
Exploring the Parameter Space of a Genetic Algorithm for
Training an Analog Neural Network

Ste�en G. Hohmann, Johannes Schemmel, Felix Sch�urmann, Karlheinz Meier

Kircho�-Institute for Physics, Heidelberg University, Schr�oderstrasse 90,

69120 Heidelberg, Germany

e-mail: hohmann@kip.uni-heidelberg.de

phone: Germany-(0)6221-544329

Abstract

This paper presents experimental results ob-

tained during the training of an analog hard-

ware neural network. A simple genetic al-

gorithm is used to optimize the synaptic

weights. The parameter space of this algo-

rithm has been intensively scanned for two

learning tasks (4 and 5 bit parity). The re-

sults provide a quantitative insight into the

interdependencies of the evolution parame-

ters and how the optimal settings are pre-

determined by the learning problem. It is

observed that population sizes in the order of

15 in connection with mutation rates of about

1% yield the best performance of the training

when using moderate selection. The optimal

population size is found to be independent of

the learning task. A signi�cant improvement

of the training success can be achieved, when

the role of crossover is reduced and higher

mutation rates combined with stronger selec-

tion are applied. The observations are shown

to be essentially independent of the signal to

noise ratio within the analog hardware.

1 Introduction

Arti�cial neural networks as a computational model

and simulated evolution as an optimization proce-

dure are both biologically inspired concepts that have

been successfully applied to numerous problems. Their

combination to evolutionary arti�cial neural networks

(EANNs) has been widely studied in the past years

[Yao, 1999]. The processing of information within a

neural network allows a high degree of parallelism,

which motivates a special hardware implementation.

Our group has recently developed an analog neural

network chip optimized for the training with evolu-

tionary algorithms that exploits the high degree of

parallelization possible in modern VLSI1 technologies

[Schemmel, 2001]. The chip is integrated in a training

and test setup that allows processing of in the order

of 1000 individuals per second. This makes it feasi-

ble to approach another critical aspect of evolutionary

optimization: The performance of an evolutionary al-

gorithm depends on the tuning of several parameters

that can have a massive impact on the success and

the speed of the optimization process [De Jong, 1975].

Depending on the applied algorithm and the chosen

problem, the interrelation of the various parameters

can be very complex. Although recent theoretical

investigations on the dynamics of genetic algorithms

show promising results [Rogers, 2001], the complex-

ity of realistic problems - e.g. the training of neural

networks - greatly obstructs their theoretical analy-

sis. In practice the optimal evolution parameters for

a given task and a speci�c algorithm still have to be

approximated by trial and error, guessed by experi-

ence or have to be found by other optimization proce-

dures themselves [Grefenstette, 1986]. What addition-

ally impedes thorough investigations of the interaction

of evolution parameters is the limited amount of avail-

able experimental data, as it is usually costly to obtain

[Scha�er, 1989], [De Jong, 1975].

This paper discusses the results obtained from more

than 260,000 evolution runs carried out to train neu-

ral networks for two di�erent tasks, which corresponds

to several billions of tested individuals. A total of

about 950 parameter settings are evaluated and an-

alyzed with respect to the success of the learning pro-

cess within a �xed number of �tness evaluations. The

aim of this investigation is to clarify the in
uence of

the various evolution parameters on the performance

of the training algorithm. To promote a deeper under-

standing of the results and to motivate further theore-

1Very Large-Scale Integration



tical analysis, the genetic representation and the evo-

lutionary algorithm have been chosen as to maintain a

close resemblance to classical genetic algorithms (GAs)

[Goldberg, 1989]. Furthermore, the tackled learning

tasks (4 and 5 bit parity) are small in size, but known

to be challenging problems for neural network train-

ing. It is assumed that the main aspects of the results

can qualitatively be transfered to more complex tasks.

2 Hardware Realization of the Neural

Network

The analog neural network chip used throughout the

experiments is based on the concept of a feedforward

network. It consists of 64� 64 synapses that connect

each of the 64 input neurons with each of the 64 output

neurons. The analog operation of the chip is limited

to the synaptic weights and the inputs of the output

neurons. Both, input (Ij) and output signals (Oi) of

the network are digital. A synapse is activated, when

the value of the corresponding input neuron is set to 1.

