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Abstract

This paper describes the application of four
evolutionary algorithms to the selection of
feature subsets for classification problems.
Besides of a simple genetic algorithm (GA),
the paper considers three estimation of dis-
tribution algorithms (EDAs): a compact GA,
an extended compact GA, and the Bayesian
Optimization Algorithm. The objective is
to determine if the EDAs present advantages
over the simple GA in terms of accuracy or
speed in this problem. The experiments used
a Naive Bayes classifier and public-domain
and artificial data sets. All the algorithms
found feature subsets that resulted in higher
accuracies than using all the features. How-
ever, in contrast with other studies, we did
not find evidence to support or reject the use
of EDAs for this problem.

1 INTRODUCTION

In machine learning, the problem of supervised clas-
sification is concerned with using labeled examples to
induce a model that classifies objects into a finite set
of known classes. The examples are described by a
vector of numeric or nominal features. Some of these
features may be irrelevant or redundant. Avoiding ir-
relevant or redundant features is important because
they may have a negative effect on the accuracy of the
classifier. In addition, by using fewer features we may
reduce the cost of acquiring the data and improve the
comprehensibility of the classification model. Finding
feature subsets that result in accurate classifiers can
be cast as a search problem, and genetic algorithms
have been used successfully to address this problem.

This paper presents experiments with a simple ge-
netic algorithm (sGA) and three estimation of distri-

bution algorithms (EDAs): a compact GA (cGA), an
extended compact GA (ecGA), and the Bayesian Op-
timization Algorithm (BOA). Instead of the mutation
and crossover operations of conventional GAs, EDAs
use a statistical model of the individuals that survive
selection to generate new individuals. EDAs are an
important step toward solving the linkage problem,
a fundamental obstacle to the application of simple
GAs to problems with unknown relationships among
variables. Numerous experimental and theoretical re-
sults show that EDAs can solve hard problems reli-
ably and efficiently (Pelikan et al., 1999; Etxeberria &
Larrañaga, 1999; Mühlenbein & Mahnig, 1999).

The objective of this study is to determine if EDAs
present advantages over simple GAs in terms of accu-
racy or speed when applied to feature selection prob-
lems. The experiments described in this paper use
public-domain and artificial data sets. The classifier
was a Naive Bayes, a simple classifier that can be in-
duced quickly, and that has been shown to have good
accuracy in many problems (Kohavi & John, 1997).

Our target was to maximize the accuracy of classifica-
tion. The experiments demonstrate that all the feature
selection methods tried here resulted in higher accura-
cies than using all the features. However, in contrast
with other studies, we found no evidence to support or
reject the use of the advanced EDAs in this problem.

The next section briefly reviews previous applications
of EAs to feature subset selection. Section 3 describes
the algorithms, data sets, and the fitness evaluation
method. The experimental results are presented in
section 4. Section 5 concludes this paper with a sum-
mary and a discussion of future research directions.

2 FEATURE SELECTION

In a domain where objects are described by d fea-
tures, there are 2d possible feature subsets. Obviously,
searching exhaustively for the best subset (using any



criteria to measure quality) is futile. One approach
to deal with this problem is to preprocess the data
and select features based on properties that good fea-
ture sets are presumed to have, such as orthogonality
and high information content. This is known as the
filter approach (John, Kohavi, & Phleger, 1994). Al-
though it can be relatively fast, the filter approach
may produce disappointing results, because it ignores
completely the induction algorithm.

An alternative to preprocessing the data is the wrap-
per approach. The key idea is to consider the induc-
tion algorithm as a black box that can be used by a
heuristic search algorithm to evaluate each candidate
feature subset (John, Kohavi, & Phleger, 1994). The
feature subset with the higher evaluation is selected as
the final set on which to run the inducer. The resulting
classifier should then be tested on data not used dur-
ing the search. A major disadvantage of the wrapper
approach is that it requires much more computational
effort than filters.

