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Abstract

Genetic algorithms are often well suited
for optimization problems because of their
parallel searching and evolutionary ability.
Crossover and mutation are believed to be
the main exploration operators in GA. In this
paper, we focus on how crossover and muta-
tion work in GA and investigate their e�ect
on bit's frequency of the population. To in-
crease robustness against uncertainty of GA,
a new recombination method based on bit's
frequency of the population and a new robust
generation strategy were proposed. The pro-
posed methods were tested on the problem
with many local minima. Simulation results
demonstrate the e�ectiveness of the proposed
methods.

1 Introduction

Genetic algorithm (GA) is a random searching method
with some special features. One feature is that
GAs are versatile evolutionary computation techniques
largely based on the principle of survival of the �ttest
[1]. Another is the genetic operators such as crossover
and mutation. When using GA for solving a given
problem, the user has to design so many parts to make
GA e�ective, such as the number of population, pop-
ulation size, mutation rate, crossover rate, selection
pressure and selection scheme. However, GA can not
always get good solutions we want, because it is dif-
�cult for users to design an e�ective GA which is a
random searching method.

A prevalent method in GA is to assign survival proba-
bilities to corresponding individuals and tune the prob-
abilities to obtain the balance between exploration and
exploitation[2]. In GA, the crossover and mutation are

believed to be the main exploration operators in the
working of GA as an optimization tool. In this paper,
we focus on the variance of the distribution of the indi-
viduals on a hyper-plane, through a new way to investi-
gate how the mutation and crossover work in GA. Fur-
thermore, a new recombination method based on bit's

frequency (RCBF) was proposed, which can make the
population distribute more uniformly than the \con-
ventional" crossover such as one point crossover, two
point crossover and uniform crossover. In addition,
because all messages from the population are stored
in bit's frequency, a new robust generation strategy
(RGS) is proposed where the t + m th generation is
determined not only by the t + m � 1 th generation
but also by generations from the t th to the t+m� 2
th. According to the simulation results, we can �nd
GA by using RCBF and RGS can search for the so-
lutions more robustly than \conventional" GA, espe-
cially when the feasible solution space is very large.

This paper is organized as follows. Next section is
about a new way of analyzing crossover and mutation
of GA. Section 3 introduces RCBF and give some simu-
lation results. Section 4 introduces RGS and give some
simulation results. The last section o�ers concluding
remarks and future perspectives.

2 A New Way of Analyzing GA

The GA studied in this paper is the one similar to
Simple Genetic Algorithm de�ned in [2].

2.1 Mathematical description

A k th binary individual Xk in a population can be
given by

Xk = (x1k ; : : : ; x
j
k; : : : ; x

L
k ); (1)

where L is the length of the binary individual, x
j

k

stands for the j th bit of the k th individual. A pop-



ulation ~X can be de�ned as

~X = (X1; : : : ; Xk; : : : ; XN ); (2)

where N is the population size. The feasible space of
bit xjk is f0; 1g. The feasible space of the individual
Xk is f0; 1gL.

De�nition 2.1 (Bit's frequency) Let f j~X
be the j th

bit's frequency of the population ~X, where

f
j

~X
=

1

N

NX
k=0

x
j
k: (3)

The feasible space Sf of f j~X
is [0; 1]. The bit's fre-

quency string F ~X
can be given by

F ~X
= (f1~X ; : : : ; f

j

~X
; : : : ; fL~X

); (4)

where the feasible space SLf of the bit's frequency

string is [0; 1]L.

If the population is distributed in ZL, the population
~X is a set of the vertex of the unit-box with L di-
mensions. The bit's frequency string F ~X

can be repre-
sented in RL. We can see a population is a dynamical
structure with a centre of gravity F ~X

in RL. To inves-
tigate the e�ect of mutation and crossover, we will do
some research on the variance of the centre of gravity
of the population.