This way, the weight multiplication is reduced to an

addition: The weight of each synapse (wij) is stored

as charge on a storage capacitor and each output neu-

ron compares the sum of the signals of all its activated

synapses with a �xed reference voltage (b). If the ref-

erence value is exceeded, the neuron �res.

Throughout the presented experiments, the chip is op-

erated in a special mode: All input neurons are com-

bined to pairs. Each pair is used as one di�erential

input. This is done automatically by setting the value

of every second input neuron to the inverted value of

its neighbour: If one input neuron is switched o�, its

inverted counterpart is switched on and vice versa. In

this combine mode the operation of the network can

be modeled by a slightly modi�ed Perceptron formula

with the activation function g(x) of the output neurons

set to the Heaviside function �(x� b):

Oi = �

 
31X

j=0

[wi;2j+1 � I2j+1 + wi;2j+2 � (1� I2j+1)]� b

!

with I;O 2 f0; 1g

(1)

Hence, the connection of one combined input neuron

to one speci�c output neuron is characterized by a set

of two weights. The e�ective number of available in-

put neurons is reduced to 32. On the other hand, the

number of activated input neurons remains the same,

independent of the input data. This has several ad-

vantages for the performance of the chip. A further

discussion of these topics lies beyond the scope of this

article. For more detailed technical information see

[Schemmel, 2001].

�
�
�
�

����

��
��
��
��

����

�
�
�
�

��

ou
tp

ut
s

in
pu

ts

in
pu

ts

input layer output layer input layer intermediate layer

output layer

ou
tp

ut
s

Figure 1: Left: A recurrent network. Right: Con�g-

ured as a two-layer network by setting some synapses

to zero (dashed lines).

The network operates within a discrete time update

scheme, i.e. Equation 1 is calculated once for each

network cycle. For the chip to be used as a recur-

rent network, the signals of half of the output neu-

rons can be fed back to the input neurons. In this

mode the output of the network at a given time does

not only depend on the actual input, but also on the

previous network cycle. The feedback can be used to

con�gure the network as a virtual multi-layer Percep-

tron if the appropriate weights are set to zero. Both

cases are schematically illustrated in Figure 1. If the

chip is used as a multi-layer network with n layers,

a corresponding number of network cycles is used to

propagate a signal from the input to the output neu-

rons. The maximum possible network frequency ex-

ceeds 50 MHz, which results in more than 200 giga con-

nections per second and makes the implementation of

networks with several layers practical.

3 Implementation of the Training

Algorithm

The network is trained by a generational genetic algo-

rithm with ranking selection, a chromosomewise one-

point crossover and a single-gene mutation operator.

Throughout our experiments the architecture of the

network - i.e. the number of used input and output

neurons, the active feedback connections and the num-

ber of network cycles - is �xed for each learning prob-

lem. The genome only contains information about the

synaptic weights of the individual networks to con�g-

ure the chip.

3.1 Genetic Representation

A genome consists of 64 chromosomes maximum, each

describing the complete set of 64 synaptic weights that

connect one output neuron to all input neurons. One

weight is coded as a 
oating point number from the

interval [�1; 1] and is regarded as a complete single



gene. Within one chromosome these weights are ar-

ranged to form a linear string.

Neither all neurons, nor all synapses of the array are

necessarily used for a learning problem. In practice

the genome only contains those chromosomes which

parameterize the output neurons of the chip that are

used either as inner neurons in hidden layers or as ac-

tual output neurons of the network. For technical rea-

sons the chromosomes still contain information about

all connecting synapses even if not all of the 64 in-

put neurons are used. The parts of the genome which

describe unused synapses have negligible e�ect on the

performance of the represented network and thus do

not in
uence the �tness of the individual.

3.2 Genetic Operators

During recombination a common one-point crossover

operator is used and is successively applied to each

corresponding pair of chromosomes provided by the

two involved individuals. A new cut point is ran-

domly and uniformly selected for each chromosome

pair. The weights are regarded as the smallest units

of the genome and always swapped as a whole. Ac-

cordingly, the mutation operator acts on the complete

gene by replacing the weight to be mutated by a new

value randomly and uniformly selected from the in-

terval [�1; 1]. Both, crossover and mutation do not

distinguish between parts of the genome that are rele-

vant for the �tness and those which are inactive.