Numerous search algorithms have been used to search
for feature subsets (Jain & Zongker, 1997). Genetic al-
gorithms are usually reported to deliver good results,
but there are exceptions where simpler (and faster) al-
gorithms result in higher accuracies on particular data
sets (Jain & Zongker, 1997).

Applying GAs to the feature selection problem is
straightforward: the chromosomes of the individuals
contain one bit for each feature, and the value of the
bit determines whether the feature will be used in the
classification. Using the wrapper approach, the indi-
viduals are evaluated by training the classifiers using
the feature subset indicated by the chromosome and
using the resulting accuracy to calculate the fitness.
Siedlecki and Sklansky (1989) were the first to describe
the application of GAs in this way.

GAs have been used to search for feature subsets in
conjunction with several classification methods such
as neural networks (Brill et al., 1990; Brotherton &
Simpson, 1995), decision trees (Bala et al., 1996), k-
nearest neighbors (Kelly & Davis, 1991; Punch et al.,
1993; Raymer et al., 1997; Kudo & Sklansky, 2000),
rules (Vafaie & Jong, 1993), and Naive Bayes (Inza
et al., 1999).

Besides selecting feature subsets, GAs can extract new
features by searching for a vector of numeric coeffi-
cients that is used to transform linearly the original
features (Kelly & Davis, 1991; Punch et al., 1993). In
this case, a value of zero in the transformation vector
is equivalent to avoiding the feature. Raymer et al.
(1997) and Raymer et al. (2000) combined the linear

transformation with explicit feature selection flags in
the chromosomes, and reported an advantage over the
pure transformation method.

The only previous application of model-building EA to
select feature subsets is the work by Inza et al. (1999,
2001a, 2001b). They presented experiments with sev-
eral EDAs and two sequential feature selection algo-
rithms. Inza et al. reported that the EDAs found sub-
sets that result in similar accuracies than the simple
GA and the sequential feature selection algorithms,
but the EDAs have an advantage because they need
fewer generations to finish. Their algorithms are sim-
ilar to those included in this study, and we use some
of the same data sets.

3 METHODS

This section describes the algorithms and the data
used in this study as well as the method used to eval-
uate the fitness.

3.1 ALGORITHMS AND DATA SETS

The simple genetic algorithm in this study uses bi-
nary strings, binary (pairwise) tournament selection
without replacement, uniform crossover, and bit-wise
point mutation. Simple GAs such as this have
been used successfully in many applications. How-
ever, it has long been recognized that the problem-
independent crossover operators used in simple GAs
can disrupt groups of related variables and prevent the
algorithm from reaching the global optimum, unless
exponentially-sized populations are used. (Thierens
(1999) gives a good description of this problem).

One approach to identify and exploit the relationships
among variables is to estimate the joint distribution
of the individuals that survive selection and use this
model to generate new individuals. The complexity
of the models has increased over time as the methods
of building models from data mature and more pow-
erful computers become available. Interested readers
can consult the reviews by Pelikan et al. (1999) and
Larrañaga et al. (1999).

The simplest model-building EA that was used in the
experiments reported here is the compact GA (Harik,
Lobo, & Goldberg, 1998). This algorithm assumes
that the variables (bits) that represent the problem
are independent, and therefore it models the popula-
tion as a product of Bernoulli distributions. The com-
pact GA receives its name from the compact way it
represents the population: the cGA uses a vector p
of length equal to the problem’s length, l. Each ele-



ment of p contains the probability that a sample will
take the value 1. If the Bernoulli trial is not successful
the sample will be 0. All positions of p are initialized
to 0.5 to simulate the usual uniform random initial-
ization of simple GAs. New individuals are obtained
by sampling consecutively from each position of p and
concatenating the values obtained. The probabilities
vector is updated by comparing the fitness of two in-
dividuals obtained from it. For each pk, k = 1, .., l, if
the fittest individual has a 1 in the k-th position, pk

is increased by 1/n, where n is the size of the virtual
population that the user wants to simulate. Likewise,
if the fittest individual has a 0 in the k-th position,
pk is decreased by 1/n. The cGA iterates until all
positions in pk contain either zero or one.

