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Abstract

This paper shows how a small number of fuzzy
rules can be selected for designing interpretable
fuzzy rule-based classification systems. Our
approach consists of two phases: candidate rule
generation by data mining criteria and rule
selection by genetic agorithms. First a large
number of candidate rules are generated and
prescreened using two rule evaluation criteriain
data mining. Next a small number of fuzzy rules
are selected from candidate rules using genetic
algorithms. Rule selection is formulated as an
optimization problem with three objectives: to
maximize the classification accuracy, to
minimize the number of selected rules, and to
minimize the total rule length. Thus the task of
genetic agorithms is to find non-dominated rule
sets with respect to the three objectives.

1. INTRODUCTION

Fuzzy rule-based systems have been successfully applied
to various fields such as control, modeling, and
classification (Leondes 1999). While the main goa in the
design of fuzzy rule-based systems has been the
performance maximization, their interpretability has also
been taken into account in some recent studies (Pene-
Reyes & Sipper 1999, Cadtillo et al. 2001, Roubos &
Setnes 2001, and Casillas et al. 2002). In this paper, we
consider three objectives in the design of fuzzy rule-based
classification systems as in Ishibuchi, Nakashima &
Murata (2001): Classification accuracy, the number of
fuzzy rules, and the tota length of fuzzy rules. The length
of afuzzy ruleis the number of its antecedent conditions
(i.e., the number of attributes in its antecedent part). The
first objective is the performance maximization while the
others are related to the interpretability. Usually human
users do not want to manually check hundreds of fuzzy
rules. Thus the number of fuzzy rulesis closely related to

Takashi Yamamoto

Dept. of Industrial Engineering
Osaka Prefecture University
1-1 Gakuen-cho, Sakai, Osaka, 599-8531, JAPAN
E-mail: yama@ie.osakafu-u.ac.jp
Phone: +81-72-254-9351

the interpretability of fuzzy rule-based systems. Fuzzy
rule-based systems with a small number of fuzzy rules are
not aways interpretable. Human users cannot intuitively
understand long fuzzy rules with many antecedent
conditions. Thus the rule length is also closely related to
the interpretability of fuzzy rule-based systems. In this
paper, we maximize the classification accuracy of fuzzy
rule-based systems, minimize the number of fuzzy rules,
and minimize the total length of fuzzy rules. Multi-
objective genetic algorithms are used for finding non-
dominated rule sets with respect to these three objectives.

Fuzzy rule generation methods can be categorized into
two approaches according to their strategies for dividing
the input space into fuzzy subspaces. One approach is
based on grid-type fuzzy partitions where the domain
interval of each input is divided into antecedent fuzzy sets
with linguistic labels. Fig. 1 is an example of such a grid-
type fuzzy partition. The other approach uses multi-
dimensiona antecedent fuzzy sets defined on the input
space. Fig. 2 illustrates two-dimensiona €llipsoidal
antecedent fuzzy sets. Multi-dimensional antecedent
fuzzy sets usually lead to fuzzy rule-based systems with
high accuracy but low interpretability. On the other hand,
fuzzy rule-based systems with high interpretability can be
generated from grid-type fuzzy partitions. Since our goa
is to generate interpretable fuzzy rule-based systems, we
use the first approach (i.e., grid-type fuzzy partitions). As
discussed in Suzuki & Furuhashi (2001), homogeneous
fuzzy partitions are more interpretable than adjusted ones.
Thus we use homogeneous fuzzy partitions as shown in
Fig. 1. Usualy we do not know an appropriate fuzzy
partition for each input. In general, each input may have a
different fuzzy partition while the two axes of the input
space is divided by the same fuzzy partition in Fig. 1.
Moreover, genera rules may use coarse fuzzy partitions
while specific rules may use fine fuzzy partitions in a
single fuzzy rule-based system. For handling such a
situation with different fuzzy partitions of different
granularities, we specify each antecedent condition of



fuzzy rules by choosing an antecedent fuzzy set from
various fuzzy partitions for each input. In this paper, we
use four fuzzy partitions in Fig. 3 where the total number
of antecedent fuzzy sets is 14. For generating short fuzzy
rules with a small number of antecedent conditions, we
use “don’t car€” as an additional antecedent fuzzy set.
Thus an antecedent fuzzy set for each input is chosen
from the 14 fuzzy sets in Fig. 3 and “don't care”’. The
total number of combinations of antecedent fuzzy sets is
15" for an n-dimensional pattern classification problem.
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Figure 1: A 5X5 fuzzy grid of atwo-dimensional input space.
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Figure 2: Ellipsoidal antecedent fuzzy sets.
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Figure 3: Four fuzzy partitions. The meaning of each labd is as
follows: S: small, MS: medium small, M: medium, ML: medium
large, and L: large. The superscript of each labdl denotes the
granularity of the corresponding fuzzy partition.