3.3 Selection and Reproduction Scheme

The algorithm acts on a population of � genomes and

the initial population is chosen by setting all genes of

all individuals to random values uniformly distributed

within the interval [�1; 1]. After evaluation of the

�tness of each individual, the new generation is cre-

ated from the preceeding population by successively

executing three steps: selection, recombination and

mutation. The selection scheme is rank based and is

controlled by a parameter � called the replace per-

centage. After a �tness ranking of all individuals, the

worst n = b� � �c genotypes are replaced by the best

individual of the population. As long as � 6= 0 the

worst individual is replaced even if n � 1. Thus if 
i
denotes the genotype at position i in the ranking we

can write:


i = 
1 8i 2

8
><
>:

f�� n+ 1; : : : ; �g if n � 1

f�g if n < 1 ^ � 6= 0

fg if � = 0

n = b� � �c

(2)

In the following step, all n replaced individuals are

consecutively crossed with a new partner randomly

selected among the whole population. Since 
1 and

the last n genotypes of the population are identical,

it is possible that an individual is actually combined

with a clone of itself which renders the crossover oper-

ator none�ective. On the other hand, one individual

can be chosen more than once for crossover and may

be changed repeatedly with cumulating e�ects. After

the recombination step, the whole population is mu-

tated whereby every single gene of each genotype in

the population is changed with a �xed probability �

in the way described in 3.2. The resulting population

of genotypes after the mutation step forms the new

generation.

It should be noted that due to the applied mutation

strategy even the best individual is not guaranteed

to survive the generation step completely unchanged.

Hence, the algorithm does not implement an elitist re-

production scheme in the sense of the usual de�nition

[De Jong, 1975] though it is clearly biased towards a

fast reproduction of the best indivdual.

3.4 General Considerations

In respect to the applicability of training neural net-

works, more sophisticated algorithms or codings are

conceivable and have been numerously presented in

the literature [Yao, 1999]. On the other hand, both,

the presented coding and the algorithm combine direct

compatibility to the used hardware with high simplic-

ity, allow fast implementation and have proven to be

capable of successfully training a neural network. Fur-

thermore, the genetic representation of the problem

and the applied operators retain a close resemblance

to those used in classical GAs [Goldberg, 1989]. On the

genotype level, the whole algorithm can completely be

described by three variables �, � and �. This should

allow for a better understanding of the performance of

this algorithm depending on the parameters.

4 Experimental Setup

4.1 Technical Environment and Scale Factor

The network chip is connected to a standard PC by

a PCI interface board that carries its own RAM and

a �eld programmable gate array (FPGA). In the cur-

rent stage of the setup, the training algorithm is imple-

mented in C++ and executed on the host computer.

At the beginning of an evolution run the testpatterns

and target data of the learning task are sent to the

RAM of the PCI-card where they remain throughout



learning problem 4BP 5BP

used genes 38 58

total genes 256 320

ine�ective genes 218 262

No. of testpatterns 16 32

maximum �tness 160 320

threshold 157 317

individuals/sec 1061 949

Table 1: Speci�cation of the applied learning prob-

lems.

the whole evolutionary process. During the evolution

the data for each individual is sent to the network

via the FPGA using a 16 bit digital to analog con-

verter (DAC) that generates the analog weight values

from the gene data. Once the weight values have been

stored within the synapse array, the testpatterns are

consecutively applied to the network. The results are

read back by the FPGA and are used to calculate the

�tness of the individual.

Due to the analog operation of the chip the reference

voltage and weight values in the network are subject

to 
uctuations. The repeated application of the same

input pattern does not necessarily yield identical out-

puts, especially, if the input signals of one or more

output neurons are close to the reference value. For

the selected problems it is thus necessary to present

each test pattern repeatedly. The performance of the

network can be evaluated by counting the number of

correct bits in the output of the network summed over

all successive presentations of the pattern. Besides re-


ecting the stability of the solution, this number also

yields a smoother performance measure. It is therefore

used as the �tness of the individual.

The range of possible weight values to be stored as

charge within the synapse array is technically limited.