PBIL (Baluja, 1994) and the UMDA (Mühlenbein,
1998) are other examples of algorithms that use uni-
variate models and operate on binary alphabets. They
differ from the cGA in the method to update the prob-
abilities vector.

The extended compact GA (Harik, 1999) uses a prod-
uct of marginal distributions on a partition of the
variables. In this model, subsets of variables can be
modeled jointly, and the subsets are considered in-
dependent of other subsets. Formally, the model is
P =

∏m
i=0 Pi, where m is the number of subsets in the

partition of variables and Pi represents the distribution
of the i-th subset. The distribution of a subset with k
members is stored in a table with 2k − 1 entries. The
challenge is to find a partition that models the popula-
tion correctly. Harik (1999) proposed a greedy search
that initially supposes that all variables are indepen-
dent. The model search tries to merge all pairs of sub-
sets and chooses the merger that minimizes a complex-
ity measure based on information theory. The search
continues until no further subsets can be merged. In
contrast to the cGA, the ecGA has an explicit pop-
ulation that is evaluated and subject to selection at
each iteration of the algorithm. The algorithm builds
the model considering only those solutions that sur-
vive selection. The population is initialized randomly,
and new individuals are generated by sampling con-
secutively from the m subset distributions.

The Bayesian Optimization Algorithm (Pelikan, Gold-
berg, & Cantú-Paz, 1999) models the selected individ-
uals using a Bayesian network, which can represent
dependence relations among an arbitrary number of
variables. Independently, Etxeberria and Larrañaga
(1999) and Mühlenbein and Mahnig (1999) introduced
similar algorithms. The BOA uses a greedy search to
optimize the Bayesian Dirichlet metric, a measure of
how well the network represents the data (the BOA

could use other metrics). The user specifies the max-
imum number of incoming edges to any node of the
network. This number corresponds to the highest de-
gree of interaction assumed among the variables of the
problem. As the ecGA, the BOA builds the model
considering only the solutions that survived selection.
New individuals are generated by sampling from the
network. The main difference between the ecGA and
the BOA is the model that they use to represent the
survivors.

Figure 1 illustrates the different models used by the
ecGA and the BOA. The ecGA cannot represent indi-
vidual relationships among the variables in a subset.

The classifier induced in the experiments was a Naive
Bayes (NB). This classifier was chosen for its speed
and simplicity, but the evolutionary wrapper method
can be used with any other supervised classifiers, as
mentioned in the previous section. In the NB, the
probabilities for nominal features were estimated from
the data using maximum likelihood estimation (their
observed frequencies in the data) and applying the
Laplace correction. Numeric features were assumed
to have a normal distribution. Missing values in the
data were skipped.

The experiments used the C++ implementations of
the ecGA (Lobo & Harik, 1999) and the BOA version
1.0 (Pelikan, 1999) that are distributed by their au-
thors on the web.1 The ecGA code has a non-learning
mode that emulates the cGA. The sGA and Naive
Bayes were developed in C++. All programs were
compiled with g++ version 2.96 using -O2 optimiza-
tions. The experiments were executed on a single pro-
cessor of a Linux (Red Had 7.1) workstation with dual
1.5 GHz Intel Xeon processors and 512 Mb of memory.
The ecGA and the BOA codes were modified to use a
Mersenne Twister random number generator, which
was also used in the GA and the data partitioning.

The data sets used in the experiments are described
in table 1. The first four data sets are available in the
UCI repository (Blake & Merz, 1998). Random21 and
Redundant21 are two artificial data sets with 21 fea-
tures each. The target concept of these two data sets
is to define whether the first nine features are closer
to (0,0,...,0) or (9,9,...,9) in Euclidean distance. The
features were generated uniformly at random in the
range [3,6]. All the features in Random21 are random,
and the first, fifth, and ninth features are repeated four
times each in Redundant21. We took the definition of
Redundant21 from the paper by Inza et al. (1999).

1Available at http://www-illigal.ge.uiuc.edu



(a) ecGA (b) BOA

Figure 1: Representation of the models used in the ecGA and the BOA.

