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Abstract 

This paper shows how a small number of fuzzy 
rules can be selected for designing interpretable 
fuzzy rule-based classification systems. Our 
approach consists of two phases: candidate rule 
generation by data mining criteria and rule 
selection by genetic algorithms. First a large 
number of candidate rules are generated and 
prescreened using two rule evaluation criteria in 
data mining. Next a small number of fuzzy rules 
are selected from candidate rules using genetic 
algorithms. Rule selection is formulated as an 
optimization problem with three objectives: to 
maximize the classification accuracy, to 
minimize the number of selected rules, and to 
minimize the total rule length. Thus the task of 
genetic algorithms is to find non-dominated rule 
sets with respect to the three objectives. 

1. INTRODUCTION 

Fuzzy rule-based systems have been successfully applied 
to various fields such as control, modeling, and 
classification (Leondes 1999). While the main goal in the 
design of fuzzy rule-based systems has been the 
performance maximization, their interpretability has also 
been taken into account in some recent studies (Pene-
Reyes & Sipper 1999, Castillo et al. 2001, Roubos & 
Setnes 2001, and Casillas et al. 2002). In this paper, we 
consider three objectives in the design of fuzzy rule-based 
classification systems as in Ishibuchi, Nakashima & 
Murata (2001): Classification accuracy, the number of 
fuzzy rules, and the total length of fuzzy rules. The length 
of a fuzzy rule is the number of its antecedent conditions 
(i.e., the number of attributes in its antecedent part). The 
first objective is the performance maximization while the 
others are related to the interpretability. Usually human 
users do not want to manually check hundreds of fuzzy 
rules. Thus the number of fuzzy rules is closely related to 

the interpretability of fuzzy rule-based systems. Fuzzy 
rule-based systems with a small number of fuzzy rules are 
not always interpretable. Human users cannot intuitively 
understand long fuzzy rules with many antecedent 
conditions. Thus the rule length is also closely related to 
the interpretability of fuzzy rule-based systems. In this 
paper, we maximize the classification accuracy of fuzzy 
rule-based systems, minimize the number of fuzzy rules, 
and minimize the total length of fuzzy rules. Multi-
objective genetic algorithms are used for finding non-
dominated rule sets with respect to these three objectives.  

Fuzzy rule generation methods can be categorized into 
two approaches according to their strategies for dividing 
the input space into fuzzy subspaces. One approach is 
based on grid-type fuzzy partitions where the domain 
interval of each input is divided into antecedent fuzzy sets 
with linguistic labels. Fig. 1 is an example of such a grid-
type fuzzy partition. The other approach uses multi-
dimensional antecedent fuzzy sets defined on the input 
space. Fig. 2 illustrates two-dimensional ellipsoidal 
antecedent fuzzy sets. Multi-dimensional antecedent 
fuzzy sets usually lead to fuzzy rule-based systems with 
high accuracy but low interpretability. On the other hand, 
fuzzy rule-based systems with high interpretability can be 
generated from grid-type fuzzy partitions. Since our goal 
is to generate interpretable fuzzy rule-based systems, we 
use the first approach (i.e., grid-type fuzzy partitions). As 
discussed in Suzuki & Furuhashi (2001), homogeneous 
fuzzy partitions are more interpretable than adjusted ones. 
Thus we use homogeneous fuzzy partitions as shown in 
Fig. 1. Usually we do not know an appropriate fuzzy 
partition for each input. In general, each input may have a 
different fuzzy partition while the two axes of the input 
space is divided by the same fuzzy partition in Fig. 1. 
Moreover, general rules may use coarse fuzzy partitions 
while specific rules may use fine fuzzy partitions in a 
single fuzzy rule-based system. For handling such a 
situation with different fuzzy partitions of different 
granularities, we specify each antecedent condition of 



