics of the
a metaheuristic can be formally described by the 6-tuple:yrrent instance. This phenomenon can be handled by as-
(©,1,Pr, Pc,t,C). The solution of this problem is the syming that the instances are generated by a process akin

configuration” such that: to a time-series. Also in this case, different configuration
. problems should be formulated: Each class of instances to
0" = argminC(0). (1)  be treated separately would be composed by instances that

follow in time a given pattern and that are therefore sup-
As far as the criteriod is concerned, different alternatives posed to share similar characteristics. The aim is again to
are possible. In this paper, we consider the optimizatiormatch the hypothesis af priori indistinguishability of in-
of the expected value of the cast?, ). Such a criterion  stances within each of the different configuration problems
is adopted in many different applications and, besides bei which the original one is reformulated.
ing quite natural, it is often very convenient from both the

theoretical and the practical point of view. Formally: 3 A RACING ALGORITHM
C(9) = ELC[c(Q,i)} = //c(e, i) dPc(c|f, 1) dPr (i), Before giving a definition of a racing algorithm for solv-
1Jc

@) ing the problem given in Equation 1, it is convenient to

|>criescribe a somewhat naiteute-forceapproach for high-
lighting some of the difficulties associated with the config-
uration problem.

where the expectation is considered with respect to bot
P; and Pg, and the integration is taken in the Lebesgue
sense (Billingsley, 1986).

A brute-force approach to the problem defined in Equa-

The measures’ anQPC are qsually not.expllcnly'avall- tion 1 consists in estimating the quantities defined in Equa-
able and the analytical solution of the integrals in Equa-

tion 2, one for each configuratiofy is not possible. In tion 2 by means of aufficiently largenumber of runs of

S . ) ach candidate on sufficiently largeset of training in-
order to overcome such a limitation, the integrals define : . 7 .
. : . . . . __stances. The candidate configuration with the smallest es-
in Equation 2 will be estimated in a Monte Carlo fashion

on the basis of a training set of instances, as it will be ex_umated quantity is then selected.

plained in Section 3. However, such arute-forceapproach presents some draw-
backs: First, the size of the training set must be defined
: . : . ; prior to any computation. A criterion is missing to avoid
notational abuse consists therefore in using the same symbol . - .
both for the element & 7, and for the singletorii} c 1. considering, on the one hand, too few instances, which
3n the following, for the sake of a lighter notation, the depen- €ould prevent from obtaining reliable estimates, and on the
dency ofc ont will be often implicit. other hand, too many instances, which would then require
“The same remark as in Note 2 applies here. a great deal of useless computation. Second, no criterion

to single elements, the correct notation should™é{i}). Our



c* of lengthk can be obtained from*~! by appending to
the latter the cost concerning theth instance in.

A racing algorithm tackles the optimization problem in
Equation 1 by generating a sequence of nested sets of can-
didate configurations:

0202622 ...,

starting from©, = ©. The step from a seb;_; to O

is obtained by possibly discarding some configurations that
appear to be suboptimal on the basis of information avail-
Figure 1: A visual representation of the amount of com-able at stefk.

putation needed by the two methods. The surface of th
dashed rectangle represents the amount of computation f
brute-force, the shadowed area the one for racing.

At step k, when the set of candidates still in the race
I ©;_1, a new instance,, is considered. Each candidate
0 € ©_, is executed ofi,, and each observed cas¥, ;)

is appended to the respectige ! to form the different ar-

k. . . . .
is given for deciding how many runs of each configurationraysg (6, 2), one for eacly. Stepk terminates defining set

on each instance should be performed in order to cope Witﬁ)kbby drgpp'ng flro_m@hk_}_ tEe c]?nflguratlon_s t_halt appeir
the stochastic nature of metaheuristics. Finally, the sam& P€ Su OEt'ma in 1 e,'?c t O" SOme Stﬁt's(;['ca test that
computational resources are allocated to each configura?—orm)a“aSt e arrays (9, ) forall ¢ € ©. The description

tion: manifestly poor configurations are thoroughly testedOf the test considered in this paper is given in Section 3.2.
to the same extent as the best ones are. It should be noticed here that, for afly each component

of the arrayc®(6,1), that is, any cost(6,4) of the best
solution found by a single run @f over one generié¢ ex-
3.1 Racing Algorithms: The Idea tracted according t&, is an estimate af(6), as defined in
_ ) ) ) Equation 2. The sampling averagedf(f, i) is therefore
Racing algorithms are designed to provide a better allocayself an estimate o€ () and can be used for comparing