The gene values from the interval [�1; 1] have to be

mapped onto this range of possible weights. We thus

introduce the weight scaling factor ! � 1 that con-

trols this mapping. If ! = 1, the whole technically

possible range is exploited. If ! < 1, only the corre-

sponding fraction of the full range is used. Since the

absolute average size of the signal 
uctuations remains

constant independent of the choice of !, the variation

of this parameter can be used to control the signal to

noise ratio of the weights. The latter is expected to

have considerable impact on the performance of the

network.

4.2 Learning Task, Network Architecture

and Success Condition

Within the presented experiments the network is

trained for two tasks: 4 bit parity (4BP) and 5 bit

a)

In

Out

In

Out

b)

Figure 2: The used architectures for the 4BP problem

(a) and the 5BP problem (b).

parity (5BP). Being a linearly nonseparable problem

the calculation of parity requires the chip to be con-

�gured as a two layer network [Hertz, 1991]. Hence,

a number of two network cycles is used in each case.

The hidden layer consists of three and four neurons

for the 4BP and 5BP problems respectively. Since

no weight is forced to be zero, shortcut connections

from the input layer directly to the output neuron are

possible. Figure 2 shows the resulting architectures

for both problems. Similar architectures for the N bit

parity task are reported in the literature [Pujol, 1998].

Since the neurons are operated in combine mode (Sec-

tion 2), all synaptic connections are actually described

by two separate weights that have to be optimized

independently. For 4BP this results in 19 � 2 = 38

used weight values (see Figure 2). As the genome de-

scribes the complete set of synaptic weights for each of

the four used output neurons (Section 3.1), it contains

4� 64 = 256 genes, leaving 218 genes ine�ective. The

corresponding values for 5BP are shown in Table 1.

To take into account the e�ects introduced by noise,

each test pattern of the current task is applied ten

times throughout all experiments which multiplies the

maximum possible �tness by ten. The training is con-

sidered successful if the �tness of the best individual in

the population averaged over the last �ve generations

is better than a given threshold. The resulting values

of maximum possible �tness and the chosen threshold

values can also be found in Table 1. The thresholds

are chosen empirically as to allow for small 
uctua-

tions in the performance of the found solution, which

is a realistical approach for the setup used. Due to the

applied success criteria, the length of an evolution run

can obviously not be measured with a higher precision

than �5 generations. The approximate average num-

ber of individials per second that can be processed by

the setup depends on the population size � and the

number of testpatterns that are applied for the �tness

evaluation. The corresponding values, when using a

standard PC2 and a population size of 100, are in-

cluded in Table 1.

2In this case an AMD Athlon XP 1700 is used.



5 Experiments and Results

Several measures for the performance of a genetic al-

gorithm are conceivable [De Jong, 1975]. Since it

is a stochastic search procedure, comparing the per-

formance among variations of a genetic algorithm

with di�erent parameters is not unproblematic [Schaf-

fer, 1989]. The probability of the algorithm to reach

the success condition described in 4.2 within a given

number of �tness evaluations depends on the chosen

evolution parameters. It will be regarded as the perfor-

mance measure of a parameter con�guration through-

out the remainder of this article and is referred to as

the yield Y given in percent. This rather practical ap-

proach has been chosen because the number of �tness

evaluations is nearly proportional to the computation

time needed by the serial implementation of the algo-

rithm.

As discussed in the previous sections, the used train-

ing algorithm can be controlled by four parameters:

The population size �, the replace percentage � and

the mutation rate � (Section 3) parameterize the sim-

ulated evolution, while the weight scaling factor ! is

speci�c for the used analog hardware (Section 4.1).

The goal of the conducted experiments is to illumi-

nate the in
uence of these parameters on the yield Y .

Given a de�ned parameter setting and a learning task

the yield is evaluated by conducting a number of NE

evolution runs and counting the successes NS to calcu-

late the success probability p and the yield using p =

NS=NE = Y=100. Since all evolution runs are indepen-

dent, we can assume the outcome of the experiment to

be binomially distributed and estimate the error of the

measured Y as �Y =
p
pq=NE � 100 with q = 1� p.