 

fuzzy rules by choosing an antecedent fuzzy set from 
various fuzzy partitions for each input. In this paper, we 
use four fuzzy partitions in Fig. 3 where the total number 
of antecedent fuzzy sets is 14. For generating short fuzzy 
rules with a small number of antecedent conditions, we 
use “don’t care”  as an additional antecedent fuzzy set. 
Thus an antecedent fuzzy set for each input is chosen 
from the 14 fuzzy sets in Fig. 3 and “don’ t care” . The 
total number of combinations of antecedent fuzzy sets is 

n15  for an n-dimensional pattern classification problem. 
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Figure 1: A 5
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5 fuzzy grid of a two-dimensional input space. 
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Figure 2: Ellipsoidal antecedent fuzzy sets. 
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Figure 3: Four fuzzy partitions. The meaning of each label is as 
follows: S: small, MS: medium small, M: medium, ML: medium 
large, and L: large. The superscript of each label denotes the 
granularity of the corresponding fuzzy partition. 

Genetic algorithm-based fuzzy rule selection (Ishibuchi, 
Nakashima & Murata, 2001) consists of two phases. In 

the first phase, a large number of candidate rules are 
generated from various combinations of antecedent fuzzy 
sets. In the second phase, subsets of the generated 
candidate rules are examined using genetic algorithms for 
finding non-dominated rule sets with respect to the above-
mentioned three objectives. In Ishibuchi, Nakashima & 
Murata (2001), a single fuzzy partition was used for all 
inputs as in Fig. 1. In this case, the total number of 
combinations of antecedent fuzzy sets including “don’t 
care”  is n)15( +  for an n-dimensional pattern 
classification problem. This is much smaller than n15  in 
this paper. That is, we have much more candidate rules. It 
should be noted that the search space for finding non-
dominated rule sets exponentially expands as the number 
of candidate rules increases. The efficiency of genetic 
algorithms is significantly deteriorated by the increase in 
the number of candidate rules as shown in this paper. 
Thus we need a trick for decreasing the number of 
candidate rules. Our idea is to prescreen candidate rules 
based on fuzzy versions of two rule evaluation criteria 
(i.e., confidence and support) for association rules, which 
have been frequently used in the field of data mining 
(Agrawal et al. 1996). In our prescreening procedure, 
fuzzy rules are divided into several groups according to 
their consequent classes. Then fuzzy rules in each group 
are sorted in a descending order of the product of 
confidence and support. Finally a pre-specified number of 
fuzzy rules are chosen from the top of the rule list for 
each group. The selected fuzzy rules are used as candidate 
rules in our genetic algorithm-based rule selection method. 

In the next section, we show how the design of fuzzy rule-
based classification systems can be formulated as a three-
objective rule selection problem. In Section 3, we propose 
a prescreening procedure of candidate rules using fuzzy 
versions of the two rule evaluation criteria in data mining. 
In Section 4, we describe a three-objective genetic 
algorithm for rule selection. The effect of the proposed 
prescreening procedure on the efficiency of the genetic 
algorithm-based rule selection method is examined in 
Section 5 through computer simulations. Finally Section 6 
concludes this paper. 

2. PROBLEM FORMULATION 

Let us consider an M-class pattern classification problem 
with m labeled patterns )...,,( 1 pnpp xx=x , =p 1, 
2,...,m in an n-dimensional continuous pattern space. For 
simplicity of explanation, we assume that the pattern 
space is the n-dimensional unit hypercube n]1,0[ . That 
is, we assume that all attribute values are real numbers in 
the unit interval ]1,0[ . For our pattern classification 
problem, we use fuzzy rules of the following form: 

Rule qR : If 1x  is 1qA  and  ...  and nx  is qnA  

     then Class qC  with qCF ,       (1) 



 

where qR  is the q-th fuzzy rule, )...,,( 1 nxx=x  is an 
n-dimensional pattern vector, qiA  is an antecedent fuzzy 
set, qC  is a consequent class (i.e., one of the M classes), 
and qCF  is a rule weight (i.e., certainty factor). The 
antecedent fuzzy set qiA  is one of the 14 fuzzy sets in Fig. 
3 or “don’ t care” . The rule weight qCF  is a real number 
in the unit interval ]1,0[ . As shown in the next section, 
the consequent class qC  and the rule weight qCF  are 
determined in a heuristic manner from compatible training 
patterns with the antecedent part of qR . 