Genetic algorithm-based fuzzy rule selection (Ishibuchi,
Nakashima & Murata, 2001) consists of two phases. In

the first phase, a large number of candidate rules are
generated from various combinations of antecedent fuzzy
sets. In the second phase, subsets of the generated
candidate rules are examined using genetic agorithms for
finding non-dominated rule sets with respect to the above-
mentioned three objectives. In Ishibuchi, Nakashima &
Murata (2001), a single fuzzy partition was used for al
inputs as in Fig. 1. In this case, the tota number of
combinations of antecedent fuzzy sets including “don’t
care’ is (5+1)" for an n-dimensiona pattern
classification problem. This is much smaller than 15" in
this paper. That is, we have much more candidate rules. It
should be noted that the search space for finding non-
dominated rule sets exponentially expands as the number
of candidate rules increases. The efficiency of genetic
algorithms is significantly deteriorated by the increase in
the number of candidate rules as shown in this paper.
Thus we need a trick for decreasing the number of
candidate rules. Our idea is to prescreen candidate rules
based on fuzzy versions of two rule evaluation criteria
(i.e., confidence and support) for association rules, which
have been frequently used in the field of data mining
(Agrawal et a. 1996). In our prescreening procedure,
fuzzy rules are divided into several groups according to
their consequent classes. Then fuzzy rules in each group
are sorted in a descending order of the product of
confidence and support. Finaly a pre-specified number of
fuzzy rules are chosen from the top of the rule list for
each group. The selected fuzzy rules are used as candidate
rulesin our genetic algorithm-based rule selection method.

In the next section, we show how the design of fuzzy rule-
based classification systems can be formulated as a three-
objective rule selection problem. In Section 3, we propose
a prescreening procedure of candidate rules using fuzzy
versions of the two rule evaluation criteriain data mining.
In Section 4, we describe a three-objective genetic
algorithm for rule selection. The effect of the proposed
prescreening procedure on the efficiency of the genetic
algorithm-based rule selection method is examined in
Section 5 through computer simulations. Finally Section 6
concludes this paper.

2. PROBLEM FORMULATION

Let us consider an M-class pattern classification problem
with m labeled patterns X, =(Xp1, - Xpn), P=1,
2,...min an n-dimensiona continuous pattern space. For
simplicity of explanation, we assume that the pattern
space is the n-dimensiona unit hypercube [0, 1]". That
is, we assume that all attribute values are real numbersin
the unit interval [0,1] . For our pattern classification
problem, we use fuzzy rules of the following form:

Rule Rq:If xq is Agy and ... and xp is Agy
then Class C with CF, (1)



where Ry is the g-th fuzzy rule, x =(Xy , ..., Xp ) isan
n-dimensional pattern vector, Ay is an antecedent fuzzy
set, C is aconsequent class (i.e., one of the M classes),
and Ckq is a rule weight (i.e, certainty factor). The

antecedent fuzzy set Ay; isone of the 14 fuzzy setsin Fig.

3 or “don’'t care”. The rule weight CF is areal number
in the unit interval [0, 1] . As shown in the next section,
the consequent class Cy and the rule weight CF are
determined in a heuristic manner from compatible training
patterns with the antecedent part of Ry.

