
A Modified Compact Genetic Algorithm for the Intrinsic Evolution
of Continuous Time Recurrent Neural Networks

John C. Gallagher
Department of Computer Science and Engineering
Wright State University, Dayton OH 45435-0001

jgallagh@cs.wright.edu

Saranyan Vigraham
Department of Computer Science and Engineering
Wright State University, Dayton OH 45435-0001

svigraha@cs.wright.edu

Abstract
In the past, we have extrinsically evolved continuous
time recurrent neural networks (CTRNNs) to control
physical processes. Currently, we are seeking to create
intrinsic CTRNN devices that combine a hardware ge-
netic algorithm engine on the same chip with
reconfigurable analog VLSI neurons. A necessary step
in this process is to identify a genetic algorithm that is
both amenable to hardware implementation and is suffi-
ciently powerful to effectively search CTRNN spaces.
In this paper, we will propose and test several varia-
tions of the compact genetic algorithm (CGA) for
searching these spaces. We will then benchmark the
best variant using the De Jong functions, outline a
hardware implementation, and discuss future plans to
develop an integrated evolvable hardware device control-
ler.

1. INTRODUCTION

The author has proposed the use of Continuous Time Re-
current Neural Networks (CTRNNs) as an enabling
paradigm for evolving analog electrical circuits. In previ-
ous work we focused almost exclusively on extrinsically
evolved CTRNNs that were created in simulation and only
later implemented in hardware. We are currently interested
in producing intrinsic CTRNN devices that evolve online
as they are controlling physical processes. We feel that a
necessary step in achieving this goal is to combine recon-
figurable analog CTRNNs and a hardware evolutionary
search engine onto a single VLSI device. Half of the
problem, the feasibility of implementing CTRNNs in
analog VLSI, has been addressed elsewhere [Gallagher and
Fiore, 2000]. This paper will address the feasibility of
searching CTRNN spaces with hardware based genetic al-
gorithm that can be fabricated on the same chip with
reconfigurable CTRNN hardware.

Several hardware based evolutionary algorithms (EAs) have
been proposed in recent years [Kajitani, T., et.al., 1998]
[Scott and Seth, 1995] [Yoshida and Yasuoka., 1999] One
in particular, the Compact Genetic Algorithm (CGA)
[Harik, Lobo, and Goldberg 1999] is especially well suited
for efficient hardware implementation using common VLSI
techniques [Aporntewan and Chongstitvatana, 2001]. The
Compact Genetic algorithm, however, is a very weak evolu-
tionary algorithm -- only equivalent to a first-order simple
GA with uniform crossover and tournament selection [Harik,
Lobo, and Goldberg 1999]. Although it is well suited to
efficient hardware implementation, the standard CGA is not
powerful enough to effectively evolve practical CTRNN
device controllers. This paper will propose several simple
variations of the CGA designed to increase the effectiveness
of the search with respect to CTRNN devices. We will test
the performance of the standard CGA and our variants
against a benchmark locomotion control problem and show
that, with simple modifications that do not significantly
complicate hardware implementation, we can effectively
evolve effective CTRNN control devices. Further, we will
demonstrate that the performance of our modified CGA is,
for this problem, superior to the simple genetic algorithms
we have employed in the past.

2. THE BENCHMARK PROBLEM

Our benchmark problem is the control of legged locomotion
in a simple, single-legged artificial agent. For the agent to
walk, the leg must alternate swing and stance phases. A
swing begins with the leg in its full backward position (at
negative leg angle range limit) and the foot raised in the air.
Then the leg rotates clockwise to swing the foot forward. A
stance begins by placing the foot of a fully forward leg on
the ground. Then the leg rotates counterclockwise to propel
the body forward. Figure 1 shows the agent at the begin-
ning of a stance phase. The leg contains three effectors and
one sensor that returns the leg’s angular position in radians.
One effector governs the state of the foot (FT) and the other

two generate clockwise (BS) and counter-clockwise torques
(FS) about the leg’s single joint with the body. The torques
about each joint are summed, and depending on the state of
the foot will either translate the body forward (foot down) or
rotate the leg about its joint (foot up). Each leg has a lim-
ited range of angular motion (±π/6 radians - corresponds to
the light gray wedge in Figure 1). A supporting leg may
stretch outside of this range, but provides no transitional
forces when doing so. The leg may not stretch outside an
absolute limit (±1 radians - corresponds to the dark gray
wedge in Figure 1). This behavior is intended to model the
reduced ability of a hyper-extended leg to provide propulsion.
When the leg is lifted from the ground, the agent "falls" and
its velocity is immediately set to zero.

