
GA

Combining Competitive and Cooperative Coevolution for Training
Cascade Neural Networks

Alexander F. Tulai

Computer Science Dept.
Carleton University

Ottawa, Ont, CANADA, K1S 5B6
alexander.tulai@rogers.com

Tel: (613) 730-2671

Franz Oppacher

Computer Science Dept.
Carleton University

Ottawa, Ont, CANADA, K1S 5B6
foppache@ccs.carleton.ca
Tel: (613) 520-2600/3520

Abstract

Cooperative Coevolution (CC) has been shown
to be effective in problems where certain
architectural details of the solution are evolved.
This is the case of cascade neural networks
where the number of hidden units is not pre-
established but rather emerges through learning.
We take a step towards having coadapted
subcomponents emerge rather than being hand
designed by showing that competing populations
(evolved by GAs with different mutation and
crossover probabilities) can be successfully used
in selecting the species that are subsequently
coevolved in a cooperative model. Our
experimental results indicate that retraining is an
essential step in the cooperative coevolution
model. Previous studies used evolutionary
algorithms (EAs) to train connection weights and
neuron thresholds in artificial neural networks
(ANNs). We show that by also evolving the
characteristics of the neurons themselves, the
quality of the solution (in terms of number of
hidden units) could be significantly improved.

1 INTRODUCTION

EAs have been used in the past to train and/or initialize
connection weights, evolve neural network architectures
and learning rule adaptation, etc. (Yao, 1999).

This paper shows that in the case of cascade neural
networks (CNNs) not only evolutionary strategy (ES) but
also genetic algorithms (GAs) could be successfully used
for evolving and training the nets. We also show that by
evolving the neuron characteristics in addition to the
connection weights a more compressed solution is
obtained over the case of fix neuron activation function.

The paper is organized as follows. In section 2 we discuss
the concept of coevolution. In section 3 we describe the

problem under study and the definition of the species used
by the EAs. In section 4 we describe the three algorithms
that are used for comparison in this study. In section 5 we
present and discuss the experimental results. In section 6
we discuss the impact of retraining in cooperative
coevolution (CC) while in section 7 we discuss the effect
of evolving the neuron characteristics followed by a
discussion on algorithm robustness in section 8. Section 9
summarizes the conclusions of this paper.

2 COMPETITIVE AND COOPERATIVE
COEVOLUTION

Coevolution is defined as a series of reciprocal
evolutionary changes in interacting species acting as
agents of selection for each other. Competitive and
cooperative coevolution are two important forms of
coevolutionary relationships. The nature of the
relationship plays an important role in determining
various components of the evolutionary model (like
problem decomposition, credit assignment, etc.).

Combining competition and cooperation within a
coevolution model has been used by cooperative
coevolutionary GAs (Potter and De Jong, 1994). In the
case of GAs, the competition is usually between
individuals and not between populations.

The CC GA model inherits the limitations commonly
associated with a GA, like pre-determining, through
experimentation, of mutation and crossover rates or the
population size. In addition to that, when new species are
introduced in the CC model, certain selection criteria or a
pool of candidates are needed to ensure the quality of the
new species.

In our study, to alleviate these problems and increase the
generality of the model, we introduce an extra step during
which multiple populations, evolved by GAs with
different mutation and crossover rates, participate in a
competitive-cooperative coevolutionary process
(competing among themselves but cooperating with the
previous species) that results in one winning species. The
individuals of the populations that underperform during

the competitive phase are re-distributed between the other
populations. This process mimics real life situations when
employees of a company that goes bankrupt join other
successful companies. Consequently, during the
competitive phase the competing populations may have
slightly different sizes. The size of the population of the
winning species will be equal to the sum of all initial
populations but it is clear that the mutation and crossover
rates are not known apriori as they depend on the GA
used by the winning population. The winning species thus
joins other previous winners in the cooperative
coevolutionary phase of the algorithm. This process is
repeated for every hidden unit introduced in the CNN.

The purpose of the competitive phase is twofold. On the
one hand it selects a new species and on the other hand it
selects the GA with the most appropriate mutation and
crossover rates to evolve this new species. The purpose
of the cooperative coevolutionary phase is to find those
representatives from each species that together provide
the best solution to the problem.