Let Sbe asubset of 15" fuzzy rules of the form (1). Our
task is to find rule sets with high classification ability and
high interpretability. This task can be rephrased as finding
a smal number of simple fuzzy rules with high
classification ability. As in Ishibuchi, Nakashima &
Murata (2001), our rule selection problem is formulated
as the following three-objective optimization problem:

Maximize f1 (S), and minimize f, (S), f3(S), (2

where f, (S) is the number of correctly classified
training patterns by S, f, (S) is the number of fuzzy
rulesin S and f3 (S) is the tota rule length of fuzzy
rulesin S,

Usualy there is no optimal rule set with respect to all the
three objectives. Thus our task isto find multiple rule sets
that are not dominated by any other rule sets. A rule set
Sg is said to dominate ancther rule set Sp (i.e, Sg is
better than S, @ Sp <Sg ) if dl the following

inequalities hold:
f1(Sa)=f1(Sg), (3
f2(Sa)zf,(Sg), (4)
f3(Sa)zf3(Sg), (%)

and at least one of the following inequalities holds:
f1(Sa)<f1(Sg), (6)
f2(Sa)>f2(Sg), (7)
f3(Sa)>13(Sg). (©)

The first condition (i.e., al the three inequalities in (3)-
(5)) means that no objective of Sg isworsethan Sy (i.e,
Sg is not worse than S, ). The second condition (i.e.,
one of the three inequdlities in (6)-(8)) means that at least
one objective of Sg is better than S,. When a rule set
S is not dominated by any other rule sets, Sissaidto bea
Pareto-optimal solution of our rule selection problem in
(2). In many cases, it is impractical to try to find true
Pareto-optimal solutions of our rule selection problem
whose search space is huge (i.e., the search space is the
power set of 15" fuzzy rules). Thus we try to find near
Pareto-optimal  solutions. More specificaly, first we
decrease the search space by prescreening candidate fuzzy
rules. Then we search for near Pareto-optimal sol utions by
athree-objective genetic algorithm.

3. CANDIDATE RULE PRESCREENING

3.1 FUZZIFICATION OF ASSOCIATION RULES

As we have adready explained, the total number of
combinations of antecedent fuzzy sets is 15" for our n-
dimensiond pattern classification problem. When n is
small (e.g.,, n<4), we can examine al combinations of
antecedent fuzzy sets for generating fuzzy rules and use
al the generated fuzzy rules as candidate rules in our
genetic agorithm-based rule selection method. That is, no
prescreening of candidate rules is necessary. On the other
hand, we need a prescreening procedure when n is large.
It is timeconsuming to examine al the 15"
combinations when n is large (e.g., n=13 in wine data
used in computer simulations of this paper). In this case, it
is aso impractica to use al the generated fuzzy rules as
candidate rules in our genetic agorithm-based rule
selection method. Our idea is to use rule evaluation
criteria in data mining for decreasing the number of
candidate rules.

In the area of data mining, two criteria called confidence
and support have often been used for evaluating
association rules (Agrawal et al. 1996). Our fuzzy rulein
(1) can be viewed as an association rule of the form
Aq =Cq . We use the two criteria for prescreening
candidate rules. In this subsection, we show how the
definitions of these two criteria can be extended to the
case of the fuzzy association rule Aq =Cq (Ishibuchi,
Yamamoto & Nakashima, 2001). Similar extensions of
the two criteria to fuzzy association rules were aso
proposed in Hong et al. (2001).

Let D be the set of the given m training patterns
X p =(xpl, xpn) , p=1,2,..,m. The cardinality
of Dism(i.e, | D |=m). Theconfidenceof Ay =Cy is
defined as follows (Agrawal et al. 1996):

ID(Aq)ND(Cq)l

where the denominator |[D(Aq )| is the number of
training patterns compatible with the antecedent part A,
and the numerator | D (A )N D(Cq) | isthe number of
training patterns compatible with both the antecedent part
Aq and the consequent class C . The confidence c
indicates the grade of the validity of Ay = C. That is,
¢ (x100%) of training patterns compatible with Ay are
aso compatible with Cy . In the case of standard
association rules, neither Ay nor C is fuzzy. Thus the
calculations of [D(Aq )| and [D(Ag)ND(Cq)] can
be performed by simply counting compatible training
patterns. On the other hand, each training pattern has a
different compatibility grade H g (xp) with the
antecedent part Ay when Ay =C, is a fuzzy
association rule. Thus such a compatibility grade should



be taken into account. Since the consequent class C is
not fuzzy, the confidence in (9) can be rewritten as
follows (Ishibuchi, Yamamoto & Nakashima 2001):

ID(Aq)ND(Cq)l
ID(Aq)I

c(Aq=Cq) =

IZ ,qu (Xp)
OClassC
=P q . (10)