The agent’s behavior is controlled by a fully connected con-
tinuous time recurrent neural network (CTRNN) [Beer,
1995] with the following state equation:

τ σ θi
i

i ji i i
j

Ndy

dt
y w y= − + +()

=
∑

1

where y is the state of each neuron, τ is its time constant,
wji is the strength of the connection from the jth to the ith

neuron, θ is a bias term, and σ () /()x e x= + −1 1 is the
standard logistic activation function. States were initialized
to uniform random numbers in the range ±0.1 and circuits
were integrated using the forward Euler method with an inte-
gration step size of 0.1. In each evolved CTRNN, three
units are motor neurons and provide control efforts to the
forward swing (FS) and backward swing (BS) and FOOT
(also called FT). The remaining neurons in each leg control-
ler have no pre-specified role. For the experiments reported
in this paper, the controlling CTRNNs receive no sensory
input from the outside world.

3. COMPACT GENETIC ALGORITHM

In a compact genetic algorithm [Harik, Lobo, and Goldberg,
1999], the population is represented by a probability vector
that codes the chance that each bit in an individual will be a
one or a zero. Each generation is a single tournament be-
tween two individuals randomly generated from the global
probability vector. The probabilities governing each bit are
adjusted according to the result of the tournament. Tourna-
ments are run until the probability vector converges. The
basic CGA can be summarized as follows:

1. Initialize probability vector
for i:=1 to l do p[i]=0.5

2. Generate two individuals from the vector
a := generate(p);
b := generate(p);

3. Let them compete
winner, loser := evaluate(a,b);

4. Update the probability vector toward the better
one
for i := 1 to l do

if winner[i] <> loser[i] then
 if winner[i] = 1 then p[i] +=1/n
 else p[1] -= 1/n

5. Check if the probability vector has converged
for i = 1 to l do

if p[i] > 0 and p[i] < 1 then
goto step 2

6. P represents the final solution

In the above description, l represents the number of bits in
the genome and n represents the size of the simulated popu-
lation. In this paper, we will systematically consider two
modifications to the basic CGA. These are:

a) Elitism
We will implement elitism (the best individual seen to
date stays in the population) by modifying step 2 of the
basic CGA so that only the “losing” contestant of each
tournament is randomly generated at the beginning of
the next tournament. This ensures the best individual
seen to date remains in consideration. We may more
formally state this modification by rewriting step 2 of
the standard CGA as follows:

π
6

-1.0

direction of travel

−π
6

Figure 1: The Single Legged Agent

2) Generate one individual from the vector

if fitness(a) > fitness(b) then
b = generate(p);

else
a = generate(p);

b) Mutation
We will implement mutation by adding a secondary
tournament to each cycle that compares the performance
of the current elite string with a mutated version of it-
self. If the mutated version wins, it replaces the old
champion as the elite string for the next tournament.
The bit positions that changed also have their probabili-
ties returned to 0.5, or some other user selected value.
Our implementation of mutation presumes elitism. We
can more formally describe this modification by altering
step 2 as described above and adding a new step as fol-
lows:

4.5) Mutate Champ and Evaluate
if fitness(a) > fitness(b)

{ c = mutate(a);
 evaluate(c);
 if fitness(c)>fitness(a) then

 { a = c;
 prob_fix(p);
}

 }
else { c = mutate(b);

 evaluate(c);
 if fitness(c) > fitness(b) then

{ b = c;
 prob_fix(p);
 }

}

The prob_fix() routine resets p[x] to 0.5 for every
position x that was mutated. Heuristically, this is
meant to represent the fact that a mutation in that posi-
tion seems like a good idea, but that we don’t want to
commit to it completely. Rather, we want to remain
undecided (there’s a fifty percent chance of either bit set-
ting occurring) and let a history of evaluations
determine which way that bit position should be set.