The measurand Y is evaluated for parameter settings

located on three selected two-dimensional hyperplanes

of the four-dimensional parameter space as a complete

scan would be impracticable. The following sections

summarize the results obtained during the scans of the

investigated subspaces for the various learning prob-

lems. The experiments have been conducted using two

identical setups that were continuously running for a

period of about eight weeks.

5.1 Population Size and Mutation Rate

This section presents the results of a simultaneous vari-

ation of the parameters � and � while keeping � = 20%

and ! = 0:9. For each learning task � and � have been

varied within the ranges shown in Table 2, which also

lists the total number of parameter settings ns that has

been evaluated for each problem. To use the computa-

tion time more eÆciently, the trials have not been dis-

tributed uniformly within these ranges but have been

0 1 2 3 4 5
0

5

10

15

20

25

30

mutation rate µ in %

yi
el

d 
Y

 in
 %

4BP

φ = 10
φ = 150
φ = 500

Figure 3: The yield Y as a function of � for di�erent

values of � and the 4BP problem (� = 20%).

learning problem 4BP 5BP

population size � 5-700 5-600

mutation rate � in % 0.15-5 0.15-5

max. No. �tness eval. 16800 39600

No. of tested settings (ns) 239 153

NE per setting 400 300

opt. pop. size (�opt) 14 13

opt. mut. rate (�opt) 1.38 0.83

max. yield (Yopt) in % 31.8 34.0

�2=nd:o:f: 1.36 2.96

Table 2: Parameters and results of the � vs. � exper-

iments.

clustered in regions with stronger variations of Y (�; �).

The results are qualitatively the same for both tasks

and their analysis shall be discussed for 4BP as an ex-

ample. Figure 3 shows the yield Y as a function of the

mutaion rate � for three di�erent values of the popu-

lation size �. Given a �xed � the yield shows a clear

dependence of �: Y exhibits a maximum at a speci�c

�-dependent value �max(�). While �max(�) itself in-

creases with growing �, the maximum yield Y (�max)

decreases. A closer examination reveals that for a �xed

� the data can be �tted satisfactorily by the function

YF (�; �) = F1(�) � �
F2(�) � eF3(�)��

2

(3)

and that the �-dependece of the data can be modeled

by setting

Fi(�) = fi1 � �
fi2 + fi3 ; i 2 f1; 2; 3g; (4)

whereby we introduce the nine �t parameters fij . The

combination of Equations 3 and 4 is �tted to the whole

set of ns evaluated points Ykl = Y (�k; �l), i.e. the

Gauss-Newton method3 is used to set the �t parame-

ters with regard to the minimization of

�2 =
X
k;l

(Ykl � YF (�k; �l))
2

�Y 2
kl

: (5)

3The �t routine is implemented in MATLAB.



0

2

4

population size P

µm
ax

 (
φ)

 in
 %

4BP
5BP

10 100
0

0.5

1

population size φ

Y
(µ

m
ax

)/
Y

op
t 4BP

5BP

Figure 4: Fit results: The optimal mutation rate

�max(�) and the normalized yield Y (�max)=Yopt as a

function of � for both tasks (� = 20%). The symbols

mark the parameters for overall maximum yield.

The �t results for the shown values of � are presented

in Figure 3 as line plots. It can be seen that the �t

reproduces the data. The resulting �2 divided by the

number of degrees of freedom nd:o:f: = ns � 9 is given

in Table 2. The same �t procedure can be executed for

5BP, yielding di�erent sets of fij . It is to be noted that

Equations 3 and 4 are chosen empirically and are not

motivated by a theoretical model so far. Nevertheless,

they describe Y (�; �) for both learning tasks reason-

ably well as can be seen from the values �2=nd:o:f:
in Table 2. For the following analysis the maximum

number of �tness evaluations allowed for an evolution

to ful�ll the success condition is set for each learning

task separately (see Table 2). The values are chosen

as to lead to comparable maximum yields when using

the respective optimal evolution parameters predicted

by the �ts. This is done to assure that the results

of the analysis allow a comparison between the tasks

although they vary in diÆculty.