Domain Instances Classes Numeric Feat. Nominal Feat. Missing

Ionosphere 351 2 34 – N
Segmentation 2310 7 19 – N
Sick Euthyroid 3163 2 7 18 Y
Soybean Large 683 19 – 35 Y
Random21 2500 2 21 – N
Redundant21 2500 2 21 – N

Table 1: Description of the data used in the experiments.

3.2 MEASURING FITNESS

Since we are interested in classifiers that generalize
well, the fitness calculations must include some esti-
mate of the generalization of the Naive Bayes using
the candidate subsets. If enough data are available,
the generalization may be estimated by dividing the
training data into training and testing sets. The train-
ing set is used to find the class conditional probabili-
ties, and the accuracy of the trained classifier on the
testing set is used to calculate the fitness.

Unfortunately, the training data sets are small, so the
procedure above may not be practical in our case. In-
stead, we estimate the generalization of the network
using crossvalidation. In k-fold crossvalidation, the
data D is partitioned randomly into k non-overlapping
sets, D1, ..., Dk. At each iteration i (from 1 to k), the
network is trained with D\Di and tested on Di. Since
the data are partitioned randomly, it is likely that re-
peated crossvalidation experiments return different re-
sults. Although there are well-known methods to deal
with “noisy” fitness evaluations in EAs (Miller & Gold-
berg, 1996), we chose to limit the uncertainty in the

accuracy estimate by repeating 10-fold crossvalidation
experiments until the standard deviation of the accu-
racy estimate drops below 1% (or a maximum of five
repetitions). This heuristic was proposed by Kohavi
and John (1997) in their study of wrapper methods
for feature selection, and was adopted by Inza et al.
(1999). We use the accuracy estimate as our fitness
function.

Even though crossvalidation is expensive computation-
ally, the cost was not prohibitive in our case, since the
data sets were relatively small and the NB classifier is
very efficient. If larger data sets or other inducers were
used, we would have to deal with the uncertainty in the
evaluation by other means, such as increasing slightly
the population size (to compensate for the noise in the
evaluation) or by sampling the training data. We de-
fer a discussion of possible performance improvements
until the final section.

Our fitness measure does not include any term to bias
the search toward small feature subsets. However, the
algorithms found small subsets, and with some data
the algorithms consistently found the smallest subsets



that describe the target concepts. This suggests that
the data sets contained irrelevant or redundant fea-
tures that decreased the accuracy of the Naive Bayes.

4 EXPERIMENTS

All the algorithms used populations with 1000 individ-
uals. The GA used uniform crossover with probability
1.0, and mutation with probability 1/l, where l was
the length of the chromosomes that corresponds to the
total number of features in each problem. Promising
solutions were selected with pairwise binary tourna-
ments without replacement. The cGA, ecGA, and the
BOA used the default parameters provided in their
distributions: the cGA and ecGA used tournaments
among 16 individuals, and the BOA used truncation
selection with a threshold of 50%. The algorithms were
terminated after observing no improvement in the best
individual over consecutive generations.

To evaluate the generalization accuracy of the feature
selection methods, we used 5 iterations of 2-fold cross-
validation (5x2cv). In each iteration, the data were
randomly divided in halves. One half was input to the
feature selection algorithms. The final feature sub-
set found in each experiment was used to train a final
NB classifier (using the training data), which was then
tested on the other half of the data. The accuracy re-
sults presented in table 2 are the average and standard
deviations of the ten tests.

To determine if the differences among the algorithms
were statistically significant, we used a combined F

test proposed by Alpaydin (1999). Let p
(j)
i denote the

difference in the accuracy rates of two classifiers in fold

j of the i-th iteration of 5x2 cv, p̄ = (p
(1)
i + p

(2)
i )/2

denote the mean, and s2
i = (p

(1)
i − p̄)2 +(p

(2)
i − p̄)2 the

variance, then

f =

∑5
i=1

∑2
j=1

(

p
(j)
i

)2

2
∑5

i=1 s2
i

is approximately F distributed with 10 and 5 degrees
of freedom, and we rejected the null hypothesis that
the two algorithms have the same error rate with 0.95
confidence if f > 4.74 (Alpaydin, 1999). Care was
taken to ensure that all the algorithms used the same
training and testing data in the two folds of the five
crossvalidation experiments. The algorithms were ini-
tialized using the same set of random seeds, so they
all started from the same initial populations.