It should be noted that with the introduction of muta-
tion, CGA convergence can no longer be guaranteed.
One must modify the end condition appropriately, per-
haps by setting a maximum number of tournaments to
be run.

In later sections of this paper, we will refer to the standard
CGA simply as “CGA”. We will refer to a CGA with the
elitism modification as “eCGA”. We will refer to a CGA

with both the elitism and mutation modifications as the
“modified CGA”, or the “mCGA”.

4. PRELIMINARY COMPARISON
 OF CGA VARIATIONS

Our first set of experiments was designed to compare the
relative efficacy of the three variations on the CGA described
above. For these experiments, the parameter settings of a
five neuron, fully connected CTRNN were encoded on a bit
string genome using eight bits per parameter. Values were
encoded as fixed-point binary numbers and were simply con-
catenated into a single string. For five neuron CTRNNs,
there were 40 parameters resulting in a bit string of length
320. The fitness of a particular CTRNN was the amount of
distance it caused the agent to walk in a fixed amount of
time. No special scaling was applied to the fitness. One
hundred three (103) searches each were run using CGA,
eCGA, and mCGA. We found that the CGA failed terribly.
Not one of the 103 runs of the CGA produced an agent ca-
pable of locomotion. Approximately 34% of the runs of
eCGA produced agents capable of walking at a speed of at
least 80% of optimal. 71% of the runs of mCGA produced
agents capable of walking at a speed of at least 80% opti-
mal. These results are summarized in Table 1. For this
benchmark CTRNN search problem, mCGA is clearly supe-
rior. Further, mCGA compares very well to the simple
genetic algorithm. Previous results using the simple GA
for the same problem produced a yield of approximately 75%
and an average performance of 91.1% of optimal.

5. mCGA and the CTRNN Benchmark

The preliminary benchmark results of the last section sug-
gest that, of the CGA variants discussed, mCGA is the best
suited to searching CTRNN spaces. Further, those bench-
marks suggest that mCGA is, for searching CTRNN spaces,
at least as effective as the standard simple genetic algorithm.
Our second set of experiments was aimed at producing a

Search Type Yield Avg. Perform
CGA 0% 0%

ECGA 33.7% 89.0%
MCGA 71.0% 92.9%

Table 1: Relative Performances of CGA Variants
Yield shows the percentage of runs that resulted in a
CTRNN controller that was at least 80% of optimal. Avg.
Performance shows the mean of the performances of all
controllers that achieved better than 80% of optimal. Note
that both the yield and relative quality is greater for mCGA
than for eCGA. Also note that the standard CGA is totally
ineffective for this problem.

more detailed picture of the efficacy of mCGA in searching
CTRNN spaces.

Approximately 100 GA searches were run over each of eight
architecture sets. The base architectures searched were 3, 4,
5, 6, 7, 8, 9, and 10 neuron fully-connected CTRNNs. The
purpose of these tests as to examine how well mCGA scaled
to more difficult searches. The results of these experiments,
as well as the results of previously reported applications of
the simple genetic algorithm to the same problems [Galla-
gher, 1998], are shown in Table 2. mCGA runs were
limited to a maximum of 100,000 tournaments to ensure
that approximately the same number of candidate evalua-
tions were made in both mCGA and simple genetic
algorithm experiments. In terms of either the quality of so-
lutions or yield of successful solutions, there is no
significant difference between the simple GA and mCGA for
small CTRNNs. However, there is a significant difference
in both yield and quality of solution for CTRNNs of six or
more neurons. The simple genetic algorithm simply can
not cope with longer bit strings, while the mCGA seems
quite capable of searching these larger spaces.