> tag (xp)
p=1

The compatibility grade Ha, (X p) is usually defined
by the product or minimum operator. In this paper, we use
the product operator as

Hag (Xp)=pay (Xp1) XX - (Xpn ), (11)
where fp (Xpi ) is the membership function of the
antecedent Tuzzy set A (i.e., each trianglein Fig. 3).
On the other hand, the support of AO| = CO| is defined
asfollows (Agrawal et a. 1996):

ID(Aq)ND(Cq)l
S(Aq=Cq) = o . (12

The support s indicates the grade of the coverage by
Aq=>Cq . That is, s (x 100%) of al the training
patterns are compatible with the association rule
Aq = Cq (i.e, compatible with both Ay and Cg). In
the same manner as the confidence in (10), the support in
(12) can be rewritten as follows (Ishibuchi, Yamamoto &
Nakashima 2001):

ID(Aq)ND(Cq)l
D]

s(Aq =>Cq) =

DCI2 c Hag (Xp)
=P = 1

3.2 CONSEQUENT CLASSAND RULE WEIGHT

The consequent class C; of the fuzzy rule Ry with the
antecedent part A is determined as

c(Aq=Cq)
= max{c(Aq = Class1), .., c(Aq = Class M)} .
(14)
That is, the consequent class has the maximum confidence
among the M aternative classes. It should be noted that
the same class C is obtained for Ay when we use the

support < instead of the confidence c¢. This is because
the following relation holds between the confidence ¢ and

the support s from their definitions:

ID(Ag)I

D]
t=1,2,...M . (15)

Since the second term (i.e., [D(Aq ) |/| D) of the right-
hand side is independent of the consequent class, the class
with the maximum confidence is the same as the class
with the maximum support. The same class aso has the
maximum product of these two criteria. Usually we can
uniquely specify the consequent class C, for each
combination Ag of antecedent fuzzy sets. Only when
multiple classes have the same maximum confidence
(including the case of no compatible training pattern with
the antecedent part Ag: c(Ay = Classh) =0 for all
classes), we cannot specify the consequent class C, for
Aq - In this case, we do not generate the corresponding
fuzzy rule Ry, .

S(Aq = Cassh) =c(Ay = Class h)x

The confidence of Rg can be directly used as its rule
weight as in Cordon et a. (1999). Our preliminary
simulation results showed that better results were obtained
from the following definition of the rule weight than the
direct use of the confidence:

CFq =c( Aq = Cq ) ~ Csecond » (16)

where Cgeeong 1S the second largest confidence for the
antecedent part Ag:

CSecond :mr?x{c(Aq =Classh)|h#Cq}. (17)

Our preiminary computer simulations also showed that
better results were obtained from the definition in (16)
than the following definition used in some studies on
fuzzy rule-based classification systems (e.g., Ishibuchi,
Y amamoto & Nakashima 2001):

CFq=c(Aq=Cq) ~Caverage:  (18)

where Cayerage 1S the average confidence over fuzzy rules
with the same antecedent part Ay but different
consequent classes:

CAVHme:mhi C(Aq :>C|a$h) . (19)
q

3.3 PRESCREENING PROCEDURE

The generated fuzzy rules are divided into M groups
according to their consequent classes. Fuzzy rulesin each
group are sorted in a descending order of the product of
the confidence and the support (i.e., sic). For selecting N
candidate rules, the firsst N/M rules are chosen from
each of the M groups. In this manner, we can choose a



pre-specified number of candidate rules as candidate rules
in our genetic agorithm-based rule selection method. In
our preliminary computer simulations, we also examined
the confidence and the support as rule prescreening
criteria. The best result among the three criteria for rule
prescreening (i.e., confidence, support, and their product)
was obtained when we used the product of the confidence
and the support.

As we have dready mentioned, the tota number of
combinations of antecedent fuzzy sets is 15" for our n-
dimensiona pattern classification problem. Thus it is
impractical to examine all combinations when n is large.
In this case, we examine only short fuzzy rules with only
a few antecedent conditions (i.e., with many don’t care
conditions). The number of fuzzy rules of the length L is
caculatedas , C| x14 L because we have 14 antecedent
fuzzy sets for each input (excluding don't care). Even
when nis large, , C x14% is not so large for a small
value of L. This means that the number of short fuzzy
rules is not so large even when the total number of fuzzy
rulesis huge.