Table 2 has the average accuracies obtained with each
method. The best observed result in the table is high-
lighted in bold type, and those results that according

to the combined F test are significantly different from
the best are marked with a bullet (•). There are two
immediate observations that we can make from the re-
sults. First, the feature selection algorithms result in
a great improvement in accuracy over using a NB with
all the features. However, this difference is not always
significant (Soybean Large, Random21). Second, all
the feature selection algorithms result in similar ac-
curacy values. There is not a single statistically sig-
nificant difference among the four algorithms on these
data sets.

We must be careful not to take the results at face
value and conclude incorrectly that the cGA and the
ecGA find feature subsets that result in better accura-
cies than the other EAs, since the differences are small
and not significant. For the same reasons, we cannot
disqualify the BOA or the simple GA, which did not
score highest in any data set.

In terms of the size of the final feature subsets, all the
algorithms find similarly-sized subsets, which are sub-
stantially and significantly smaller than the original
set of features (see table 3). It is interesting to note
that the cGA and ecGA always found subsets with the
nine target features for the Redundant21 data.

Table 4 shows the mean number of generations until
termination. The BOA finishes sooner than the other
algorithms on most data sets, but the differences are
not significant, except for one case. This observation,
along with the experimental results of accuracy and
feature subset size, suggests that the EDAs do not
offer an advantage over the simple GA for the feature
selection problems that we considered.2

2In preliminary experiments, the simple GA used a pop-
ulation with 100 individuals and one-point crossover (which
is not particularly suitable for this problem where the or-
dering of the bits in the chromosome is irrelevant). The
algorithms were terminated after 50 generations, although
we did not observe much improvements after 10–20 gener-
ations. The cGA, ecGA, and the BOA used a population
with 1000 individuals. Larger populations were chosen be-
cause these algorithms need large samples to estimate cor-
rectly the parameters of their population models. These
larger populations also confer an advantage to the EDAs
over the simple GA, because the EDAs sample more solu-
tions. However, even with this advantage, we found no evi-
dence that the EDAs found feature subsets that resulted in
better classification accuracies. Moreover, we did not find
significant differences in the size of the final feature sub-
sets found by each algorithm. The simple GA was more
than 10 times faster than the EDAs (because of the ex-
tra time required by the model-building step in EDAs and
presumably because of random fluctuations in the num-
ber of crossvalidations used to estimate accuracy). All this
lead us to favor the simple GAs over the EDAs for feature
selection problems.



Domain All Features sGA cGA ecGA BOA

Ionosphere 83.37±2.65• 90.48±1.20 91.50±0.79 91.05±1.91 91.22±1.01
Segmentation 79.71±0.94• 89.24±1.03 90.38±1.12 90.44±0.91 88.95±0.76
Soybean Large 85.22±5.50 84.42±4.69 84.92±5.11 85.07±5.38 83.19±4.87
Sick Euthyroid 79.04±4.23• 95.73±0.87 95.81±0.87 95.90±0.79 95.82±0.87
Random21 94.02±0.86 94.87±1.30 95.01±1.34 95.07±1.25 94.80±1.23
Redundant21 76.89±1.32• 94.16±2.40 95.96±0.92 95.96±0.92 92.66±2.59

Table 2: Mean accuracies found (± standard deviation) in the 5x2cv experiments. The best result is in bold

and a bullet (•) denotes a result that is significantly different from the best result with 95% confidence.