The reason for the relatively poor yields of CPG3 networks
has been identified and discussed extensively in other works
[Beer, Chiel, and Gallagher; 1999][Chiel, Beer, and Galla-
gher; 1999]. In short, three-neuron CTRNNs lack
sufficiently many degrees of freedom to properly solve the
locomotion problem. The relative scarcity of three-neuron
solutions increases the difficulty of the search. It also puts
a cap on the maximum effectiveness of the solutions
evolved. Our data shows that mCGA performs no worse
than the simple GA in the face of these difficulties. Pre-
liminary experiments with single elimination tournaments
in the mCGA, however, show an increase in the yields of
CPG3s to 68%. We are currently engaged in further ex-
perimentation to better characterize this surprising
phenomenon.

6. mCGA and the De Jong Test Functions

mCGA was developed against a specific CTRNN bench-
mark problem. During that development, we saw that
though both the addition of elitism and mutation were use-
ful, it was the addition of mutation that seemed to provide
the most benefit. Both as a means of evaluating the effect
of differing mutation rates and as means of evaluating the
mCGA against standard benchmarks, we tested it against
the De Jong test functions [De Jong, 1975]. We ran 100
mCGA searches for each of the five De Jong test functions
for bitwise mutation rates of 0.0, 0.5, 0.1, 0.15, and 0.20.
Each objective function parameter was coded with same
precision and range as in De Jong’s thesis. Because mCGA
as formulated above doesn’t converge for higher mutation
rates, we capped the number of generations at 100,000 to be
consistent with the CTRNN benchmarks previously dis-
cussed. Simulated population size was set to 100 for
similar consistency with the CTRNN benchmarks.

mCGA always succeeded in finding the global optimal for
De Jong F1. This is perhaps not surprising, as the uni-
modal and symmetric F1 represents a very easy
optimization problem. We did note, however, that for F1,
small mutation rates allowed for faster searching. On aver-
age, mCGA found the F1 global optimal after about 672
generations with a mutation rate of 0.0. With a mutation
rate of 0.05, this was halved to about 332 generations.
Higher rates, resulted in delayed appearances of the optimal.
At mutation rates of 0.1, 0.15, and 0.2 it took on average
537, 1589, and 13363 generations respectively to find the
global optimal.

Figure 2 shows the average scores, based on 100 runs, of
the best solutions found for De Jong F2, F3, F4, and F5 for
the same bitwise mutation rates listed above. Note that for
F2, F3, and F5, increased mutation leads to an increased
chance of finding the optimal. Also note, however, that
just like with F1, increasing the mutation also increases the
number of generations, on average, that one needs to wait
for the optimal to appear. F4 behaves differently. A little

Arch Set Parameters Bit Length mCGA Yield sGA Yield mCGA Avg sGA Avg
CPG3 18 144 38.8% 40.4% 88.8% 89.1%
CPG4 28 224 61.2% 66.3% 90.3% 91.9%
CPG5 40 320 71.0% 74.5% 92.9% 93.2%
CPG6 54 432 79.0% 65.4% 92.2% 93.0%
CPG7 70 560 84.5% 63.3% 92.6% 92.0%
CPG8 88 704 87.9% 64.7% 94.4% 89.9%
CPG9 108 864 91.3% 57.0% 93.2% 88.9%
CPG10 130 1040 87.3% 59.8% 93.8% 88.8%

Table 2: mCGA vs. Simple Genetic Algorithm for Varying Search Space Sizes
Yield and avg. performances are as defined in Table 1. mCGA refers to the CGA with mutation and elitism. sGA refers to a stan-
dard simple genetic algorithm. Mann-Whitney tests show no significant differences in either yield or average performance up
through CPG5. After CPG5, both yields and average performances drop off sharply and significantly for the standard genetic
algorithm, while both yield and average performance hold steady for mCGA at least up through CTRNNs of nine neurons.

mutation helps, but increasing it too much results in a deg-
radation of the quality of solutions found. F4 is a simple
unimodal function with gaussian noise and is meant to test
how well an optimization algorithm deals with noisy objec-
tive functions. In the simple genetic algorithm, a mutation
of an individual that received a deceptively good score by
random chance would be likely to drop out of the popula-
tion eventually. We would expect it would not receive
deceptively good scores sufficiently often to allow it to
spread through the population. mCGA, however, simulates
a mutated individual having spread widely into the popula-
tion instantaneously by modifying the probability vector
that simulates the population. In a sense, the momentum
effects provided by having a real population are not present
in mCGA, and we could therefore expect it to be quite eas-
ily tricked by deceptive evaluations of individuals. This
effect is magnified as we allow more mutation events to
occur in a search. We will discuss possible fixes to this
problem later in this paper.