Given the two sets of �t parameters fij that describe

the landscapes Y (�; �) for each task, one can study the

resulting function �max(�), which is shown in the up-

per half of Figure 4 within the investigated ranges on

a logarithmic �-scale. The calculated parameters fij
exhibit a certain error due to the uncertainty �Y of

the measured Y . This leads to a �nite precison of the

prediction for �max(�) illustrated by the dotted lines.

Both curves exhibit a similar behaviour: The optimal

mutation rate shows a strong increase with � for small

population sizes but saturates for large populations.

For 4BP it even slightly decreases for higher values of

�. Investigations on other optimization problems �nd

an optimal mutation rate that is independent of the

population size [Rogers, 2001] while others report the

opposite correlation [Scha�er, 1989]. The lower half

0

5

10

µ m
ax

 (
ρ)

 in
 % 4BP

5BP

1 10 100
0

10

20

30

replace percentage ρ in %

Y
(µ

m
ax

 )
 in

 %

Figure 5: Fit results: �max(�) and Y (�max) as a func-

tion of � for both tasks (� = 100).

of Figure 4 displays the yield Y (�max) at the optimal

mutation rate for a given � divided by the yield Yopt
reached in the global maximum (�opt; �opt). It is re-

markable that the yield displays a distinct maximum

at a population size that is nearly equal for both tasks.

Comparison to the upper half of Figure 4 reveals, that

the regions of roughly constant �max are in fact regions

of a low yield compared to the global maximum. The

parameters (�opt; �opt) that lead to the highest possi-

ble yield as predicted by the �ts are shown in Table 2

and are marked in Figure 4. Besides the similarity in

the respective values of �opt it is noticable that they

are signi�cantly lower than those commonly suggested

([DeJong, 1975], [Grefenstette, 1986]) but are higher

than the lowest possible � as recommended by theoret-

ical investigations concerning serial genetic algorithms

[Goldberg, 1989b]. Other investigations on function

optimization �nd optimal mutation rates that depend

on the length l of the bit string used as genome like

�opt = 1=l [B�ack, 1993]. The values in Table 2 seem to

be in accordance with this observation if l is de�ned

as the number of used genes (Table 1). However, since

the used coding di�ers from a binary representation,

the application of this formula is problematic.

5.2 Replace Percentage and Mutation Rate

In a set of experiments similar to those in Section 5.1

the replace percentage � and mutation rate � have

been varied while keeping � = 100 and ! = 0:9. The

scanned ranges of � and � and the total number of

evaluated settings is listed in Table 3. Once again the

results are qualitatively the same for both tasks and

the analysis of the data proceeds similar to Section 5.1:

For a �xed replace percentage � the dependency of the

yield Y (�; �) on � can be �tted by the function

YF (�; �) = G1(�) � �
G2(�) � eG3(�)��

2

(6)



learning problem 4BP 5BP

replace percentage � in % 5-100 10-100

mutation rate � in % 0.5-10 1-10

max. No. �tness eval. 16300 40000

No. of tested settings (nS) 270 62

NE per setting 400 300

opt. rep. pctg. (�opt) in % 100 65

opt. mut. rate (�opt) 9.2 4.0

max. yield (Yopt) in % 32.0 34.5

�2=nd:o:f: 1.37 3.31

Table 3: Parameters and results of the � vs. � exper-

iments.

and a closer investigation reveals, that the �-

dependency can be modeled as

G1(�) = g1 � e
g2�� + g3 (7)

G2(�) = g4 (8)

G3(�) = g5 � �
g6 : (9)

Note that the exponent G2 = g4 of � in Equation 6

does not depend on � and that this model uses just

six parameters instead of nine as in Section 4. Fitting

the set of Equations 6-9 to the data, one �nds that

g4 = 1.008 for 4BP and g4 = 1.514 for 5BP. If g4 is

not regarded as a �t parameter but is set manually to

1 and 1.5 for 4BP and 5BP respectively, the quality of

the �t does not su�er measurably. The resulting values

of �2=nd:o:f: are shown in Table 3. It is remarkable

that g4 apparently exhibits constant simple values that

seem to depend only on the learning task. While this

article is written, additional data is gathered for the

5BP task. More data points will improve the quality

of the �t and might allow a more reliable prediction for

g4. However, it can be foreseen that the conclusions

of the following analysis will not be a�ected.