Let S be a subset of n15  fuzzy rules of the form (1). Our 
task is to find rule sets with high classification ability and 
high interpretability. This task can be rephrased as finding 
a small number of simple fuzzy rules with high 
classification ability. As in Ishibuchi, Nakashima & 
Murata (2001), our rule selection problem is formulated 
as the following three-objective optimization problem: 

Maximize )(1 Sf , and minimize )(2 Sf , )(3 Sf ,   (2) 

where )(1 Sf  is the number of correctly classified 
training patterns by S, )(2 Sf  is the number of fuzzy 
rules in S, and )(3 Sf  is the total rule length of fuzzy 
rules in S. 

Usually there is no optimal rule set with respect to all the 
three objectives. Thus our task is to find multiple rule sets 
that are not dominated by any other rule sets. A rule set 

BS  is said to dominate another rule set AS  (i.e., BS  is 
better than AS : BA SS � ) if all the following 
inequalities hold: 

    )()( 11 BA SfSf ≤ ,        (3) 

    )()( 22 BA SfSf ≥ ,        (4) 

    )()( 33 BA SfSf ≥ ,        (5) 

and at least one of the following inequalities holds: 

    )()( 11 BA SfSf < ,        (6) 

    )()( 22 BA SfSf > ,        (7) 

    )()( 33 BA SfSf > .        (8) 

The first condition (i.e., all the three inequalities in (3)-
(5)) means that no objective of BS  is worse than AS  (i.e., 

BS  is not worse than AS ). The second condition (i.e., 
one of the three inequalities in (6)-(8)) means that at least 
one objective of BS  is better than AS . When a rule set 
S  is not dominated by any other rule sets, S is said to be a 
Pareto-optimal solution of our rule selection problem in 
(2). In many cases, it is impractical to try to find true 
Pareto-optimal solutions of our rule selection problem 
whose search space is huge (i.e., the search space is the 
power set of n15  fuzzy rules). Thus we try to find near 
Pareto-optimal solutions. More specifically, first we 
decrease the search space by prescreening candidate fuzzy 
rules. Then we search for near Pareto-optimal solutions by 
a three-objective genetic algorithm. 

3. CANDIDATE RULE PRESCREENING 

3.1 FUZZIFICATION OF ASSOCIATION RULES 

As we have already explained, the total number of 
combinations of antecedent fuzzy sets is n15  for our n-
dimensional pattern classification problem. When n is 
small (e.g., 4≤n ), we can examine all combinations of 
antecedent fuzzy sets for generating fuzzy rules and use 
all the generated fuzzy rules as candidate rules in our 
genetic algorithm-based rule selection method. That is, no 
prescreening of candidate rules is necessary. On the other 
hand, we need a prescreening procedure when n is large. 
It is time-consuming to examine all the n15  
combinations when n is large (e.g., 13=n  in wine data 
used in computer simulations of this paper). In this case, it 
is also impractical to use all the generated fuzzy rules as 
candidate rules in our genetic algorithm-based rule 
selection method. Our idea is to use rule evaluation 
criteria in data mining for decreasing the number of 
candidate rules. 

In the area of data mining, two criteria called confidence 
and support have often been used for evaluating 
association rules (Agrawal et al. 1996). Our fuzzy rule in 
(1) can be viewed as an association rule of the form 

qq C�A . We use the two criteria for prescreening 
candidate rules. In this subsection, we show how the 
definitions of these two criteria can be extended to the 
case of the fuzzy association rule qq C�A  (Ishibuchi, 
Yamamoto & Nakashima, 2001). Similar extensions of 
the two criteria to fuzzy association rules were also 
proposed in Hong et al. (2001). 