7. A Proposed Hardware Implementation

A design for a hardware implementation of the compact
genetic algorithm is in the literature [Aporntewan and
Chongstitvatana, 2001]. A hardware implementation of our
mCGA is not much more difficult to achieve. In this sec-
tion, we will outline one possible hardware implementation
of the mCGA. We will present a data path that supports all
the operations needed to implement the mCGA as described
in section three of this paper. We will also provide a quali-
tative description of the actions that an on-chip
microcontroller needs to take to implement the mCGA.

A proposed data path is provided in Figure 3. The design is
similar to that in [Aporntewan and Chongstitvatana, 2001],
but contains additional machinery to implement elitism and
mutation. The bit probability for a genome position as well
as bits for that position for two candidates are held in a
number of “bit modules”. In figure 3, two bit modules are

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 0.05 0.1 0.15 0.2

F2

0

0.5

1

1.5

2

2.5

0 0.05 0.1 0.15 0.2

F3

0

2

4

6

8

1 0

1 2

1 4

0 0.05 0.1 0.15 0.2

F4

1

1.5

2

2.5

3

3.5

4

0 0.05 0.1 0.15 0.2

F5

Figure 2: Average Errors Attained on De Jong F2 - F5
For each graph, the y-axis shows the average final error attained based on 100 runs. In all cases, the bottom tick on the y-axis
represents the lowest attainable error score. The x-axis shows setting of the mCGA bitwise mutation rate.

Reg
File

F

F

FEV
F

CMP

Mutation
Register FEV

F

F

CMP

CMPRNG 8

8

PRB

BUF

0

CMPRNG 8

8

PRB

BUF

1

E

To Additional Bit Modules

shown enclosed in gray boxes and labeled 0 and 1. Larger
genomes can be implemented by adding additional modules
as needed. The components in the data path are defined as
follows:

RNG : A random number generator. When activated, this
device will generate a random eight-bit number

CMP : A standard multibit comparator

PRB : The probability register. This register contains an
eight bit value that encodes the probability of that
bit position is a 1. The device also has control lines
that allow incrementing, decrementing, or setting
the probability to 0.5.

BUF : A 2x1 memory device. A select line allows one to
load a bit into the “top” or “bottom” bit position.
This device is used to hold bit values at a position
for the two candidates under consideration.

E : E is a one bit register that encodes which of the two
bits stored in each BUF (top or bottom) is part of
the current “elite individual.

FEV : The Function Evaluator. This is hardware that pro-
vides an error score for the bit pattern supplied to it.
This hardware could be on chip or it could obtain the
error evaluation with off-chip circuitry. We encode
the error score as an F bit number.

MR : Mutation Register. This device acts like a normal
register except that it mutates bits according to a
user specified mutation rate.

RF: Register File. A simple register file that stores the
F bit errors for the “top” and “bottom” candidates
stored in the bit modules.

MUX : Standard multibit multiplexers. Shown in the data
path as unlabeled trapezoids.

The mCGA would be implemented by augmenting the data
path with a microcontroller that would complete the follow-
ing operations.

Figure 3: Sample Data Path for the mCGA
A sample data path capable of implementing the mCGA in hardware. Components are defined in the text. Bold gray lines are N
bit busses where N is the number of bits in the genome. For large genomes, these wide busses can be replaced with serialized
communication channels.

1. The Probability Registers (PRBs) are set to hold their
initial probabilities of 0.5. All registers and buffers are
zeroed.