tion of computational resources among candidate configuhe performance yielded by different configurations.
rations and therefore to overcome the last of the three above

described drawbacks of brute-force. At the same time, thd he above described procedure is iterated and stops ei-
racing framework indirectly allows for a clean solution to ther when all configurations but one are discarded, or
the first two problems of brute-force, that is the problemswhen some predefined total timi€ of computation is

of fixing the number of instances and the number of runs tdeached. That is, the procedure would stop before consid-
be considered. ering the(k + 1)-th instance iy, t(i,, 1) |€1] > T

To do so, racing algorithms sequentially evaluate candidat
configurations and discard poor ones as soon as statistical?%l2 F-Race
sufficient evidence is gathered against them. The elimi- . : . .
nation of inferior candidates speeds up the procedure an-xghe racing algorlth_m WE propose, F-R_aqe in the following,

IS based on the Friedman test, a statistical method for hy-

allows to evaluate the promising configurations on more . . . .
) ) ; . . othesis testing also known as Friedman two-way analysis
instances and to obtain more reliable estimates of their be*'{2 9 y y

havior. Figure 1 visualizes the two different ways of allo- of variance by ranks (Conover, 1999).
cating computational resources to candidate configurationSor giving a description of the test, let us assume that F-
that are adopted by brute-force and by racing algorithms. Race has reached stépandn = |©,_;| configurations

. .. are still in the race. The Friedman test assumes that the
Let us suppose that a random sequence of trglnl_ng "Mobserved costs are mutually independent-variate ran-
stancest is available, where the generieth termz¢, is dom variablegc® (61,4,), ¢ (02,4,), . . ., " (0, 3,)) called

drawn from/ agcording toF, indepenc_jently for each.. . blocks (Dean and Voss, 1999) where each block corre-
\t/)\llg ?g;ug]fstgarﬁgl?r?gt;ﬁr?ﬁ;??:joemd at will and at a negligi- sponds to the computational results on instaiader each

' configuration in the race at step Within each block
With the notationc® (6, ) we indicate an array of terms  the quantitie=* (6, 4,) are ranked from the smallest to the
whose generié-th one is the cost(6, i;) of the best solu- largest. Average ranks are used in case of ties. For each
tion found by configuratiod on instance, in arun oft(s,) ~ configurationd; € ©,_1, let k;; be the rank ob; within
seconds. It is clear therefore that, for a giverthe array ~ blockl, andR; = ), R;; the sum of the ranks over all



instanceg,;, with 1 <! < k. The Friedman test considers namely the normality of data: When the hypothesis of nor-

the following statistic (Conover, 1999): mality is not strictly met t-tesgracefullylooses power.
n k(n+1) 2 For what concerns the metaheuristics configuration prob-
(n—1) Z <RJ 2> lem, we are in a situation in which these arguments look
T — =1 _ suspicious. First, since we wish to reduce as soon as possi-
& 5 kn(n+1)2 ble the number of candidates, we deal with very small sam-
Z Z Ryj = -4 ples and it is exactly on these small samples, for which the
I=1j=1 central limit theorem cannot be advocated, that we wish to

Under the null hypothesis that all possible rankings of thehave the maximum power. Second, the computational costs
candidates within each block are equally likely,is ap- ~ are not really relevant since in any case they are negligible
proximativelyy? distributed withn — 1 degrees of freedom. compared to the computational cost of executing configura-
If the observed” exceeds thé — o quantile of such a dis- tions of the metaheuristic in order to enlarge the available
tribution, the null is rejected, at the approximate levein ~ Samples. Section 5 shows that the doubts expressed here
favor of the hypothesis that at least one candidate tends fnd some evidential support in our experiments.

yield a better performance than at least one other. A second role played by ranking in F-Race is to imple-

If the null is rejected, we are justified in performing pair- ment in a natural way a blocking design (Dean and Voss,
wise comparisons between individual candidates. Candil999). The variation in the observed costis due to dif-

dates; andd), are considered different if ferent sources: Metaheuristics are intrinsically stochastic
' algorithms, the instances might be very different one from

|R; — Rp| St the other, and finally some configurations perform better

2k(1—k(+71))(zf:12?:13‘fj_w) —e/® than others. This last source of variation is the one that
k—D(n-1) is of interest in the configuration problem while the oth-