We compare the competitive-cooperative coevolutionary
(CCC) GA model it with a CC model using evolutionary
strategy (ES) and a pool of 8 initial candidate species to
select from.

Both algorithms retrain all the species after a new species
is introduced in the cooperative. This is different from
other similar cooperative models (for example the cascade
neural networks architecture can also be seen as a
cooperative model) that do not perform retraining.

3 PROBLEM DESCRIPTION AND
SPECIES DEFINITION

Proposed first by Alexis Wieland of Mitre Corp. the two-
spiral has become a favorite hard problem to solve by
training neural networks.

Figure 1 : The training patterns.

The problem consists of two intertwined spirals (see
Figure 1) with 97 points on each spiral for a total of 194
points.

If a point that belongs to one spiral is input to the neural
network the output of the network should be a positive
signal and if the point belongs to the other spiral the
output should be negative. When the problem is solved in
this form, although it is rarely mentioned, we say that it is
solved according to the 5050 − criterion. Sometimes
(Wah and Qian, 2000) classification problems are studied
using the 402040 −− criterion.

Solutions to the two-spiral problem could either have an
evolved architecture, like in the case of the CNNs first
proposed by Fahlman (Fahlman and Labiere, 1990a), or
they can have a fixed architecture. The best solution to the
two-spiral problem, in terms of number of hidden units
(HU), had 4 HUs and 19 connection weights and it was
arrived at based on a fixed neural network architecture
(Wah and Qian, 2000). The previously reported best
solution based on an evolved architecture had 9 HUs and
75 weights (Fahlman and Labiere 1990b).

In previous studies (Fahlman and Labiere, 1990a; Potter
and De Jong, 2000) the hidden units and the output unit
were neurons with an output range of [-1,+1] and with a
sigmoidal activation function given by the equation

We are also using neurons with a [-1,+1] range but we
treat the activation function itself as an evolvable function
with the equation.

Besides the number of hidden units, which is an
architectural element, and the connection weights (that
also include the bias) we are also evolving the
characteristics of each neuron by including the parameters
α and L (the gain and the input signal limit) in the
individual genome of a species. Defining the species for
the cooperative coevolution architecture solution to the
two-spiral problem could be successfully done in
accordance with the original cascade network training
algorithm (Fahlman and Labiere, 1990b). That method
consists in, first, evolving together all the connection
weights and neuron thresholds (which in fact are also
weights on connections to a constant +1.0 input) leading
into a new hidden unit and than, second, train all the
connection weights leading into the output unit (the two-
spiral problem requires only one output). Following this
idea (Potter and De Jong, 2000) assign a separate species
to the weights leading into a unit whether an output or a
hidden unit. This choice of the species has the
disadvantage that whenever a new hidden unit is

-6 -4 -2 0 2 4 6
-8

-6

-4

-2

0

2

4

6

8

-6 -4 -2 0 2 4 6
-8

-6

-4

-2

0

2

4

6

8

)2(

,1

),tanh(

,1

)(,








>
≤≤−

−<−
=

Lx

LxLx

Lx

xa L αα













>

≤≤−−
+

−<−

=
−

15,1

)1(1515,1
1

2

15,1

)(

x

x
e

x

xa
x

introduced, a randomly initialized weight needs to be
added to all the individuals of the species assigned to the
output unit.

In our solution we decided to group all the connection
weights needed for a new hidden unit (input, output and
bias connections) as well as the neuron characteristics as
one species as shown in Figure 2.

Figure 2 : Cascade net with 1 output and 2 hidden units.
All elements of a species have the same number.

Each individual genome is represented by a set of i+5 ,
genes where HUi max,,1,0 L= is the index of the unit
introduced, with species 0 representing the output unit
and species 1 to maxHU representing the HUs. The first
species created represents the output unit and has 5 genes,
two for the neuron characteristics and three for the
weights on its input connections (one of the connection
weights will in fact represent the output unit bias as
previously stated). Every time a new hidden unit is
introduced, we create a new species with a genome that
has one more gene than the previous species. A new
hidden unit is always introduced between the last hidden
unit and the output unit.