Let D be the set of the given m training patterns 
)...,,( 1 pnpp xx=x , mp ,...,2,1= . The cardinality 

of D is m (i.e., mD =|| ). The confidence of qq C�A  is 
defined as follows (Agrawal et al. 1996): 

  
|)(|

|)()(|
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q

qq
qq D

CDD
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A
A

�
=� ,    (9) 

where the denominator |)(| qD A  is the number of 
training patterns compatible with the antecedent part qA , 
and the numerator |)()(| qq CDD �A  is the number of 
training patterns compatible with both the antecedent part 

qA  and the consequent class qC . The confidence c 
indicates the grade of the validity of qq C�A . That is, 
c (× 100%) of training patterns compatible with qA  are 
also compatible with qC . In the case of standard 
association rules, neither qA  nor qC  is fuzzy. Thus the 
calculations of |)(| qD A  and |)()(| qq CDD �A  can 
be performed by simply counting compatible training 
patterns. On the other hand, each training pattern has a 
different compatibility grade )( pq

xAµ  with the 
antecedent part qA  when qq C�A  is a fuzzy 
association rule. Thus such a compatibility grade should 



 

be taken into account. Since the consequent class qC  is 
not fuzzy, the confidence in (9) can be rewritten as 
follows (Ishibuchi, Yamamoto & Nakashima 2001): 
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The compatibility grade )( pq
xAµ  is usually defined 

by the product or minimum operator. In this paper, we use 
the product operator as 

  )()()( 11 pnApAp xx
qnqq

µµµ ×⋅⋅⋅×=xA ,   (11) 

where )( piA x
qi

µ  is the membership function of the 
antecedent fuzzy set qiA  (i.e., each triangle in Fig. 3). 

On the other hand, the support of qq C�A  is defined 
as follows (Agrawal et al. 1996): 

  
||

|)()(|
)(

D

CDD
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qq
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�
A

A =� .  (12) 

The support s indicates the grade of the coverage by 

qq C�A . That is, s ( × 100%) of all the training 
patterns are compatible with the association rule 

qq C�A  (i.e., compatible with both qA  and qC ). In 
the same manner as the confidence in (10), the support in 
(12) can be rewritten as follows (Ishibuchi, Yamamoto & 
Nakashima 2001):  
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3.2 CONSEQUENT CLASS AND RULE WEIGHT 

The consequent class qC  of the fuzzy rule qR  with the 
antecedent part qA  is determined as  

)( qq Cc �A  

   )}Class(...,),1Class(max{ Mcc qq ��= AA . 

                (14) 

That is, the consequent class has the maximum confidence 
among the M alternative classes. It should be noted that 
the same class qC  is obtained for qA  when we use the 
support s  instead of the confidence c . This is because 
the following relation holds between the confidence c and 

the support s from their definitions: 

||

|)(|
)Class()lassC(

D

D
hchs

q
qq

A
AA ×�=� , 

                Mt ,...,2,1= . (15) 

Since the second term (i.e., ||/|)(| DD qA ) of the right-
hand side is independent of the consequent class, the class 
with the maximum confidence is the same as the class 
with the maximum support. The same class also has the 
maximum product of these two criteria. Usually we can 
uniquely specify the consequent class qC  for each 
combination qA  of antecedent fuzzy sets. Only when 
multiple classes have the same maximum confidence 
(including the case of no compatible training pattern with 
the antecedent part qA : 0)Class( =� hc qA  for all 
classes), we cannot specify the consequent class qC  for 

qA . In this case, we do not generate the corresponding 
fuzzy rule qR . 