2.2 Crossover Operator

The crossover operator Tc is a very complex opera-
tor to recombine the gene of each individual in the
population. There exist a number of crossover opera-
tors in the GA literature, such as one point crossover,
two point crossover and uniform crossover. Accord-
ing to the quality of crossover, we know the crossover
operators don't change the bit's frequency string. To
investigate the e�ect of the crossover operator, let us
see the next de�nition.

De�nition 2.2 If F ~X
=F~Y , we can say the population

~X is similar to the population ~Y , denoted by ~X � ~Y .

Because we can not derive ~X = ~Y ( ~X and ~Y are the

same) from ~X � ~Y , the crossover operators can change
the population from one case to another with the same
bit's frequency string.

De�nition 2.3 (Distribution state function) we use a
two-order function to show the distribution state E~Y

of the population ~Y as follows,

E~Y
=
N2
(0;:::;0) +N2

(0;:::;1) + : : :+N2
(1;:::;1)

N2
; (5)
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Fig. 1. Mechanism of mutation in F ~X
.

whereN(:::) is the overlapping number of the individual
(: : :), and N(0;:::;0) +N(0;:::;1) + : : :+N(1;:::;1) = N .

If the bit's frequency string F~Y of the population ~Y is
determined, using the following N(y1;:::;yj ;:::;yL)

N(y1;:::;yj ;:::;yL) = b(
LY
j=1

f̂
j

~Y
) N + 0:5c; (6)

where

f̂
j

~Y
=

8><
>:

f
j

~Y
if yj = 1

1� f
j

~Y
if yj = 0

then E~Y
has the minimum value, denoted by Emin.

Furthermore, as Emin is determined by the bit's fre-
quency string F~Y , when F~Y = F0:5 (where F0:5 =
(0:5; : : : ; 0:5)), Emin will be the most minimum.

Supposing we use Tc to make the population ~X

crossover d times where d = 1; 2; : : :, then we can
give E ~X

! Emin when d ! 1. In other words, the
crossover operator has an ability to make the popu-
lation distribute uniformly without changing the bit's
frequency string.

2.3 Mutation Operator

The mutation operator is a force Tm (a vector quan-
tity) to maintain the diversity in the population and is
used with a small probability, pm. To give the direction
and strength of the mutation force, we describe the
population ~X onto the plane, for example, (f i~X ; f

j

~X
)

plane shown in Fig.1, where f i~X and f
j

~X
are the lat-

eral and vertical coordinates. In Fig.1, F
ij
0:5 is the two

dimensional point of F0:5 , F
ij

~X
is the two dimensional



point of F ~X
, T ij

m is the two dimention vector quantity

of Tm on the plane (f i~X ; f
j

~X
), T i

m and T j
m are the com-

ponent quantities of Tm on the f i~X and f
j

~X
coordinates

respectively. We can easily give T i
m and T j

m as follows,

T
i
m =

N(xi=1) �N(xi=0)

N
pm;

T j
m =

N(xj=1) �N(xj=0)

N
pm;

where N(�) is the number of individuals of the popu-

lation ~X where xi or xj is equal to 0 or 1, therefore
N(xi=1) + N(xi=0) = N(xj=1) + N(xj=0) = N . So we
can easily give the strength of T ij

m as follows,

jT ij
m j =

q�N
(xi=1)

�N
(xi=0)

N

�2
+

�N
(xj=1)

�N
(xj=0)

N

�2
pm

= 2 j
����!
F
ij

~X
F
ij
0:5j pm;

where
����!
F
ij

~X
F
ij
0:5 is a vector from the point F ij

~X
to F

ij
0:5,

j
����!
F
ij

~X
F
ij
0:5j is the length of the vector

����!
F
ij

~X
F
ij
0:5. The di-

rection of T ij
m can be easily demonstrated to be the

same as the direction of the vector
����!
F
ij

~X
F
ij
0:5. Generally,

we can easily give the strength of Tm as follows,

jTmj = 2 j����!F ~X
F0:5j pm; (7)

where j����!F ~X
F0:5j is the distance between point F ~X

and
F0:5. The direction of Tm is from point F ~X

to F0:5.