4 ALGORITHM DESCRIPTION

For this study we compare three different learning
methods for evolving a cascade correlation neural
network that solves the two-spiral problem.

- the GA-based method, that we propose, uses both
competitive and cooperative coevolution GA and we
will refer to as the CCC-GA method.

- a cooperative coevolution method using the),(λµ
evolutionary strategy (ES) as described in (Schwefel,
1995) and used by (Potter and De Jong, 2000) for

solving the same two-spiral problem. We will refer to
this algorithm as the CC-ES method.

- a second order gradient-descent based method as
described in (Fahlman and Labiere, 1990a). We will
refer to this method as the cascade correlation
method.

The cascade networks generated by Fahlman’s method
are comprised of symmetrical sigmoid units (both hidden
and output units) as defined by equation (1). In order to
properly compare the CCC-GA and the CC-ES algorithms
both will generate cascade networks using neurons with
an activation function as defined by equation (2) and will
include the parameters α and L among the evolved genes.

All methods try to evolve cascade networks that classify
all input patterns, and reach this objective by minimizing
the squared error sum (SES) at the output of the cascade
neural network over all the patterns in the two-spiral data
set,

where p is the training pattern index, pd is the desired
output and py is the actual output.

4.1 CCC-GA METHOD

The CCC-GA method has two major phases, a
competitive coevolution phase and a cooperative
coevolution phase.

The competitive coevolution phase starts with N
populations of m individuals, each population being
evolved by a GA with overlapping population, and ends
with 1 population with mN ⋅ individuals at the end of an
iterative process that sees the least fit populations being
absorbed by the fitter ones. Each GA will use a different
mutation and crossover probability described at step 1 of
the competitive phase of the algorithm.

Competitive coevolution phase of the algorithm

1. Initialization. Create N populations with
m individuals in each population. Train each
population with a similar GA but use different
mutation and crossover probability. In our study
N was set to 16, m to 64 and the mutation and
crossover probabilities are distinct pairs

2}875.0,625.0,375.0,125.0{),(∈pxoverpmut .

2. 1-step evolution. The N populations are each trained
on the whole set of input data once.

3. Ranking. All mN ⋅ individuals are ranked (0 to
1−⋅ mN) based on their fitness

1,,0, −⋅= mNiFi K calculated during training. The
population ranking will be done based on the
performance of the top M individuals in the ranking
individual order with mM ≥ . The only time when M
will be different from m is when 1−= mm FF in which
case we must consider all the individuals that have an
identical fitness 11 −− === Mmm FFF L .

1

1

1

1

2

2

2

2

2

0

0

0

0

1

2

+1.0

Species 1 Species 2 Species 0

Output

Inputs

1

1

1

11

11

11

2

2

2

22

22

22

22

00

00

00

11

22

+1.0

Species 1 Species 2 Species 0

Inputs

11

1

1

1

11

11

11

2

2

2

2

22

22

22

22

00

00

00

00

11

22

+1.0

Species 1 Species 2 Species 0

Output

Inputs

11

11

11

11

11

11

22

22

22

22

22

22

22

00

00

00

11

22

+1.0

Species 1 Species 2 Species 0

Inputs

∑ −=
p

pp ydError 2)(

4. Credit assignment. Each of the M individual is
assigned a credit iΓ based on the equation

1,,0,/)(−==Γ − Mie MiM
i L . If k individuals have

identical fitnesses 11 ,,, −++ kjjj FFF L with
11,0 −≤−+≤ Mkjj , they will each be assigned

the same credit value

Each of the N populations receives a credit
equivalent to the sum of the credits received by its
own individuals. Please note that if a certain
population has no representatives in the top M
individual ranking, it receives a credit equal to 0.

5. Check population elimination criterion. When a
population ranks last D times in succession it is
eliminated at step 6, otherwise we continue with step
2. In our study, D is initially set to 10. To avoid
possible processing traps, D is decreased by 1 every
10 iterations.

6. Population elimination. If the elimination criterion is
met, the genomes of the population that is eliminated
are one by one distributed between the other

1−N populations with a random starting point. After
N is decremented by 1 the algorithm continues with
step 2 if 1>N . The algorithm iterates until only one
population with mN ⋅ individuals is left. This
population, as a separate species, joins the other
previous winning species in the cooperative
coevolution phase of the algorithm.