2. Each RNG generates a random number. This value is
compared with the contents of the corresponding PRB.
Each CMP produces a 1 if the generated random number
is less than the probability and a zero if it is greater.
Each generated bit in each of the bit modules is written
into the “top” slot of the buffer (BUF). The E bit,
which was cleared in step one, designates the “top” slot
as holding the current elite individual.

3. Step 2 is repeated, except this time the bits generated by
each comparator are stored in the “bottom” slots of each
BUF.

4. One at a time, all the bits in the top buffers are routed
to the FEV module. Each string is evaluated and the F
bit errors are stored in the “top” and “bottom” slots of
the register file.

5. The errors sent from the register file to a comparator.
The identity of the best score (top encoded as zero, bot-
tom encoded as 1) is sent back to and stored into the E
bit. We now know which of the two initially generated
individuals is the better.

6. All the bits making up the current elite individual are
routed into the mutation register, creating a mutated
version of the current best individual.

7. The bits making up the mutated candidate string are
routed to a FEV. The error resulting error score is
compared with the previously computed error score of
the best (taken from the register file). If the mutated in-
dividual is better, all the bits from the mutation register
are copied into their corresponding bit modules into the
currently elite buffer slots. The PRBs inside of bit
modules corresponding to bits that changed are also in-
structed to reset to hold a probability of 0.5.

8. Each RNG generates a random number, which is com-
pared with the corresponding PRB to generate a bit as
described in step two. Each new bit is written into the
NON ELITE slot in each bit buffer (BUF).

9. If our end condition is not met, go to step 4.

8. Conclusions and Discussion

We desire to combine reconfigurable analog neurons and a
hardware-based genetic algorithm into a single device to be
used to control and regulate physical processes. For our
application, compact size is vital. The CGA is particularly
amenable to implementation using standard VLSI techniques
and would result in extremely compact circuitry. The CGA,
however, is known to be a weak search method. We have
shown that the unmodified CGA is not sufficiently powerful

to evolve CTRNN controllers. However, by making simple
modifications that do not require major increases in the
number of gates necessary to implement the CGA in hard-
ware, we can produce a modified CGA that competes well
with the simple genetic algorithm. In fact, we have shown
that our modified CGA, for this problem, is actually pro-
vides superior search performance for approximately the
same computational cost. Additionally, we have shown
mCGA, for the most part, performs well on the five De
Jong test functions. Where it performs less well, specifi-
cally on randomized error functions, we have identified the
problem and are in a position to fix it. These results alone
are significant. At least as significant, however, are the
interesting questions raised by these results

First, we expected that unmodified CGA would not be able
to search CTRNN spaces effectively. We also expected that
with appropriate modification, we would be able to make
CGA work without incurring a great penalty in hardware
cost. We did not expect that the modified CGA would out-
perform methods previously employed. We intend to
carefully study our modified CGA to determine exactly why
we observed this improved performance. We formulated our
modifications based on our experience about what works for
evolving CTRNNs. Did, however, we stumble on some-
thing that searches other spaces well too? We intend to
answer this question by applying the mCGA to difficult
search problems outside of our target problem domain. If
more universally successful, we will more carefully and
formally analyze the algorithm.

Second, the introduction of single elimination tournaments,
unlike the other modifications we proposed, does somewhat
increase the number of gates required for hardware imple-
mentation. Tournaments are, therefore, somewhat less
attractive for our stated problem domain. However, that we
have already observed a significant gain in yield for the dif-
ficult CPG3 problem is interesting. We intend to study the
tournament modification more carefully in the future. It
may be the case that increases in effective yield might be
well worth the increased hardware costs.

Third, the single-leg CPG problem was not chosen arbitrar-
ily. It happens to be the best studied, and because the
controller may not make use of sensory feedback, one of the
more challenging, locomotion control problems we have
considered to date. This makes it a reasonable initial
benchmark of mCGA efficacy. We need, however, to apply
the search method to a wider variety of CTRNN control
problems. Initial results are very encouraging. We have
successfully used mCGAs to evolve hexapod locomotion
controllers and controllers correcting arrhythmia in simu-
lated human hearts. These results also represent important
verifications against prior work. However, we desire to be
careful and ensure that all our results possess a high degree
of statistical significance. Therefore, we need to run more
experiments against these other problems before we have
enough instances to report more than anecdotally on wider
success.