According to Eq.(7), we can see mutation operator can
change the bit's frequency string, where the strength
of the mutation force is changed proportionally along
with the convergence status (represented by j����!F ~X

F0:5j)
of the population and the direction of the mutation
force is always from the point F ~X

to F0:5. In other
words, the mutation operator can change Emin which
is determined by the bit's frequency string.

Furthermore, the mutation operator has another abil-
ity which is the same as the crossover operator. For
example, if the bit's frequency string F ~X

=F0:5 and

E ~X
> Emin, mutating the population ~X in�nite times,

E ~X
should be Emin without changing the bit's fre-

quency string. Generally, this ability of the mutation
operator exists in the case even when F ~X

6= F0:5 and
is smaller and smaller along with the concentration of
the population.

There exist two kinds of abilities of the mutation
operator, so we can separate the mutation operator
into two parts: the �rst part which is determined by
jN(x�=1)�N(x�=0)j can change the the bit's frequency
string while the second part which is determined by

minfN(x�=1); N(x�=0)g can make the population dis-
tribute uniformly without changing the bit's frequency
string.

2.4 Concentration of the population

In a searching process by using GAs, the variance of
the individuals' �tness is reduced due to two factors.
One factor is selection pressure producing multiple
copies of �tter population members while the other
factor is independent of population member's �tness
and is due to the stochastic nature of the selection
operator, {genetic drift.[3]

Under the operation of selection, the �tter member of
the population have higher chance of producing more
o�spring than the less member. If the selection pres-
sure is greater than the mutation and crossover force,
selection pressure makes all individuals of the popula-
tion concentrate to the optimal points. We can sepa-
rate selection methods into two main categories: using
ranking methods [4][5] and not using ranking methods.
The selection pressure without ranking methods is de-
termined by the di�erence of the individuals' �tness, so
it changes along with the evolutionary process. The se-
lection pressure with ranking methods doesn't change
along with the di�erence of the individuals' �tness. So
the selection pressure with ranking methods can be
more easily controlled than without ranking methods.
But it takes much time to calculate the rank of each
individual. Genetic drift makes the population con-
centrate randomly. The e�ect of genetic drift is not
shown very clearly when the objective function is a
unimodal function. But for multimodal functions, ge-
netic drift should make the population concentrate to
one of the optimal solutions randomly.

Anyway, selection pressure and genetic drift make the
population concentrate. In other words, they make the
j����!F ~X

F0:5j and E ~X
large.

3 Recombination Method based on
Bit's Frequency

3.1 Species and Sampling

From the previous section, when ~X � ~Y and E~Y
=

Emin, the mutation (the second part) and crossover op-

erators make the population ~X approach ~Y . In other
words, the population ~Y is stabler than the population
~X. Using this, a new recombination method stated in
3.2 is proposed.

De�nition 3.1 (Species) A species can be de�ned as:
a group of individuals that 1)actually or potentially
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Fig. 2. Structure of the proposed algorithm based on
bit's frequency.

interbreed with each other but not with other groups,
2)the distinction from other groups is the bit's fre-
quency string F , where F = (f1; : : : ; f j ; : : : ; fL), f j is
the frequency when `1' appears in the j th bit of the
species

De�nition 3.2 (Sampling) Sampling is an operator
such as getting sample individuals from a species. This
operator is given as follows: each bit of sample indi-
viduals is determined randomly according to the bit's
frequency string F of the species.

According to the de�nitions, a species is a population
with a certain bit's frequency string. The individuals
of the species can crossover with each other but can not
do with other species. Each bit's of the individualX of
the species can be determined by this bit's frequency.
It means the distribution of the individuals can satisfy
Eq.6 and is not changed by crossover and the second
part of mutation because E ~X

is minimum.