Cooperative coevolution phase of the algorithm

7. Winner integration. The winning species is
cooperatively coevolved with the best representatives
from the previous winning species until the SES does
not decrease by more than δ from one iteration to
another in I consecutive iterations. At any point in
time, the number of species cooperating equals the
numbers of neurons in the CNN. At the end of the
iterative process the genome with the highest fitness
is used to grow the size of the cascade correlation
neural network with one hidden unit. In our study

1.0=δ and 10=I .

8. Retraining. After the new hidden unit is added to the
network, an attempt is made to retrain once all the
species created up to this point (i.e. all the units of the
cascade neural network). During retraining, each
species contributes to the network with its best
genome except the species that it is retrained. The
species are retrained in a random order (for other
possibilities see the section on retraining) except the
newest species that is always retrained last. The
retraining is done using the same stopping criterion
as described at point 7. If a species cannot find a
better genome through retraining, the previous one is
kept.

During step 7 or 8 of the algorithm, if all the points in the
training set are correctly classified, the algorithm stops.
CCC-GA method uses a GA with overlapping populations
(final size 1024 individuals) with a 50% probability of
replacement and Tournament selection.

4.2 CC-ES METHOD

To facilitate the comparison of the results of our study
with previous results from previous studies, we used the
same),(λµ evolutionary strategy (ES) as described in
(Schwefel, 1995) and used by (Potter and De Jong, 2000)
for studying the same two-spiral problem, with the same
choice of 10=µ and 100=λ .

A very interesting aspect of this evolutionary algorithm is
that both the genes under study and the standard
deviations used by the mutation operator are part of the
genome and consequently are evolved together.

If µ)1(1,)0.10,0.10()0(=−∈ kx n
k are the initial vectors for

the connection weights, with n the genome length, we
only have to initialize)0(

1x while the algorithm itself will
initialize the other 1−µ individuals by addition of

))(,0(2)0(
iσ normally distributed vectors. Just as in

(Potter and De Jong, 2000) we initialize all the n
components of the first standard deviation vector to

n/20 while the other 1−µ standard deviation initial
vectors are initialized by Schwefel’s algorithm.

The n standard deviation components (mutation steps)
are updated by multiplying them every generation t with

the initial values being given by ni /1)0(=σ . In our
study we used the),(λµ implementation of the algorithm
given by the ‘korr2’ program. Although the program
allows recombination for both components of the parents
(connection weights and standard deviations) we turned
this option off and used only mutation. The recombination
was turned off for a better comparison with (Potter and
De Jong, 2000) and because we had also experienced a
degradation of the results when it was turned on.

For every new species that is created, with the exception
of the first species, the algorithm is executed eight times
to generate a pool of eight species, the best genome in
each species representing a candidate HUs. The species
that produces the genome with the best results in reducing
the network residual output error is inserted in the
cooperative of species. The number eight has been chosen
to match the size of the pool used by the cascade
correlation algorithm. The existence of a pool of
candidates and the need to pre-determine its size is a
disadvantage for the CC-ES method when compared to
the CCC-GA method that always runs the competitive
coevolution phase only once for all the newly created
species. Other cooperative coevolution models that do not
use a pool of candidates but rather introduce some criteria
of acceptance for the new species have a similar
disavantage when compared to the CCC-GA method.

),0()(t
iGausse σ

()/() /
j k M l Me kl l j

+ − −Γ = ∑
=

1

4.3 GRADIENT-DESCENT BASED METHOD

Classical methods for training neural networks have used
gradient-descent techniques such as the back-propagation
algorithm for a long time.

To speed up the learning process researchers have used a
number of schemes like second order methods (some
approximate form), conjugate gradient methods and so
on. Fahlman’s Quickprop algorithm for updating the
connection weights also uses a second-order method.

The cascade correlation learning algorithm creates and
installs new hidden units in two steps. First it tries to
maximize the magnitude of the correlation between the
new unit’s output V and the residual error signal the
algorithm tries to eliminate, which for a certain input data
pattern p and a for a certain output unit o is opE , ,
summed up over all input data patterns and all output
units

where V and oE are the values of pV and opE , averaged
over all data patterns.