4. GENETIC ALGORITHM

Many genetic algorithms for multi-objective optimization
problems have been proposed in the literature (Zitzler &
Thide 1999, and Zitzler et al. 2000). Since each rule set
can be represented by a binary string, we can apply those
algorithms to our three-objective rule selection problem in
Section 2. In this paper, we use a dlightly modified
version of a three-objective genetic algorithm for rule
selection in Ishibuchi, Nakashima & Murata (2001). This
algorithm has two characteristic features. One is to use a
scalar fitness function with variable random weights for
evaluating each string (i.e., each rule set). Whenever a
pair of parent solutions is selected for crossover, weights
are randomly updated. That is, each selection is governed
by a different weight vector. Genetic search in various
directions in the three-dimensiona objective space is
realized by this random weighting scheme. The other
characteristic feature is to store al non-dominated
solutions as a secondary population separately from a
current population. The secondary population is updated
a every generation. A smal number of non-dominated
solutions are randomly chosen from the secondary
population and their copies are added to the current
population as elite solutions. The convergence speed of
the current population to Pareto-optima solutions is
improved by the dlitist strategy. Other parts of our three-
objective genetic algorithm are the same as standard
single-objective genetic agorithms. Note that our task is
to find multiple non-dominated solutions while the task of
standard genetic agorithms is to find a single optimal
solution. Of course, we can use other multi-objective
genetic algorithms proposed in the literature.

An arbitrary subset S of N candidate fuzzy rules can be
represented by abinary string of the length N as

S:S]_SZ [[DEN s (20)

where s, =0 means that the g-th rule R, is not
includedin S while sq =1 meansthat Ry isincludedin
S . An initid population is constructed by randomly
generating a pre-specified number of binary strings of the
length N.

The first objective f4 (S) of each string S is calculated
by classifying al the given training patterns by S. We use
a fuzzy reasoning method based on a single winner rule as
in Ishibuchi, Nakashima & Murata (2001). In this fuzzy
reasoning method, the classification of each pattern by the
rule set Sis performed by finding a single winner rule
with the maximum product of the rule weight and the
compatibility grade with that pattern. There are many
cases where some fuzzy rules in S are not chosen as
winner rules for any patterns. We can remove those fuzzy
rules from S without degrading the classification accuracy
of S. At the same time, the second and third objectives are
improved by removing unnecessary fuzzy rules. Thus we
remove all fuzzy rules that are not selected as winner
rules of any patterns from the rule set S. The removal of
those rules is performed for each string in the current
population by changing the corresponding 1's to O's
before the second and third objectives are calcul ated.

After the three objectives of each string (i.e., each rule
set) in the current population are calculated, the secondary
population of non-dominated rule sets is updated. That is,
each rule st in the current population is examined
whether it is dominated by other rule sets in the current
and secondary populations. If it is not dominated by any
other rule sets, its copy is added to the secondary
population. Then all rule sets dominated by the newly
added one are removed from the secondary population. In
this manner, the secondary population is updated at every
generation.

The fitness value of each rule set S in the current
population is defined by the three objectives as

fitness(S) =wy [f; (S)-wyp [, (S)-w3 U3 (S),

(21)
where w; , w, and wjz are weights satisfying the
following conditions:

Wl,Wz,W320, (22)
wy +W, +wg =1, (23)

Whenever a pair of parent strings is selected from the
current population, these weights are randomly updated.
The random specification of the rule weights is to search
for a variety of non-dominated rule sets in the three-
dimensiona objective space. Binary tournament selection
with replacement is used for selecting a pair of parent



strings using the scalar fitness function in (21) with the
randomly specified weights. That is, two strings are
randomly selected from the current population and the
better one is chosen as a parent string. Then the two
strings are returned to the current population. The other
parent string is also selected in the same manner using the
same weight values. When another pair of parent strings
is selected, the weight values are randomly updated.

Uniform crossover is applied to each pair of parent strings
to generate a new string. Then biased mutation is applied
to the generated string for efficiently decreasing the
number of fuzzy rulesincluded in the string. In the biased
mutation operation, a larger probability is assigned to the
mutation from 1 to O (i.e,, mutation for decreasing the
number of fuzzy rules) than the mutation from0to 1 (i.e.,
mutation for increasing the number of fuzzy rules).