) ) ers might be considered as disturbing elements. Blocking
wheret;_,, is thel — a/2 quantile of the Student's  ig ap effective way for normalizing the costs observed on
distribution (Conover, 1999). different instances. By focusing only on the ranking of
In F-Race, if at steps the null of the aggregate comparison the different configurations within each instance, blocking
is not rejected, all candidates @y,_; pass to®;. Onthe eliminates the risks that the variation due to the difference
other hand, if the null is rejected, pairwise comparisons ar@mong instances washes out the variation due to the differ-
executed between the best candidate and each other orffice among configurations.

All ca_ndidates that re_sult significatively worse than the bestr . \vork proposed in this paper was openly and largely in-
are discarded and will not appearéy. spired by some algorithms proposed in the machine learn-
ing community (Maron and Moore, 1994; Moore and Lee,
3.3 Discussion on the Role of Ranking in F-Race 1994) but it is precisely in the adoption of a statistical test
based on ranking that it diverges from previously published
works. Maron and Moore (1994) proposed Hoeffding Race
Fnat adopts a nonparametric approach but does not consider
o . . (’blocking. In a following paper, Moore and Lee (1994) de-
analysis is th_at '.t dqes not require to fc_)rmulate_ hypOt_he'scribe BRACE that adopts blocking but discards the non-
ses on the _d|str|but|on of the observations. D'SCUSS'Onﬁarametric setting in favor of a Bayesian approach. Other
on the re_latlve pros and cons of the parametnc and NONZ,|evant work was proposed by Gratch et al. (1993) and by
pargm_etrlc approaches can be found n most text.books %hien et al. (1995) who consider blocking in a parametric
statistics (Larson, 1982). For an organic presentation of thgetting.
topic, we refer the reader, for example, to Conover (1999).
Here we limit ourselves to mention some widely acceptedThis paper, to the best of our knowledge, is the first work
facts about parametric and nonparametric hypothesis tesiqn which blocking is considered in a nonparametric set-
ing: When the hypotheses they formulate are met, parating. Further, in all the above mentioned works blocking
metric tests have a higher power than nonparametric onesas always implemented through multiple pairwise paired
and usually require much less computation. Further, whewomparisons (Hsu, 1996), and only in the more recent
a large amount of data is available the hypotheses for thene (Chien et al., 1995) correction for multiple tests is con-
application of parametric tests tend to be met in virtue ofsidered. F-Race is the first racing algorithm to implement
the central limit theorem. Finally, it is well known that the blocking through ranking and to adopt an aggregate test
t-test, the classical parametric test that is of interest heregver all candidates, to be performed prior to any pairwise
is robust against departure from some of its hypothesegest.

In F-Race, ranking plays an important two-fold role. The
first one is connected with the nonparametric nature of
test based on ranking. The main merit of nhonparametri



4 MAX-MIN-ANT-SYSTEM FOR TSP procedure Ant Colony Optimization

Init pheromones, calculate heuristic
while(termination condition not metjo
p = ConstructSolutions(pheromones, heuristic
p = LocalSearch(p) % optional

In this paper we illustrate F-Race by using as an example
the configuration ofMAX-MZN-Ant-System MMAS)

(Stutzle and Hoos, 1997; 8izle and Hoos, 2000), a par- GlobalUpdateTrails (p)
ticular Ant Colony Optimization algorithm (Dorigo and Di end
Caro, 1999; Dorigo and Btzle, 2002), over a class of in- end Ant Colony Optimization

stances of the Traveling Salesman Problem (TSP).
Figure 2: Algorithmic skeleton of ACO for static
4.1 A Class of TSP Instances combinatorial optimization problems.