The algorithm uses the Quickprop algorithm to update the
new hidden unit’s input weights while trying to maximize
the correlation value S.

In the second phase of the algorithm, the new hidden unit
is inserted in the network, its input connection weights are
frozen and the input weights for the output unit are re-
trained using the same Quickprop algorithm.

When this algorithm is used to solve the two-spiral
problem, it starts with a pool of eight candidates
whenever it needs to create a new hidden unit.

5 EXPERIMENTAL RESULTS

Fifty runs were performed using the CCC-GA and the
CC-ES method because their running time is high. By
comparison, the average computer time per run for the
cascade correlation method is orders of magnitude smaller
and, consequently, we were able to perform 10,000 runs
on a comparable timescale.

Table 1: Required number of hidden units for the three
methods under study

Hidden units

Method Min Max Mean Fail

Time1

[s]

CCC-GA 7 16 10.54 ± 0.71 0 1620

CC-ES 8 15 9.9 ± 0.57 0 2700

Cascade
correlation

10 19 13.4 ± 0.04 7 5

1 Average running time calculated on a 500 MHz Pentium III PC

Table 1 shows minimum and maximum number of hidden
units produced by each method as well as the average
number of hidden units produced by each method, along
with 99-percent confidence on the mean. If a solution to
the two-spiral problem is not found after introducing 25
HUs the run is classified as a failure (non-convergence).

Our results for the cascade correlation based method have
been obtained using the ‘cascor’ program. The results are
significantly better than those reported in (Fahlman and
Labiere, 1990a) or (Potter and De Jong, 2000) but are
similar to those reported by (Hansen and Pedersen, 1994).

Figure 3: The average decay of the SES as a function of
the number of hidden units.

As can be seen in Figure 3, the CCC-GA method and the
CC-ES method have very similar behaviour when it
comes to decreasing the SES, the two curves being almost
identical when the results of 50 runs were averaged. Both
CCC-GA and CC-ES methods produce better results than
the cascade correlation method, both in terms of average
number of hidden units as well as the minimum number
of hidden units required for a cascade network solution to
the two-spiral problem. However the cascade correlation
learning method is a much faster method compared to
both coevolutionary methods.

The CC-ES algorithm has produced the best results in
terms of average number of hidden units but the CCC-GA
produced a cascade network with only 7 hidden units. In
fact the neural network with 7 hidden units is the smallest
evolved cascade network solution (the number of hidden
units is not known apriori) reported in the literature, we
are aware of, to the two-spiral problem.

Another important distinction between our results for the
CC-ES method and previously reported results (Potter and
De Jong, 2000) is that we had no failures in all the runs
we performed. In runs where the neuron activation
function was given by equation (1) and the training
patterns target for classification was set to {-1,+1} we
also experienced occasional failures but it was noticed
that when the algorithm stopped to converge the output

0 2 4 6 8 10 12 14 16
0

10

20

30

40

50

Hidden Units

S
q

u
ar

ed
E

rr
o

r
S

u
m ES-based method

GA-based method

0 2 4 6 8 10 12 14 16
0

10

20

30

40

50

Hidden Units

S
q

u
ar

ed
E

rr
o

r
S

u
m ES-based method

GA-based method

∑∑ −−=
o p

opp EEVVS))((0,

error was always an integer number. It was determined
that when a pattern was misclassified such that the output
of the net was minus the desired value (for example –1
instead of +1) the squared error was an integer number. In
such cases because of the definition of the sigmoid
activation function, any changes to the connection
weights that did not result in pushing the output of the net
back into the dynamic range of the output unit were not
picked up by the algorithm and treated as “better” or
“worse” solutions as they should have been.
Consequently, the evolution was stuck in a local
minimum and the algorithm reduced to a random search.
To formally describe the problem, if the neural network is
specified by a vector parameter (, ,)T n

nw w W= ∈w 1K ,
(where the w is made up of the best genomes from each
of the coevolved species and W is the allowed gene
range, in our study]10,10[+−), the task is to find the
optimum vector *w corresponding to a net that classifies
all patterns in the input set P . When the 5050 − criterion
is used for classification the problem is considered solved
when Ppwyd pp ∈∀>⋅ ,0)(.