The next population consists of the newly generated
strings by the genetic operations. Some non-dominated
strings in the secondary population are randomly selected
as elite solutions and their copies are added to the new
population. The outline of the three-objective genetic
algorithm for rule selection is written as follows:

Step 0: Parameter Specification.

Specify the population size N 4, , the number of elite
solutions N gjte that are randomly selected from the
secondary population and added to the current population,
the crossover probability p., two mutation probabilities

Pm(1-0) and p,(0-1) , and the stopping
condition.

Sep 1: Initialization.

Randomly generate N o, binary strings of the length
N as an initial population. Calculate the three objectives
of each string. In this calculation, unnecessary rules are
removed from each string. Find non-dominated strings
(i.e., non-dominated rule sets) in the initial population. A
secondary population consists of copies of those non-
dominated strings.

Sep 2: Genetic Operations.

Generate (N pop ~Ngijte ) strings using genetic
operations (i.e,, binary tournament selection, uniform
crossover, and biased mutation) from the current
population.

Sep 3: Evaluation.

Calculate the three objectives of each of the newly
generated (N pop — Ngjte ) Strings. In this calculation,
unnecessary rules are removed from each string. The
current population consists of the modified strings.

Sep 4: Secondary Population Update.
Update the secondary population by examining each
string in the current population as mentioned above.

Step 5: Elitist Srategy.
Randomly select N gjie Strings from the secondary

population and add their copies to the current population.

Sep 6: Termination Test.

If the stopping condition is not satisfied, return to Step
2. Otherwise terminate the execution of the agorithm. All
the non-dominated strings among examined ones in the
execution of the agorithm are stored in the secondary
population.

5. COMPUTER SIMULATIONS

We apply the proposed rule selection method to wine
data available from the UCI Machine Learning Repository
(http://www.ics.uci.edu/~mlearn/MLSummary.html). The
wine data set consists of 178 samples with 13 continuous
attributes from three classes. We normdized each
attribute value into areal number in the unit interval [0, 1].
Thus the wine data set was handled as a three-class
pattern classification problem in the 13-dimensional unit
hypercube [0, 1] 13 The totd number of possible
combinations of antecedent fuzzy setsis 1513,

First we generated fuzzy rules of the length three or less
using all the 178 samples as training patterns. The number
of generated fuzzy rules of each length is summarized in
Table 1. The fuzzy rule of the length zero has no
antecedent conditions, Class 2 consequent, and a very
small certainty grade (i.e., rule weight). This fuzzy rule
can be generated because the number of Class 2 samples
isthe largest among the three classes in the wine data.

Table 1: The number of generated fuzzy rules of each length.

Length of rules 0 1 2 3 Total

Number of rules 1 182 14,781 696,752 711,716

The generated 711,716 fuzzy rules were divided into three
groups according to their consequent classes. Fuzzy rules
in each class were sorted in a descending order of the
product of the confidence and the support. From each
group, the first 300 fuzzy rules were sdlected as candidate
rules (N =900: 900 candidate rules in total). Then the
three-objective genetic algorithm was applied to the 900
candidate rules using the following parameter
specifications.

Population size: N o, =50,
Number of elite solutions: N gijte =5,
Crossover probability: p. =0.9,
Muitation probability: p, (1 - 0) =0.1,
Pm(0-1)=1/N,
Stopping condition: 10,000 generations.
Our computer simulations were iterated 20 times. Non-

dominated rule sets obtained from those 20 trids are
summarized in Table 2. Examples of the obtained rule



sets in Table 2 are shown in Fig. 4 and Fig. 5. Fig. 4
shows three fuzzy rules with only a single antecedent
condition, which correspond to the second rule set with a
94.9% classification rate in Table 2. Fig. 5 shows three
fuzzy rules with a few antecedent conditions, which
correspond to the sixth rule set with a 100% classification
ratein Table 2.

Table 2: Non-dominated rule sets obtained from 20 trials of the
proposed method with 900 candidate rules.