The confidence of qR  can be directly used as its rule 
weight as in Cordon et al. (1999). Our preliminary 
simulation results showed that better results were obtained 
from the following definition of the rule weight than the 
direct use of the confidence: 

   Second)( cCcCF qqq −�= A ,    (16) 

where Secondc  is the second largest confidence for the 
antecedent part qA : 

   }|)Class({maxSecond qq
h

Chhcc ≠�= A .    (17) 

Our preliminary computer simulations also showed that 
better results were obtained from the definition in (16) 
than the following definition used in some studies on 
fuzzy rule-based classification systems (e.g., Ishibuchi, 
Yamamoto & Nakashima 2001): 

    Average)( cCcCF qqq −�= A ,   (18) 

where Averagec  is the average confidence over fuzzy rules 
with the same antecedent part qA  but different 
consequent classes: 

  � �
−

=
≠ qCh

q hc
M

c )Class(
1

1
Average A .   (19) 

3.3 PRESCREENING PROCEDURE 

The generated fuzzy rules are divided into M groups 
according to their consequent classes. Fuzzy rules in each 
group are sorted in a descending order of the product of 
the confidence and the support (i.e., cs ⋅ ). For selecting N 
candidate rules, the first MN /  rules are chosen from 
each of the M groups. In this manner, we can choose a 



 

pre-specified number of candidate rules as candidate rules 
in our genetic algorithm-based rule selection method. In 
our preliminary computer simulations, we also examined 
the confidence and the support as rule prescreening 
criteria. The best result among the three criteria for rule 
prescreening (i.e., confidence, support, and their product) 
was obtained when we used the product of the confidence 
and the support. 

As we have already mentioned, the total number of 
combinations of antecedent fuzzy sets is n15  for our n-
dimensional pattern classification problem. Thus it is 
impractical to examine all combinations when n is large. 
In this case, we examine only short fuzzy rules with only 
a few antecedent conditions (i.e., with many don’ t care 
conditions). The number of fuzzy rules of the length L is 
calculated as L

Ln C 14×  because we have 14 antecedent 
fuzzy sets for each input (excluding don’ t care). Even 
when n is large, L

Ln C 14×  is not so large for a small 
value of L. This means that the number of short fuzzy 
rules is not so large even when the total number of fuzzy 
rules is huge.  

4. GENETIC ALGORITHM 

Many genetic algorithms for multi-objective optimization 
problems have been proposed in the literature (Zitzler & 
Thiele 1999, and Zitzler et al. 2000). Since each rule set 
can be represented by a binary string, we can apply those 
algorithms to our three-objective rule selection problem in 
Section 2. In this paper, we use a slightly modified 
version of a three-objective genetic algorithm for rule 
selection in Ishibuchi, Nakashima & Murata (2001). This 
algorithm has two characteristic features. One is to use a 
scalar fitness function with variable random weights for 
evaluating each string (i.e., each rule set). Whenever a 
pair of parent solutions is selected for crossover, weights 
are randomly updated. That is, each selection is governed 
by a different weight vector. Genetic search in various 
directions in the three-dimensional objective space is 
realized by this random weighting scheme. The other 
characteristic feature is to store all non-dominated 
solutions as a secondary population separately from a 
current population. The secondary population is updated 
at every generation. A small number of non-dominated 
solutions are randomly chosen from the secondary 
population and their copies are added to the current 
population as elite solutions. The convergence speed of 
the current population to Pareto-optimal solutions is 
improved by the elitist strategy. Other parts of our three-
objective genetic algorithm are the same as standard 
single-objective genetic algorithms. Note that our task is 
to find multiple non-dominated solutions while the task of 
standard genetic algorithms is to find a single optimal 
solution. Of course, we can use other multi-objective 
genetic algorithms proposed in the literature.  

An arbitrary subset S of N candidate fuzzy rules can be 
represented by a binary string of the length N as 

     NsssS ⋅⋅⋅= 21 ,       (20) 

where 0=qs  means that the q-th rule qR  is not 
included in S  while 1=qs  means that qR  is included in 
S . An initial population is constructed by randomly 
generating a pre-specified number of binary strings of the 
length N.  