If)()(wydwe ppp −= is the network output error for
input pattern Pp ∈ the algorithm achieves the
classification goal by minimizing

where)(wy p is the output of the neural network defined
by the parameter w and the input pattern p . Let’s
assume the neural network is comprised of hidden and
output units with the activation function given by the
equation

with Rxb
x

−=
−∞→

)(lim and Rxb
x

=
∞→

)(lim , and for any

input pattern there are only two possible outputs used in
training },{ RRd p +−∈ . Let’s define an order relation on

nW , },{),()(2121 bafwEwEww ffff ∈<⇔< where
the superscript f indicates what activation function is
used by the neurons in the network. If)(mC is the set of
classified data patterns and ∅≠)(mU is the set of
unclassified data patterns after m HUs have been
introduced, we have)()(mUmCP ∪= where P is the
set of all input data patterns.

If during training a state is reached where for any pattern
RwemUp p 2)(),(=∈ for any w produced by the

algorithm, the EA search space is reduced by all the
vectors 21, ww such that bb ww 21 < but aa ww 21 = . When
this happens the search becomes purely random unless
the algorithm can find another point rw such that

)(,2)(mUpRwe rp ∈< and r
a

r
a wwwEwE ≠∀<),()(.

Please note this phenomenon could happen because of the
limitation on its input signal used by the output neuron
activation function)(xa , but could also happen because
of the computational approximation errors in calculating
the network output.

Because the two-spiral problem is a classification
problem (we shouldn’t forget that) the simplest and most
effective solution to this problem is to use different values
for the desired training values pd than those used by the
activation function as output range limits. For example, in
our study 1=R so after we changed the training expected
values to }2/1,2/1{ +−∈pd the problem has never
occurred again and the algorithm has always converged.

6 RETRAINING

A major difference between Fahlman’s cascade
correlation method and the two cooperative coevolution
based methods is the use of retraining. The cascade
correlation method, once it has introduced a new hidden
unit does not change its input connection weights while
both the CCC-GA and CC-ES algorithms use retraining as
an important method for further reducing the SES at the
network output. For example, when no retraining was
used by the CCC-GA method, the performance decreased
so severely that only 2 runs were successful in 10 runs
performed.

Figure 4: The improvements in squared error sum (SES)
after new hidden units, retraining and the sum of the two.

While Figure 4 shows the improvements in SES are very
similar for the CCC-GA and CC-ES methods, we could
also see that starting with hidden unit 4, on the average,
the CC-ES is consistently better in retraining the cascade
neural network. This result may be due to the fact that in
the case of the CCC-GA method, the GA used to evolve
the species that get selected during the competitive
coevolution phase, remains fixed during retraining, in the
sense that both the mutation and the crossover rate are
fixed. The CC-ES uses only mutation, but the mutation
vector evolves during retraining just like the individual
genes vector does. The search mechanism would benefit
from a fully adaptive mutation and crossover probability
(White and Oppacher 1994) and the CCC-GA could be
modified relatively easily to cope with this limitation. For
example, we could do it by randomly dividing the
individuals of the species to be retrained in N
populations with m individuals in each population,

0 2 4 6 8 10 12 14
0

1

2

3

4

5

6

7

8

Hidden Units

S
q

u
a

re
d

E
rr

o
r

S
u

m
Im

p
ro

ve
m

en
t

- D ue to retraining

- Due to new H idden U nits

- Total improvement

ES-based method
GA-based method

0 2 4 6 8 10 12 14
0

1

2

3

4

5

6

7

8

Hidden Units

S
q

u
a

re
d

E
rr

o
r

S
u

m
Im

p
ro

ve
m

en
t

- D ue to retraining

- Due to new H idden U nits

- Total improvement

ES-based method
GA-based method









>
≤≤−

−<−
=

LxR

LxLxb

LxR

xa

,

),(

,

)(

∑=
p

p wewE)()(2

assigning different mutation and crossover probability to
the GA used to train the populations and letting them go
again through a competitive phase. However, this would
considerably slow down the algorithm in its current form.