Number of  Averagerule Classification
rules length rate (%)
3 0.67 88.2
3 1.00 94.9
3 133 96.1
3 167 98.3
3 2.00 99.4
3 2.33 100.0
4 0.75 96.1
4 1.00 97.2
4 1.25 98.9
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Figure 4: Three fuzzy rules with a 94.9% classification rate.
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Figure5: Three fuzzy rules with a 100% classification rate.
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From Table 2, we can see that our rule selection method
found various rule sets with different classification rates
and different sizes. The sdlected rule sets have high
interpretability as shown in Fig. 4 and Fig. 5. From the
comparison between Fig. 4 and Fig. 5, we can observe the
existence of a tradeoff between classification accuracy
and interpretability (i.e., the three fuzzy rules in Fig. 5
have ahigher classification rate but less interpretable).

For examining the usefulness of the proposed
prescreening procedure of candidate rules, the same
computer simulation was performed using randomly

selected 900 candidate rules from the generated 711,716
fuzzy rules. Simulation results are summarized in Table 3.
From the comparison between Table 2 and Table 3, we
can see that the classification ahility and/or the
interpretability of obtained rule sets were deteriorated by
the use of randomly selected candidate rules.

We aso performed the same computer simulation using
no prescreening procedure. In this case, al the generated
711,716 fuzzy rules were used as candidate rules. Thus
the string length was 711,716. As we can expect, the
execution of the three-objective genetic algorithm with
such along string required large memory storage and long
CPU time. Table 4 shows non-dominated rule sets
obtained from ten trials of the three-objective genetic
algorithm. Since the search space was too large, good rule
sets could not be obtained within a reasonable
computation time (especially with respect to the number
of fuzzy rules as shown in Table 4). The average CPU
time for each tria was about 11 hoursin Table 4 while it
was about four minutes in Table 2 with 900 candidate
rules selected by the proposed prescreening procedure.

Table 3: Simulation results with randomly selected 900
candidaterules.

Number of  Averagerule Classification
rules length rate (%)
3 167 86.5
3 2.00 93.3
3 2.33 95.5
3 2.67 96.1
4 2.25 96.6
4 2.50 97.2
4 2.75 97.8
5 2.40 98.3
5 2.60 98.9
6 2.50 99.4
7 2.57 100.0
8 2.13 100.0

Table4: Simulation resultswith 711,716 candidate rules.

Number of  Averagerule Classification
rules length rate (%)
5 1.40 94.4
5 1.60 96.1
6 1.50 96.6
6 1.83 98.3
7 171 100.0

Finaly we examined the effect of using various fuzzy
partitions for each input on the classification performance
of fuzzy rule-based classification systems. In the same
manner as the computer simulation for Table 2, we
applied our rule sdection method to the wine data set
using only the finest fuzzy partition with five linguistic
labels in Fig. 3 (i.e., the bottom-right fuzzy partition in



Fig. 3). Table 5 shows non-dominated rule sets obtained
from 20 trias. From the comparison between Table 2 and
Table 5, we can see that smaller rule sets with higher
classification rates were obtained in Table 2 than Table 5.
This result was expected from the fact that the three fuzzy
rules with a 100% classification rate in Fig. 5 use various
fuzzy partitions with different granularities.

Table 5: Non-dominated rule sets obtained from 20 trials using
only asinglefuzzy partition with fivefuzzy sets.

Number of  Averagerule Classification
rules length rate (%)
3 0.67 85.4
3 1.00 91.6
3 1.33 93.3
4 1.00 95.5
4 1.25 96.1
4 1.50 97.2
5 1.00 97.2
5 1.40 97.8
5 1.60 98.3
5 1.80 98.9
6 1.00 97.8
6 117 98.3
6 133 98.9
6 1.50 99.4
7 1.57 100.0

6. CONCLUSIONS

In this paper, we extended the genetic algorithm-based
rule selection method in Ishibuchi, Nakashima & Murata
(2001) to the case where various fuzzy partitions with
different granularities are used for each input. This
extension leads to the increase in the number of candidate
rules. Thus we proposed a prescreening procedure for
decreasing the number of candidate rules. The proposed
prescreening procedure is based on two rule evaluation
criteria of association rules in the fidd of data mining.
Through computer simulations, we demonstrated the
necessity of candidate rule prescreening in genetic
algorithm-based rule selection. The three-objective
genetic agorithm could not find good rule sets when
candidate rules were randomly chosen. In the case of no
prescreening, the CPU time was very long (i.e., about 11
hours) while it was a few minutes in the case with the
proposed prescreening procedure.
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