The first objective )(1 Sf  of each string S  is calculated 
by classifying all the given training patterns by S. We use 
a fuzzy reasoning method based on a single winner rule as 
in Ishibuchi, Nakashima & Murata (2001). In this fuzzy 
reasoning method, the classification of each pattern by the 
rule set S is performed by finding a single winner rule 
with the maximum product of the rule weight and the 
compatibility grade with that pattern. There are many 
cases where some fuzzy rules in S are not chosen as 
winner rules for any patterns. We can remove those fuzzy 
rules from S without degrading the classification accuracy 
of S. At the same time, the second and third objectives are 
improved by removing unnecessary fuzzy rules. Thus we 
remove all fuzzy rules that are not selected as winner 
rules of any patterns from the rule set S. The removal of 
those rules is performed for each string in the current 
population by changing the corresponding 1’s to 0’s 
before the second and third objectives are calculated.  

After the three objectives of each string (i.e., each rule 
set) in the current population are calculated, the secondary 
population of non-dominated rule sets is updated. That is, 
each rule set in the current population is examined 
whether it is dominated by other rule sets in the current 
and secondary populations. If it is not dominated by any 
other rule sets, its copy is added to the secondary 
population. Then all rule sets dominated by the newly 
added one are removed from the secondary population. In 
this manner, the secondary population is updated at every 
generation.  

The fitness value of each rule set S in the current 
population is defined by the three objectives as  

)()()()( 332211 SfwSfwSfwSfitness ⋅−⋅−⋅= , 
                (21) 

where 1w , 2w  and 3w  are weights satisfying the 
following conditions: 

    0,, 321 ≥www ,        (22) 

    1321 =++ www .       (23) 

Whenever a pair of parent strings is selected from the 
current population, these weights are randomly updated. 
The random specification of the rule weights is to search 
for a variety of non-dominated rule sets in the three-
dimensional objective space. Binary tournament selection 
with replacement is used for selecting a pair of parent 



 

strings using the scalar fitness function in (21) with the 
randomly specified weights. That is, two strings are 
randomly selected from the current population and the 
better one is chosen as a parent string. Then the two 
strings are returned to the current population. The other 
parent string is also selected in the same manner using the 
same weight values. When another pair of parent strings 
is selected, the weight values are randomly updated.  

Uniform crossover is applied to each pair of parent strings 
to generate a new string. Then biased mutation is applied 
to the generated string for efficiently decreasing the 
number of fuzzy rules included in the string. In the biased 
mutation operation, a larger probability is assigned to the 
mutation from 1 to 0 (i.e., mutation for decreasing the 
number of fuzzy rules) than the mutation from 0 to 1 (i.e., 
mutation for increasing the number of fuzzy rules). 

The next population consists of the newly generated 
strings by the genetic operations. Some non-dominated 
strings in the secondary population are randomly selected 
as elite solutions and their copies are added to the new 
population. The outline of the three-objective genetic 
algorithm for rule selection is written as follows: 

Step 0: Parameter Specification. 
 Specify the population size popN , the number of elite 
solutions eliteN  that are randomly selected from the 
secondary population and added to the current population, 
the crossover probability cp , two mutation probabilities 

)01( →mp  and )10( →mp , and the stopping 
condition. 

Step 1: Initialization. 
 Randomly generate popN  binary strings of the length 
N  as an initial population. Calculate the three objectives 
of each string. In this calculation, unnecessary rules are 
removed from each string. Find non-dominated strings 
(i.e., non-dominated rule sets) in the initial population. A 
secondary population consists of copies of those non-
dominated strings.  

Step 2: Genetic Operations. 
 Generate )( elitepop NN −  strings using genetic 
operations (i.e., binary tournament selection, uniform 
crossover, and biased mutation) from the current 
population. 

Step 3: Evaluation. 
 Calculate the three objectives of each of the newly 
generated )( elitepop NN −  strings. In this calculation, 
unnecessary rules are removed from each string. The 
current population consists of the modified strings. 

Step 4: Secondary Population Update.  
 Update the secondary population by examining each 
string in the current population as mentioned above. 