Another aspect of retraining we looked at was the order of
retraining the species. The results presented in the
previous sections were based on retraining all species
(including species 0 corresponding to the output unit) in a
random order. We however questioned whether retraining
done following the order in which the species have been
introduced (0 to maxHU-1) or the reverse of that
(maxHU-1 to 0) has any impact on the results. The results
of the 50 different runs performed with the CCC-GA
algorithm are presented in Table 2. In all three cases the
last hidden unit introduced (maxHU) is retrained last.

Table 2: Required number of hidden units for CCC-GA
when different retraining methods are used

Hidden units

Method Min Max Mean Fail

random 7 16 10.54 ± 0.71 0

1max0 −→ HU 8 16 10.42 ± 0.58 0

01max →−HU 8 14 10.46 ± 0.4 0

While the average number of hidden units seems to be
similar for the three methods it does appear that the
random retraining yields a slightly higher variance of the
results. This factor may favour the discovery of the
cascade network with 7 hidden units.

7 NEURON CHARACTERISTICS

In our study, the two EA methods have evolved not only
the connection weights of the neural network but also the
characteristics of the activation functions for all the
neurons of the network. To determine the effect of
including the characteristics of the neurons as evolvable
genes, we have also performed 50 runs where the
individual genomes included only the connection weights.
In this case all the neurons in the evolved cascade
network, the hidden and the output neurons, have a
sigmoidal activation function given by equation (1) that
does not change during training.

For this aspect of the study we have used only the CCC-
GA and CC-ES methods and the results are presented in
Table 3.

The results show clearly that including the characteristics
of the neurons among the evolved genes not only has
increased the generality of the algorithms but it has also
significantly improved the results. In the case of the ES-
based method the average size of the cascade network has
decreased by two hidden units while in the case of the
GA-based method the average and the minimum number
of hidden units have decreased even more significantly.

Table 3: Required number of hidden units with fix or
evolvable neuron characteristics.

Hidden units

Method Min Max Mean Fail

Neur.

char.

CCC-GA 7 16 10.54 ± 0.71 0 Ev.

CCC-GA 10 17 13.18 ± 0.56 0 Fix

CC-ES 8 15 9.9 ± 0.57 0 Ev.

CC-ES 9 14 11.9 ± 0.45 0 Fix

These results suggest that future studies of neural network
evolution should look for a comprehensive solution and
also consider evolving the characteristics of the neural
activation function.

8 METHOD ROBUSTNESS

The number of adjustable parameters, the sensitivity of
the results to user choices, the efficiency of the model in
solving different problems, are possible criteria of
evaluating the robustness of a computational method.

When comparing the CCC-GA and the CC-ES methods
the first thing to differentiate them is the method for
choosing the next species to join the cooperative of
coevolving species.

While the CC-ES chooses from a pool of 8 different
species (why not 4 or 10?), the CCC-GA method doesn’t
have to make such a choice. In fact, if the CC-ES model
doesn’t use a pool of species and uses a randomly
initialized population, the results (for example the average
number of hidden units per evolved cascade network)
degrade very significantly. From this point of view it is
clear that the CCC-GA method is more robust than the
CC-ES method.

When it comes to the evolutionary operators used, ES
does not use crossover and the mutation probabilities are
independently evolved by the algorithm (so the user has
only to initialize an initial vector). While this seems to
introduce a clear advantage for the CC-ES method, the
CCC-GA compensates for it by evolving the species with
the crossover and mutation probabilities best suited for a
certain phase of the algorithm. In addition to that, through
experimentation we found out that if the ES initial choice
is to evolve the mutation probabilities as a group rather
than individually (each mutation step evolved
independently) the results of the CC-ES will again
degrade from the results in Table 1.

Another important parameter influencing the generality
and the robustness of the algorithm is the population size.
In order to see how the population size influences the
results we have performed 50 runs with the CCC-GA with
a change in the population size of the species selected for
the cooperative phase of the algorithm. Before the species
winning the competitive phase is to join the other species

for the cooperative phase of the algorithm we halve the
population such that instead of 1024 individuals, each
species selected for cooperative coevolution will have
only 512 individuals. The results of the two sets of runs
are given in Table 4.