Given a complete grapyf = (N, A4, d) with N being the
set ofn = | N| nodes A being the set of arcs fully connect-
ing the nodes, and being the weight function that assigns g tion choice rule. In particular, when being at gitantk

each ardi, j) € A alengthd;;, the Traveling Salesman c,55e5 10 go to a yet unvisited cifyat thetth iteration
Problem (TSP) is the problem of finding a shortest closed, i, 5 probability of

tour visiting each node off once. We assume the TSP
is Zym.metélp, that is, we hawg; = d;; for every pair of o (1) = (735 (£)]* - [mj]ﬁ tieNt: @)
nodes: ana;. ij ZleNi’“ [Til(t)]a . [771'1]57 i

The TSP is extensively studied in literature and that serves . o o

as a standard benchmark problem (Johnson and McGeocWheren;; = 1/d;; is ana priori available heuristic value,
1997, Lawler et a|_, 1985, Reine“:, 1994) For our StudyO{ andﬁ are two parameters which determine the relative
we random'y generate Euclidean TSP instances with a raﬁnﬂuence of the pheromone trail and the heuristic informa-
dom distribution of city coordinates and a random num-tion, and\ is the feasible neighborhood of ahtthat is,

ber of cities. Euclidean TSPs were chosen because sué¢he set oka|t|es which arit has not yet visited; iff ¢ N,
instances are used in a large number of experimental reve havep;(t) = 0.

searches on the TSP (Johnson and McGeoch, 1997; JohRsier 41| ants have constructed a solution, the pheromone
son et al., 2001). In our case, mt_y I(_)cat_lons_ are randomly,5iis are updated according to

chosen according to a uniform distribution in a square of

dimension10.000 x 10.090, and the resulting distqpce; are Tt +1) = (1—p) -7 (t) + Argesf (4)
rounded to the nearest integer. The number of cities in each

@nstance is_choser_1 as an int_eger rgndomly sampled accorﬂ/hereAribeSt _ 1/Lbest if arc (i,4) € Thestand zero

ing to a uniform distribution in the intervg300, 500]. We J
generated a total number of 400 such instances for our e
periments reported in Section 5.

city. At each construction step, antpplies a probabilistic

Qptherwise. Her& €stis either theiteration-bestsolution
TP, or theglobal-bestsolution79° and LPeStis the cor-
responding tour length. Experimental results showed that
the best performance is obtained by gradually increasing
the frequency of choosir@gbfor the pheromone trail up-

Ant Colony Optimization (ACO) (Dorigo et al., 1999; date (Sttzle and Hoos, 2000).

Dorigo and Di Caro, 1999; Dorigo andizle, 2002) isa In MMAS, lower and upper limitsij, and rmax on the
population-based approach inspired by the foraging behawossible pheromone strengths on any arc are imposed to
ior of ants for the solution of hard combinatorial optimiza- avoid search stagnation. The pheromone trail8AMAS

tion problems. In ACO, artificial ants implement stochasticare initialized to their upper pheromone trail limitgax
construction procedures that are biased by pheromone trailsading to an increased exploration of tours at the start of
and heuristic information on the problem being solved. Thethe algorithms.

solutions obtained by the ants may then be improved b¥n our experimental study, we have chosen a number
lyin me local rch routine. Al Igorithm - . . .
applying some local search routine. ACO algorithms typ of configurations that differ in particular parameter set-

ically follow the high-level procedure given in Figure 2. . -
MMAS (Sitzle and Hoos, 1996, 1997;ifizle and Hoos, "9 for MMAS. We focused on alternative settings for
_the main algorithm parameters as they were identified

2000) is currently one of the best performing ACO algo-. : : : ) .

fithms for the TSP. in earlier studies, in particular we considered values of
a€{1,1.25,1.5,2}, m € {1,5,10,25}, 5 € {0,1, 3,5},

MAX-MTIN-Ant-System constructs tours as follows: Ini- p € {0.6,0.7,0.8,0.9}. Each possible combination of the

tially, each of them ants is put on some randomly chosen parameter settings leads to one particular algorithm config-

4.2 MAX-MIN-Ant-System



uration, leading to a total numberok 4x4x4 = 256 con-  races respectively, where the three races were conducted on
figurations. In our experiments each solution is improvecdthe basis of the same pseudo-sample: We are therefore jus-

by a 2.5-opt local search procedure (Bentley, 1992). tified in using paired statistical tests when comparing the
three races among them.
5 EXPERIMENTAL RESULTS On the basis of a paired Wilcoxon test we can state that

F-Race is significatively better, at a significance level of
In this section we propose a Monte Carlo evaluation of5%, than both tn-Race and th-R&te.