Step 5: Elitist Strategy. 
 Randomly select eliteN  strings from the secondary 

population and add their copies to the current population. 

Step 6: Termination Test. 
 If the stopping condition is not satisfied, return to Step 
2. Otherwise terminate the execution of the algorithm. All 
the non-dominated strings among examined ones in the 
execution of the algorithm are stored in the secondary 
population. 

5. COMPUTER SIMULATIONS 

 We apply the proposed rule selection method to wine 
data available from the UCI Machine Learning Repository 
(http://www.ics.uci.edu/~mlearn/MLSummary.html). The 
wine data set consists of 178 samples with 13 continuous 
attributes from three classes. We normalized each 
attribute value into a real number in the unit interval [0, 1]. 
Thus the wine data set was handled as a three-class 
pattern classification problem in the 13-dimensional unit 
hypercube 13]1,0[ . The total number of possible 
combinations of antecedent fuzzy sets is 1315 . 

First we generated fuzzy rules of the length three or less 
using all the 178 samples as training patterns. The number 
of generated fuzzy rules of each length is summarized in 
Table 1. The fuzzy rule of the length zero has no 
antecedent conditions, Class 2 consequent, and a very 
small certainty grade (i.e., rule weight). This fuzzy rule 
can be generated because the number of Class 2 samples 
is the largest among the three classes in the wine data.  

 
Table 1: The number of generated fuzzy rules of each length. 

Length of rules 0 1 2 3 Total 

Number of rules 1 182 14,781 696,752 711,716 

 

The generated 711,716 fuzzy rules were divided into three 
groups according to their consequent classes. Fuzzy rules 
in each class were sorted in a descending order of the 
product of the confidence and the support. From each 
group, the first 300 fuzzy rules were selected as candidate 
rules ( 900=N : 900 candidate rules in total). Then the 
three-objective genetic algorithm was applied to the 900 
candidate rules using the following parameter 
specifications.  

      Population size: 50=popN , 

      Number of elite solutions: =eliteN 5, 

      Crossover probability: 9.0=cp , 

      Mutation probability: 1.0)01( =→mp , 

        Npm /1)10( =→ , 

      Stopping condition: 10,000 generations. 

Our computer simulations were iterated 20 times. Non-
dominated rule sets obtained from those 20 trials are 
summarized in Table 2. Examples of the obtained rule 



 

sets in Table 2 are shown in Fig. 4 and Fig. 5. Fig. 4 
shows three fuzzy rules with only a single antecedent 
condition, which correspond to the second rule set with a 
94.9% classification rate in Table 2. Fig. 5 shows three 
fuzzy rules with a few antecedent conditions, which 
correspond to the sixth rule set with a 100% classification 
rate in Table 2.  

 
Table 2: Non-dominated rule sets obtained from 20 trials of the 

proposed method with 900 candidate rules. 

Number of 
rules  

Average rule 
length  

Classification 
rate (%) 

3 0.67  88.2 
3 1.00  94.9 
3 1.33  96.1 
3 1.67  98.3 
3 2.00  99.4 
3 2.33  100.0 
4 0.75  96.1 
4 1.00  97.2 
4 1.25  98.9 
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Figure 4: Three fuzzy rules with a 94.9% classification rate. 
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Figure 5: Three fuzzy rules with a 100% classification rate. 

 

From Table 2, we can see that our rule selection method 
found various rule sets with different classification rates 
and different sizes. The selected rule sets have high 
interpretability as shown in Fig. 4 and Fig. 5. From the 
comparison between Fig. 4 and Fig. 5, we can observe the 
existence of a tradeoff between classification accuracy 
and interpretability (i.e., the three fuzzy rules in Fig. 5 
have a higher classification rate but less interpretable). 