Given the �t parameters gl, it is possible to investigate

the optimal mutation rate �max for a given � and the

yield Y (�max) at this point. Figure 5 shows the re-

sults. For both tasks, the optimal mutation rate �max

increases monotonically with increasing �. This is un-

derstandable, since the diversity in the population is

reduced signi�cantly when � increases. Thus the intro-

duction of new genes by mutation becomes more im-

portant. The yield Y (�max) also increases with �. For

4BP the maximum possible yield is in fact obtained

at � = 100%, while for 5BP a maximum is reached

at � � 65%. Additional data will clarify if the latter

observation is an authentic feature or an e�ect intro-

duced by the limited precision of the �t. However, it

is obvious that high replace percentages � in combina-

tion with high mutation rates � result in an optimal

yield Y . Note that the choice of � = 100% renders

the crossover operator none�ective and the search is

driven solely by the selection of the best individual

learning problem 4BP 5BP

scale factor ! 0.13-1.0 0.13-1.0

mutation rate � in % 0.5-4.5 0.6-3.6

max. No. �tness eval. 20000 40000

No. of tested settings (nS) 126 84

NE per setting 400 300

opt. mut. rate (�opt) in % 2.6 1.6

Table 4: Parameters and results of the ! vs. � exper-

iments.

and the parallel mutation of its � clones. It has previ-

ously been suggested, that this kind of strategy leads

to better performance than algorithms based mainly

on recombination [Scha�er, 1989]. Especially, with re-

gard to the training of neural networks, the crossover

operator is known to be problematic [Yao, 1999]. The

presented results verify these considerations.

5.3 Weight Scaling and Mutation Rate

In this section we discuss the e�ects of a variation of

the weight scaling factor ! on the success of the train-

ing algorithm. At � = 50 and � = 20 the yield Y

is measured for various settings of � and ! as given

in Table 4. In accordance to the previous observa-

tions, Y reaches a maximum at a certain optimal mu-

tation rate �max for each value of !. The maximum

can be found by �tting the data with a function similar

to those presented in the foregoing sections:

YF (!; �) = H1(!) � �
H2(!) � eH3(!)��

2

(10)

This is done for each value of !. The determined opti-

mal mutation rates �max(!) together with the corre-

sponding yields Y (!; �max) are presented in Figure 6.

It can be seen that the results are essentially indepen-

dent of the learning task: Small values of ! result in

a low yield or even inhibit the success of the train-

ing completely. Using a small scale factor leads to a

poor signal to noise ratio of the weights and the perfor-

mance of the network su�ers accordingly. Under these

condidtions it is not possible for the algorithm to �nd

a stable solution. An increase of ! improves the signal

to noise ratio. This makes it easier for the algorithm to

�nd a network with a stable performance despite the

presence of noise. Thus the maximum yield increases.

For a scale factor higher than approximately 0.6 the

yield is seen to be independent of ! within the given

precision. It can be concluded that the success of the

training is not limited by the noise of the weights once

a speci�c signal to noise ratio is exceeded.

The errors of the derived optimal mutation rates de-

pend on the distinctness of the respective maximum

in Y (!; �) and on the precision of the data. The lat-

ter decreases, when the yield is small. The clearness



0

20

40
Y

 in
 %

4BP

0 0.5 1
0

1

2

3

µm
ax

 in
 %

5BP

0.5 1

scale factor ω

Figure 6: Yield Y and optimal mutation rate �max as

a function of ! for 4BP (left) and 5BP (right).

of the maximum varies slightly between the measure-

ments at di�erent !. Within the estimated error the

optimal mutation rate �max shows no dependency on

the scale factor ! and the signal to noise ratio. This

even holds for regions of !, where the yield Y is still

seen to be a�ected by the weight noise. The previously

described experiments were conducted using ! = 0.9.

In this domain, both, the optimal mutation rates and

the yields are not measurably in
uenced by the weight


uctuations. It can be inferred that the presented re-

sults concerning the interaction of the parameters are

not in
uenced by the presence of noise. However, it

shall be repeated that the weights are still subject to


uctuations even for ! = 1. It is not possible to test

the system without any noise. On the other hand, soft-

ware simulations of the system indicate that a minimal

level of noise can in fact be advantageous for the train-

ing. Future studies with a new generation of analog

network chips [Schemmel, 2002] have to investigate the

behaviour of the system under a further reduction of

the signal noise.