F-R based ling techni Good, 2001). . : .
ace based on a resampling technique (Good, ) Some insight on this result can be obtained from the fol-

For comparison, we consider two other instances of racingowing observation. By early dropping the less interesting
algorithms both based on a paired t-test. They are thereforeandidates, F-Race is able to perform more experiments on
parametric, and they adopt a blocking design. We refethe more promising candidates. On the 1000 pseudo-trials
to them agn-Raceandtb-Race The first does not adopt considered, at the moment in which the computation time
any correction for multiple-tests, while the second adoptsvas up and a decision among the surviving candidate had
the Bonferroni correction and is therefonet unlikethe  to be taken, the set of survivors was on average composed
method described by Chien et al. (1995). by 7.9 candidates and such survivors had been tested on av-
erage orv7.9 instances. In the case of tn-Race, the average
size of the set of survivors upon expiration of computation
time was31.1, while the number of instances seen by such
survivors was on averagk8.2. For tb-Race the numbers
Each configuration was executed once on each of the 408re253.8 and5, respectively. In this sense, F-Race proved
instances fol0s on a CPU Athlon 1.4GHz with 512 MB to be the bravest of the three, while tb-Race appeared to
of RAM, for a total time of about 12 days to allow in a be extremely conservative and on average it dropped only
following phase the application of the resampling analysisslightly more thar2 candidates before the time limit.

The costs of the best solution found in each of these exper(-) the basis of Monte Carl luati i
iments were stored in a two-dimensioddl x 256 array. n the basis of our Monte L.arlo evaiuation, Some stronger

In the following, when saying that wein configuration; statement can be pronounced on the quality of the results
over instance, we will simply mean that we execute the obtained by F-Race. We have shown above that the perfor-

pseudo-experimethat consists in reading the value in po- mance of F-Race was goqd wneatatwe_zsense: F-Race pro-
sition (4, /) from the array of the results. duced better results than its competitors. We state now that,

in a precise sense to be defined presently, the performance
From the 400 instances, we extract 1000 pseudo-samples F-Race wasbsolutelygood. We compare F-Race with
each of which is obtained by re-ordering randomly the orig-Cheat a brute-force method that, rather unfairly, uses in
inal instances. Each pseudo-sample is used foseaido-  each pseudo-trial the same number of instances used by F-
trial, that is, for simulating a run of a racing algorithm: One Race and on these instances runs all the candidate config-
after the other the instances are considered and, on the barations. In doing so, Cheat allows itself an enormously
sis of the results of pseudo-experiments, configurations arrge amount of computation time. In our experiments,
progressively discarded. Each algorithm stops after executCheat has performed on average abdf90 experiments

ing 5 x 256 pseudo-experiments.Upon time expiration,  per trial which is equivalent to aboii hours of computa-

the best candidate in the pseudo-trial is selected and it ifon against thé.5 hour available to F-Race. The selection
tested on 10 instances that wergt used during the selec- operated by Cheat is tlogtimumthat can be obtained from
tion itself. The results obtained on these previously unseethe fixed set of training instances, and considering only one
instances are recorded and are used for comparing the thregn of each configuration on each instance. F-Race can be
racing methods. To summarize, after 1000 pseudo-trials geen as an approximation of Cheat: The set of experiment
vector of 10 x 1000 components is obtained for each of performed by F-Race is@oper subsebf the experiments
F-Race, tn-Race, and tb-Race. It is important to note thaperformed by Cheat.

the three algorithms face the same pseudo-samples and that . - . .
the candidates selected in each pseudo-trial by each aIgB‘-OW’ in the statistical gnalyas of the resuits obtamedl by
rithm are tested on the same unseen instances. The gene%r Monte Carlo experiments, we were not gble to reject
i-th components of the thra@ x 1000 vectors refers there- the null that F-Race and Cheat produce equivalent results.

fore to the results obtained by the champions of the thre@‘ISO in th|_s case, we have worked at the significance level
- of 5%: neither Wilcoxon test nor t-test were able to show

®In such a time, by definition, brute-force would be able to significance.
test the 256 candidates on only 5 instances. ¥he256 pseudo- __~—
experiments simulate 3.5 hours of actual computation on the com- ®The same conclusion can be drawn on the basis of a paired
puter used for producing the results proposed here. t-test.

The goal is to select aas good as possibleonfigura-
tion out of the 256 configurations of thelAX~MZN-Ant-
System described in Section 4.2.
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ments Springer Verlag, New York, NY, USA.
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configuring a metaheuristic and has presented F-Race, an Meta-heuristic. In Corne, D., Dorigo, M., and Glover, F., ed-
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