Some of the results presented here agree with the con-
clusions of Inza et al. (1999) and Inza et al. (2001a),
but some results and conclusions differ in important
ways. In agreement with the results presented above,
Inza et al. did not find statistically significant differ-
ences between the accuracy of their EDA and other
genetic and sequential feature selection methods (us-
ing the same combined F test used here). However,
they detected that the sGA needed significantly more
generations to end than the EDAs in almost all the
data sets they considered. This result suggests an ad-
vantage of EDAs over the sGA and the other feature
selection methods they tried.

The disagreement of our results may be due to differ-
ences in the algorithms or some details in the exper-
imental setup. It must be emphasized that the sGA
and the EDAs used in this paper are not the same
that Inza et al. used. An important difference is that
Inza et al. used proportional selection in their simple
GA, while we used tournament selection, which can
be more efficient. Another difference is that the EDA
of Inza et al. that learns a Bayesian network uses a
greedy search that adds edges to the graph that max-
imize the Bayesian Information Criterion; the BOA
considers edge additions and deletions and attempts to
maximize a different measure of model quality. Other
small differences in our experiments may affect the re-
sults slightly. For example, the Naive Bayes used in
this paper was implemented from scratch, and, while
great care was taken to ensure that it conformed with
the specifications of their NB, differences in floating
point accuracy, compilers, and operating systems can
affect the results slightly.

5 CONCLUSIONS

This paper presented experiments with four evolution-
ary algorithms applied to the feature selection prob-
lem. The experiments considered a Naive Bayes clas-
sifier and public-domain and artificial data sets. With
these data and classifier we did not find evidence to

support or reject the use of the sophisticated model-
building EAs in this problem. However, taking into
account the (preliminary) experiments where the sim-
ple GA with smaller populations was much faster than
the other algorithms and found feature subsets of sim-
ilar quality, we are inclined to recommend the sGA
over the other algorithms.

There are numerous opportunities to extend this work.
The results that suggest that EDAs are not advanta-
geous for feature selection should be explored further
with additional data sets and other induction algo-
rithms. It is not clear what characteristics of the data
or the classifier would require an EDA to find feature
subsets that reliably result in high accuracies.

Future work should also explore methods to improve
the computational efficiency of the algorithms to deal
with much larger data sets. In particular, subsampling
the training sets and parallelizing the fitness evalua-
tions seem like promising alternatives. In addition,
future work should explore efficient methods to deal
with the noisy accuracy estimates, instead of using
the expensive multiple crossvalidations that we em-
ployed. Previous work (Miller & Goldberg, 1996) in-
dicates that small increases of the population size are
sufficient to deal with noise in the fitness evaluation.
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Domain Original sGA cGA ecGA BOA

Ionosphere 34• 13 ±2.35 11.5±2.95 12.3±1.59 14.2±2.20
Segmentation 19• 8.3±0.94 7.8±0.63 7.4±0.84 8.4±1.50
Soybean Large 35• 24.8±2.57 23.4±2.45 24.6±2.45 22.4±2.67

Sick Euthyroid 25• 12.8±2.25 12.5±2.27 12.6±3.43 11.5±2.41

Random21 21• 13.5±1.50 12.3±1.49 12.1±1.37 14±1.56•
Redundant21 21• 9.4±0.51 9±0 9±0 10±0.81

Table 3: Mean sizes of final feature subsets (± standard deviation). The best result is in bold and a bullet (•)
denotes a result that is significantly different from the best result with 95% confidence.

Domain sGA cGA ecGA BOA

Ionosphere 2.7±1.25 5.3±1.88 4.6±1.77 3.3±1.49
Segmentation 2.6±1.35 4.7±1.76• 5.3±1.25 2±1.41

Soybean Large 4.3±2.21 3.6±1.77 4.2±1.47 2.2±1.47

Sick Euthyroid 2±1.05 2.2±1.03 3.4±0.84 1.7±1.46

Random21 2.7±1.33 3.4±1.89 4.3±0.82 2.3±1.49

Redundant21 3.3±2.45 3.7±0.48 4.3±1.05 2.6±1.63

Table 4: Mean generations until termination (± standard deviation). The best result is in bold and a bullet (•)
denotes a result that is significantly different from the best result with 95% confidence.
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