3.2 Flow of the proposed method

An simple genetic algorithm by using RCBF is shown
in this subsection. The basic structure is shown in
Fig.2, where the initial value of the bit's frequency
string F is F0:5. One iteration at the t th generation
can be described as follows: 1)after sampling N times
according to the bit's frequency string F(t) we can get

a population ~X(t) with N members; 2)after mutation

and reproduction we can get a population ~X 0

(t); 3)we
can calculate the bit's frequency string F ~X0

(t)
of the

population ~X 0

(t) and set the bit's frequency string for
the next generation.

In fact, we can consider RCBF as the strongest
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Fig. 3. The two-dimensional version of f8.

crossover, because it can make the population ~X 0

(t) to

be the population ~X(t+1) which is distributed the most
uniformly. It means RCBF can search more points
than \conventional" crossover method such as the uni-
form crossover method. In other words, although the
feasible search points of RCBF and uniform crossover
are the same, RCBF can search for more of them than
the uniform crossover. Especially when the feasible
solution space is very large, doing more searching is
very useful to increase the searching ability and the
robustness of GA. Furthermore, because all messages
from the environment are stored in the bit's frequency,
sometimes, it is very useful to use RCBF in order to
decrease the memory and time required for calculation.

3.3 Experiments

Generalized Schwefel's Problem which was examined
in [6]-[7] is used in our experimental studies.

min f8(x) = �
KX
i=1

(xi sin(
p
jxij));

where K = 1; 2; : : : ; 30

�500 < xi < 500

This function is a multimodal function with many lo-
cal minima, where the number of local minima in-
creases exponentially as the dimension of the function

increases like 7K . The global minimal function's value
is K � 418:98289. Fig.3 shows the two-dimensional
version of f8. To analyze the genetic algorithm by us-
ing the species concept, we can do some comparisons
of the proposed method with the uniform crossover
method.

3.3.1 Parameter Values

� Population size: Since the problem dimensions
are high, we choose a moderate population size
N=200;

� Representation: Each variable has 30 bits, so the
length of the individuals is 30�K.
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� Crossover rate: We set crossover rate 1.0 and 0.5
for the uniform crossover method respectively.

� Mutation probability: We choose pm = 1
L
.

� Selection pressure: We use the nonlinear ranking
method[5] where the selection probability of the
k th individual can be calculated as pk = c� (1�
c)i�1, i is the rank of the k th individual. We set
the parameter c = 0:05.

� Iteration: The stopping generation is b50�
p
K+

0:5c.

3.3.2 Discussions

We performed 50 independent runs for the proposed
method and uniform crossover method from K = 1
to K = 30 and recorded 1)mean function value (the
mean value of the best individual of the last generation
over 50 runs) and 2)the standard deviation of function
value (the standard deviation of the best individual
of the last generation over 50 runs). Fig.4 shows the
simulation results. The upper part shows the mean
function value �f where the lateral coordinate is the
dimension of the test function, while the lower part
shows the standard deviation of the function value �f .
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Fig. 5. Comparison of the convergence speed
between the proposed recombination method and the

uniform crossover method.

They can be calculated as follows:

�f =
1

50

50X
i=1

fi

K
;

�f =

vuut 1

50

50X
i=1

(
fi

K
� �f)2:

According to these results, we can see

� when the dimension of the function is large, the
mean function value of the proposed method is
smaller than that of the uniform method with
crossover rate 1.0, followed by that of the uniform
crossover with crossover rate 0.5. It means that
the search ability of RCBF is strongest compared
with the uniform crossover. The standard devia-
tion of RCBF is smaller than that of the uniform
method with 1.0 crossover rate, followed by that
of the uniform method with 0.5 crossover rate.
It means that RCBF can increase the robustness
against uncertainty of GA.

� when the dimension of function is small, the mean
function value and the standard deviation of the
proposed method is larger than those of the uni-
form crossover method.

Fig.5 shows the simulation results of the convergence
speed which was randomly selected when K = 20,
where the lateral coordinate is generation and the ver-
tical coordinate is j����!F ~X

F0:5j. According to these re-
sults, we can see that the population concentrating
rates of the proposed method is slower than that of
the uniform crossover with 1.0 crossover rate, followed
by that of the uniform crossover with 0.5 crossover
rate.