Fourth, we have extensively studied the neural dynamical
principles underlying the operation of CTRNN locomotion
controllers evolved using the simple genetic algorithm
[Beer, Chiel, and Gallagher, 1999][Chiel, Gallagher, and
Beer, 1999]. We have yet to rigorously study the principles
underlying the operations of the mCGA produced control-
lers. One would expect them to operate using similar
principles -- however, we have three mCGA produced
CPG3’s that seem to defy explanation using the dynamical
systems techniques previously developed. Analysis of these
devices is under way. The differences in the resulting prod-
ucts may reveal that the mCGA is searching a portion of
CTRNN space difficult for previous methods to reach. The
nature of the “difficult to reach space” may provide impor-
tant clues on why our modifications work so well and
perhaps, suggest additional modifications that might help
us search CTRNN spaces more reliably.

In the future, we intend to expand and optimize the hard-
ware mCGA. This should be a fairly straightforward task
and we expect to have completely validated designs very
shortly.

In conclusion, we have demonstrated that the marriage of
the mCGA and reconfigurable CTRNN hardware is likely to
produce compact, capable EH chips. In addition to provid-
ing an important feasibility result, we have also opened
several interesting new lines of inquiry that will likely pro-
vide equally interesting results as they are pursued. Our
mCGA is almost certainly well suited to CTRNN-EH, and
may be adaptable to other EH efforts as well.

Acknowledgments

The authors would like to thank Steven Perretta and Wendy
Peluso for their comments and suggestions on this manu-
script.

References

Aporntewan, C. and Chongstitvatana, Prabhas. (2001). A
hardware implementation of the compact genetic algo-
rithm. In The Proceedings of the 2001 IEEE Congress on
Evolutionary Computation. Seoul, Korea. IEEE Press

Beer, R.D. (1995). On the dynamics of small continuous-
time recurrent neural networks. Adaptive Behavior
3(4):469-509.

Beer, R.D., Chiel, H.J. & Gallagher, J.C. (1999). Evolu-
tion and analysis of model CPGs for walking II. General
principles and individual variability. J. Computational
Neuroscience 7(2):119-147. (Kluwer).

Chiel, H.J., Beer, R.D., & Gallagher, J.C. (1999). Evolu-
tion and analysis of model CPGs for walking I.
Dynamical modules. J. Computational Neuroscience
7:(2):99-118.

De Jong, K.A. (1975). An analysis of the behavior of a
class of genetic adaptive systems. Doctoral dissertation,
University of Michigan, Ann Arbor. University Micro-
films Num 76-9381.

Gallagher, J.C. (1998). A dynamical systems analysis of the
neural basis of behavior in an artificial autonomous agent.
Ph.D. Doctoral dissertation, Case Western Reserve Uni-
versity. Cleveland, OH. USA.

Gallagher, J.C. and Fiore, J.M. (2000). Continuous time
recurrent neural networks: a paradigm for evolvable analog
controller circuits. in The Proceedings of the National
Aerospace and Electronics Conference. IEEE Press.

Harik, G.R., Lobo, F.G., and Goldberg, D.E. (1999). The
compact genetic algorithm. In IEEE Transactions on
Evolutionary Computation vol. 3 no. 4. pp 287-297

Kajitani, T., Hoshino, T. Nishikawa, D., et.al. (1998). A
gate level EHW chip: implementing GA operations and
reconfigurable hardware on a single LSI. In Proceedings
of the International Conference on Evolvable Hardware
(ICES 1998).

Scott, S. and Seth, A. (1995). HGA: a hardware-based ge-
netic algorithm, In Proceedings of the ACM/SIGDA Third
Int. Symposium on Field-Programmable Gate Arrays.

Yoshida, N. and Yasuoka, T. (1999). Multi-gap : parallel
and distributed genetic algorithms in VLSI. In Proceedings
of the International Conference on Systems, Man, and
Cybernetics

