
How Random Generator Quality Impacts Genetic Algorithm
Performance

Mark M. Meysenburg, Dan Hoelting, Duane McElvain

Computer Science Dept.
Doane College

Crete, NE 68333

James A. Foster

Computer Science Department
University of Idaho

Moscow, ID USA 83844

Abstract

It has been shown that pseudo-random num-
ber generator (PRNG) choice can affect sim-
ple genetic algorithm (GA) performance.
However, these performance impacts are non-
intuitive; PRNGs of poor quality can drive
GAs to superior performance, for certain
problems. The same PRNGs cause worse
performance for other problems. In this pa-
per we present a plausible explanation for
this phenomenon: PRNGs of poor quality
cause higher Vose discrepancy values than do
higher quality PRNGs. Higher Vose discrep-
ancy values could then be manifest as GA
performance differences, as GA populations
move toward fixed points of the Vose heuris-
tic far away from the expectation.

1 INTRODUCTION

Several researchers have examined the im-
pact of pseudo-random number genera-
tor (PRNG) choice on genetic algorithm
(GA) performance. Meysenburg and Foster
[Meysenburg, 1997, Meysenburg and Foster, 1997]
examined several PRNGs, using the Knuth
[Knuth, 1997] and Marsaglia’s Diehard
[Marsaglia, 1993] empirical test suites. They used the
PRNGs to drive a simple GA, applied to a collection
of several well-known GA test functions. Using a
relatively coarse-grained statistical measure, they
found no statistical evidence that PRNG quality
affected GA performance.

In a second study Meysenburg and Foster
[Meysenburg and Foster, 1999b] developed a set
of specific, empirical PRNG quality tests tailored
to the way a simple GA uses randomness. They

used a similar set of PRNGs and the same set of
GA test functions as in the previous work. They
found, however, that there was no correlation between
good performance on the PRNG tests and good
performance by the GA. In the second study, however,
a finer statistical measure was used that did reveal an
interesting phenomenon.

One of the PRNGs used was a version of the Java
language Random generator, limited to a period of
1000 numbers. With such a limited period, this PRNG
(rand1k) failed the PRNG tests miserably. However,
there was evidence that rand1k affected GA perfor-
mance. It would be reasonable to assume that worse
PRNG quality would cause worse GA performance,
but this was not the case.

On several of the GA test functions, rand1k caused
the GA to perform better than other, much better,
PRNGs. On other functions, rand1k caused the GA
to perform worse than the other PRNGs. In sum-
mary, Meysenburg and Foster’s second study found
that there was evidence that PRNG choice could im-
pact GA performance, although in non-intuitive ways.
Similar results have been noted for genetic program-
ming (GP) systems [Meysenburg and Foster, 1999a,
Daida et al., 1997, Daida et al., 1999].

In summary, the research to date on this subject shows
that PRNG choice can impact GA (or GP) perfor-
mance. However, the research shows no direct corre-
lation between improved PRNG quality and improved
GA performance; in fact, better PRNGs can in some
cases cause worse GA performance. No one has yet
been able to explain why PRNG choice can alter GA
performance in this manner.

2 GA THEORY

Vose [Vose, 1999] has developed a general mathemati-
cal theory describing the behavior of simple GAs. Vose



calls the search space explored by the GA Ω. If the
size of Ω is n, then GA populations can be represented
as vectors in n-space. These population vectors are el-
ements of a set that Vose terms the simplex:

Λ =
{

〈x0, . . . , xn−1〉 : 1T x = 1, xj ≥ 0
}

. (1)

Elements of the simplex are column vectors of size n,
where each component of the vector is non-negative,
and all components of the vector sum to one. A vector
p ∈ Λ represents a population as follows: component
pj is the percentage of the whole of the jth element of
Ω in the GA population.

A GA is defined in terms of a transition rule τ : Λ → Λ,
describing how a GA population evolves over time.
Given an initial population vector p, the next gener-
ation would be τ (p); the following generation would
be τ (τ (p)) = τ2 (p); and so on. Unfortunately, we
are unable to say with certainty what τ (p) would be,
because GAs are stochastic algorithms.