For examining the usefulness of the proposed 
prescreening procedure of candidate rules, the same 
computer simulation was performed using randomly 

selected 900 candidate rules from the generated 711,716 
fuzzy rules. Simulation results are summarized in Table 3. 
From the comparison between Table 2 and Table 3, we 
can see that the classification ability and/or the 
interpretability of obtained rule sets were deteriorated by 
the use of randomly selected candidate rules. 

We also performed the same computer simulation using 
no prescreening procedure. In this case, all the generated 
711,716 fuzzy rules were used as candidate rules. Thus 
the string length was 711,716. As we can expect, the 
execution of the three-objective genetic algorithm with 
such a long string required large memory storage and long 
CPU time. Table 4 shows non-dominated rule sets 
obtained from ten trials of the three-objective genetic 
algorithm. Since the search space was too large, good rule 
sets could not be obtained within a reasonable 
computation time (especially with respect to the number 
of fuzzy rules as shown in Table 4). The average CPU 
time for each trial was about 11 hours in Table 4 while it 
was about four minutes in Table 2 with 900 candidate 
rules selected by the proposed prescreening procedure. 

 
Table 3: Simulation results with randomly selected 900 

candidate rules. 

Number of 
rules  

Average rule 
length  

Classification 
rate (%) 

3 1.67  86.5  
3 2.00  93.3  
3 2.33  95.5  
3 2.67  96.1  
4 2.25  96.6  
4 2.50  97.2  
4 2.75  97.8  
5 2.40  98.3  
5 2.60  98.9  
6 2.50  99.4  
7 2.57  100.0  
8 2.13  100.0  

 

Table 4: Simulation results with 711,716 candidate rules. 

Number of 
rules  

Average rule 
length  

Classification 
rate (%) 

5 1.40  94.4  
5 1.60  96.1  
6 1.50  96.6  
6 1.83  98.3  
7 1.71  100.0  

 

Finally we examined the effect of using various fuzzy 
partitions for each input on the classification performance 
of fuzzy rule-based classification systems. In the same 
manner as the computer simulation for Table 2, we 
applied our rule selection method to the wine data set 
using only the finest fuzzy partition with five linguistic 
labels in Fig. 3 (i.e., the bottom-right fuzzy partition in 



 

Fig. 3). Table 5 shows non-dominated rule sets obtained 
from 20 trials. From the comparison between Table 2 and 
Table 5, we can see that smaller rule sets with higher 
classification rates were obtained in Table 2 than Table 5. 
This result was expected from the fact that the three fuzzy 
rules with a 100% classification rate in Fig. 5 use various 
fuzzy partitions with different granularities. 

 
Table 5: Non-dominated rule sets obtained from 20 trials using 

only a single fuzzy partition with five fuzzy sets. 

Number of 
rules  

Average rule 
length  

Classification 
rate (%) 

3 0.67  85.4  
3 1.00  91.6  
3 1.33  93.3  
4 1.00  95.5  
4 1.25  96.1  
4 1.50  97.2  
5 1.00  97.2  
5 1.40  97.8  
5 1.60  98.3  
5 1.80  98.9  
6 1.00  97.8  
6 1.17  98.3  
6 1.33  98.9  
6 1.50  99.4  
7 1.57  100.0  

 

6. CONCLUSIONS 

In this paper, we extended the genetic algorithm-based 
rule selection method in Ishibuchi, Nakashima & Murata 
(2001) to the case where various fuzzy partitions with 
different granularities are used for each input. This 
extension leads to the increase in the number of candidate 
rules. Thus we proposed a prescreening procedure for 
decreasing the number of candidate rules. The proposed 
prescreening procedure is based on two rule evaluation 
criteria of association rules in the field of data mining. 
Through computer simulations, we demonstrated the 
necessity of candidate rule prescreening in genetic 
algorithm-based rule selection. The three-objective 
genetic algorithm could not find good rule sets when 
candidate rules were randomly chosen. In the case of no 
prescreening, the CPU time was very long (i.e., about 11 
hours) while it was a few minutes in the case with the 
proposed prescreening procedure. 
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