6 Conclusions

We have presented detailed experimental data show-

ing the in
uence of the evolution parameters on the

success of the training of an analog neural network. A

quantitative analysis of the data has been conducted

and reveals strong dependencies between the parame-

ters. The results suggest that population sizes in the

order of 15 and mutation rates of about 1% are to

be preferred if the algorithm relies mainly on recom-

bination and applies moderate selection. The opti-

mal population size seems to be independent of the

learning problem. The performace of the algorithm

improves signi�cantly when a stronger selection is ap-

plied and recombination is given only a small role or

is even neglected completely. In this case, emphasis

has to be placed on mutation, thus higher mutation

rates are favorable. We have shown, that these con-

clusions are not in
uenced by the noise of the analog

weight values within the chip and should in principle

be transferable to other systems. At this moment, we

do not have a thorough theoretical understanding of

the results. It is reasonable to assume that the qual-

itative behaviour common to both tasks might be a

feature of the algorithm, while the concrete values of

the optimal parameters could in principle be connected

to characteristics of the speci�c tasks and the used net-

work architectures. We hope that our results encour-

age further theoretical or experimental research in this

direction4.

References

T. B�ack (1993). Optimal Mutation Rates in Genetic Search. Inter-
national Conference on Genetic Algorithms, University of Illinois,
Urbana-Champaign, pp. 2-8.

K. DeJong (1975). The Analysis and Behaviour of a Class of Ge-

netic Adaptive Systems. PhD thesis, University of Michigan. Diss.

Abstr. Int. 36(10), 5140B, University Micro�lms No. 76-9381.

D. E. Goldberg (1989). Genetic Algorithms in Search, Optimiza-
tion, and Machine Learning. Addison-Wesley Publishing Com-

pany, Inc., Reading, MA.

D. E. Goldberg (1989b). Sizing Populations for Serial and Parallel

Genetic Algorithms. Proceedings of the Third International Con-
ference on Genetic Algorithms, Morgan Kaufmann, Los Altos, CA,

pp. 70-79.

J. J. Grefenstette (1986). Optimization of Control Parameters for

Genetic Algorithms. IEEE Transactions on Systems, Man, and
Cybernetics, SMC-16, No. 1, pp. 122-128.

J. A. Hertz, A. Krogh, R. G. Palmer (1991). Introduction to the
Theory of Neural Computation. Addison-Wesley Publishing Com-

pany, Inc., Redwood City, CA.

J. Pujol, R. Poli (1998). Evolving Neural Networks Using a Dual

Representation with a Combined Crossover Operator. Proceedings
of the IEEE International Conference on Evolutionary Computa-
tion (ICEC), pp. 416-421.

A. Rogers, A. Pr�ugel-Bennett (2001). A Solvable Model of a Hard

Optimization Problem. Theoretical Aspects of Evolutionary Com-
puting, pp. 209-224, Springer.

J. D. Scha�er, R. A. Caruana, L. J. Eshelman, R. Das (1989). A

Study of Control Parameters A�ecting Online Performance of Ge-

netic Algorithms for Function Optimization. Proceedings of the
Third International Conference on Genetic Algorithms, Morgan

Kaufmann, Los Altos, CA, pp. 51-60.

J. Schemmel, K. Meier, F. Sch�urmann (2001). A VLSI Implemen-

tation of an Analog Neural Network suited for Genetic Algorithms.

Proceedings of the International Conference on Evolvable Systems
2001, Springer, pp. 50-61.

J. Schemmel, F. Sch�urmann, S. Hohmann, K. Meier (2002). An

Integrated Mixed-Mode Neural Network Architecture for Megasy-

napse ANNs. To appear in the Proceedings of the International
Joint Conference on Neural Networks 2002.

X. Yao (1999). Evolving Arti�cial Neural Networks. Proceedings of
the IEEE, Vol. 87, No. 9, pp. 1423-47.

4
The data and the MATLAB macros are available at http://www.uni-

heidelberg.de/vision/projects/evo fpnn related.html .