Table 4: Required number of hidden units for CCC-GA
method with different final populations

Hidden units

Method Min Max Mean Fail

Pop.

size

CCC-GA 7 16 10.54 ± 0.71 0 1024

CCC-GA 8 15 10.56 ± 0.62 0 512

The results obtained with species that have only half the
population (2/mN ⋅) are almost identical to those
obtained using species with an entire population (mN ⋅)
proving that the CCC-GA method is also robust under
population variations.

The choice of the GA for the CCC-GA method is not
crucial either. A simple GA provides similar results, but it
is twice as slow.

Finally, both algorithms need some accuracy of
approximation parameters to be set.

While the CCC-GA method needs to be tested on new
problems, so far this method has shown robustness and
provides a good model for further coevolution studies.

9 CONCLUSIONS

In this study we have introduced the concept of
competitive-cooperative coevolution GAs and have
shown that, when this method is used for solving the two-
spiral problem, the results are very similar to those
obtained by using only cooperative coevolution based on
an ES-method. The results of both methods, as far as we
are aware, are better than any previous cascade networks
solutions to the two-spiral problem. It should be noted
that previous attempts to use GAs to study the two-spiral
problem didn’t yield good results. Moreover, in the case
of CCC-GA, neither the mutation nor the crossover
probabilities are pre-determined (through prior
experiments) but are rather selected (from a finite set of
possibilities) as a result of the competitive-cooperative
coevolution phase of the algorithm.

The cascade neural networks evolved through our
methods are complete in the sense that all the
characteristics of the nets, number of hidden units,
connection weights as well as neuron characteristics are
evolved. While evolving the neuron characteristics is
natural and easy to do with EA methods it may be more
difficult to do in traditional approaches (like the gradient-
descent methods). This constitutes a definite advantage of
the EA methods for evolving cascade neural networks
over other methods.

The CCC-GA algorithm uses the competitive phase to
remove the need for a pool of candidates or empirical
“goodness” criteria in introducing new species in the
cooperative coevolution process and it shows robustness
under population and method of retraining variation.

References

S.E.Fahlman and C.Labiere (1990a). The cascade-
correlation learning architecture. Technical Report CMU-
CS-90-100, School of Computer Science, Carnegie
Mellon University, Pittsburgh, Pennsylvania.

S.E.Fahlman and C.Labiere (1990b). The cascade-
correlation learning architecture. In D. S. Touretzky (ed.),
Advances in neural Information Processing Systems 2,
524-532. San Mateo, CA: Morgan Kaufmann.

L.K.Hansen and M.W.Pedersen (1994). Controlled
growth of cascade correlation nets. Proceedings of the
International Conference on Artificial Neural Networks,
volume 1, 797—800. Sorrento, Italy.

M.A.Potter and K.A.DeJong (1994). A Cooperative
Coevolutionary Approach to Function Optimization. In
Y.Davidor and H.P.Schwefel (eds.), Proceedings of the
Third Conference on Parallel Problem Solving from
Nature, 249-257. Berlin, Germany: Springer-Verlag.

M.A.Potter (1992). A genetic cascade-correlation learning
algorithm. Proceedings of COGANN-92 International
Workshop on Combinations of Genetic Algorithms and
Neural Networks,122-133. IEEE Computer Society Press.

M.A.Potter and K.A.DeJong (2000). Cooperative
coevolution: an architecture for evolving co-adapted
subcomponents. Evolutionary Computations 8(1):1-20.

H.P.Schwefel (1995). Evolution and Optimum Seeking.
New York, NY: John Wiley and Sons.

B.W.Wah and M.Qian (2000). Constrained Formulations
for Neural Networks Training and Their Applications to
Solve the Two-Spiral Problem. Proceedings of the Fifth
International Conference on Computer Science and
Informatics.

T.White and F.Oppacher (1994). Adaptive Crossover
Using Automata. In Y.Davidor and H.P.Schwefel (eds.),
Proceedings of the Third Conference on Parallel problem
Solving from Nature, 229-238. Berlin,Germany: Springer-
Verlag.

X.Yao (1999). Evolving Artificial Neural Networks.
Proceedings of the IEEE 87(9):1423-1447.