-420

-410

-400

-390

-380

-370

-360

-350

5 10 15 20 25 30

m=2

m=1

dimension of function

mean function value

1

0

5

10

15

20

25

5 10 15 20 25 30

m=2

m=1Standard deviation

dimension of function

1

Fig. 6. Mean and standard deviation by using RGS
under m = 1; 2 respectively.

4 Robust Generation Strategy (RGS)

4.1 Description of RGS

Because all messages from the population are stored
in the bit's frequency, in order to increase robustness
against uncertainty of GA, we calculate the bit's fre-
quency string F(t+m) of the t + m th generation as
follows,

Ft+m = (f1t+m; : : : ; f
j
t+m; : : : ; f

L
t+m); (m = 1; 2; 3; : : :)

where

f
j
t+m =

1

m+ 1
(f

j

~X0(t+m�1)
+

m�1X
i=0

f
j
t+i) (8)

f
j

~X0(t+m�1)
means the j th bit's frequency of the pop-

ulation ~X 0 at the t+m� 1 th generation. Eq.8 means
the bit's frequency string at the t +m th generation
is determined not only by the bit's frequency string
F ~X0(t+m�1)

but also by the bit's frequency string from

the t+m� 1 th to the t th generation. This method
is named robust generation strategy(RGS).

4.2 Reason of Robustness

To investigate the e�ect of RGS, let us see a special
case where m = 1. If m = 1, Eq.8 can be described as
follows,

f
j
t+1 =

1

2
(f j

~X0(t)
+ f

j
t ): (9)
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Eq.9 is a recursion formula and can be easily converted
into as follows,

f
j
t+1 =

1

2
f
j

~X0(t)
+

1

22
f
j

~X0(t�1)
+ � � �+

1

2t
f
j

~X0(1)

+
1

2t
f
j
1 (10)

According to Eq.10, we can see the e�ect of genera-
tions from the �rst to the t th on the t + 1 th gener-
ation. This is reason why RSG can make GA search
for solutions robustly against uncertainty than \con-
ventional" GA. When m � 2, the relationship between
f
j
t+m and f

j

~X0(t+m�1)
; � � � ; f j~X0(1)

; f
j
1 is a little diÆcult

to be represented.

4.3 Experiments

The test function and all experiment's conditions are
the same as the subsection 3.3. Fig.6 shows the simu-
lation results under m = 1; 2 respectively. The upper
part shows the mean function value while the lower
part shows the standard deviation of function value.

According to the simulation results, we can get some
following conclusions.

� From comparison between Fig.4 and Fig.6, we can
see the mean fuction value and the standard de-
viation of Fig.6 are smaller than those of Fig.4.
It means RSG can increase the searching ability
and robustness of GA.

� Comparing m = 1 and m = 2, we can see the
mean fuction value and the standard deviation of
m = 2 are smaller than those of m = 1. It means
the increase of m can make GA search for solu-
tions more robustly.

From Fig.7 and Fig.5. we can see that the population
concentrating rates of Fig.7 are slower than those of



Fig.5 while the concentrating rate of RGS underm = 2
is slower than that of RGS under m = 1.

5 Conclusion

In this paper, we focus on how the crossover and muta-
tion work in GA by analyzing the variance of the bit's
frequency and a new recombination method named
RCBF is proposed. This method can make the pop-
ulation to distribute uniformly as large as possible
without changing the bit's frequency string. It can
increase the searching ability and robustness against
uncertainty of GA, especially when the feasible solu-
tion space is very large. Based on RCBF, a new gener-
ation strategy named RGS is proposed where the t+m
th generation is determined not only by the t+m�1 th
generation but also by generations from the t+m� 2
th to the t th. Some experiments have clari�ed that
RGS increases the searching ability and roubustness of
GA as well.
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