To deal with the stochastic nature of GAs, Vose intro-
duces another function G : Λ → Λ, called the heuristic
function. For a population vector p, the result of G (p)
is another vector q ∈ Λ. q is then used as a sampling
distribution to produce the next generation. The jth

component of q is the probability that the jth element
of Ω is selected to be a member of the next generation.
The various operators of the GA (selection, crossover,
and mutation, for example) are implemented in the
particular heuristic G chosen. The GA population is
moved forward by applying G to the initial popula-
tion p, and using the resulting sampling distribution
to create the next population. The process repeats
until termination criteria are met.

Given an initial population vector p, repeated appli-
cations of the heuristic G produce a path through n-
space. This is the expected path the GA population
should follow during a run. Fixed points of G cor-
respond to situations where the GA converges. The
actual path followed by a GA, of course, will vary
to a certain degree from the expectation, due to the
stochastic nature of the process.

Vose has developed a formula for determining how far
away from the expected path a particular GA popula-
tion vector is.

For population vector p, the probability that the next
population vector is q is shown in Figure 1. In the for-
mula, the summations are only done for indexes where
qj > 0, and r is the number of individuals in the GA
population.

In Figure 1, the term
∑

qj log
qj

G(p)j

(2)

is called the discrepancy of q with respect to the ex-
pectation G (p). The discrepancy is a measure of how
far the actual next population vector, q, is from the ex-
pected next population vector, G (p). It is a measure
of the distance between expectation and reality.

Our current research has shown that Vose’s the-
ory can be used to explain the non-intuitive
GA behavior observed in previous studies
[Meysenburg, 1997, Meysenburg and Foster, 1997,
Meysenburg and Foster, 1999b]. Our hypothesis is
that a PRNG of quality poor enough to drive the
GA population far from the path predicted by Vose
theory, would cause the GA to perform differently
than a GA driven by a PRNG of higher quality.
We hypothesized that a PRNG like rand1k would
cause higher Vose discrepancy values for successive
GA populations than a high quality PRNG like the
Mersenne Twister [Matsumoto and Nishimura, 1998]
would. Then rand1k might drive the GA populations
into the basins of attraction of different Vose heuristic
fixed points than the Mersenne Twister would; this
would account for GA performance differences.

3 EXPERIMENT DESIGN

In order to test our hypothesis, we first collected 42 GA
test problems suitable for Vose discrepancy statistic
calculation. Since the complexity of the discrepancy
measure is O(3l), for chromosome length l, the statistic
can only be efficiently computed for chromosomes of
approximate length 20 or less. Our test functions were
created as part of an undergraduate research project.
The functions are based on several different classes of
problems drawn from the literature, adapted to our
chromosome length restrictions. The functions have
chromosome lengths ranging from eight to 20. Our GA
test problems are briefly summarized in Table 1. More
detailed descriptions of each of the problems may be
found on the World Wide Web at the following URL:
http://ist.doane.edu/meysenburg/cooperstuff

/index.html . This page describes each test prob-
lem, as well as the parameters (crossover and mutation
rates, population size, etc.) used for each run.

Next, we ran a simple GA (of the type described by
Vose [Vose, 1999]) on each of the 42 GA test prob-
lems. We repeated the runs for each of 14 differ-
ent PRNGs, ranging in quality from rand1k to the
Mersenne Twister. Finally, to reduce the likelihood
of anomalies caused by poor seed value selection, we



repeated each of our runs for 32 different PRNG seed
values. For each problem / seed value combination,
we initialized the GA population identically, and then
used the PRNG under test for the rest of the GA run.
In this way, each of the runs for a problem / seed
value pair started at the same point in Ω. The seed
values and initial populations were constructed using
the truly random source at www.random.org .

We then used the Mann-Whitney non-parametric sta-
tistical test to determine if PRNG choice caused per-
formance differences in our GA runs. We compared av-
erage population fitness on a generation by generation
basis in a manner similar to Meysenburg and Foster’s
second study [Meysenburg and Foster, 1999b].

Finally, we calculated the Vose discrepancy statistic
between each generation of each GA run. These calcu-
lations are complete for every GA test function where
l < 20, and are still under way for the problems where
l = 20. We used the Wilcoxson non-parametric statis-
tical test to determine if discrepancy values caused by
the rand1k PRNG were greater than those caused by
the other PRNGs.

4 RESULTS

In our experiments, we again found that PRNG choice
impacts GA performance. Our statistical measures
here did not indicate if a PRNG caused better or worse
GA performance than the other PRNGs; the measures
only detected that a difference (in either direction) ex-
isted. Of all our GA runs, we found that the rand1k
PRNG caused performance differences in 68% of the
cases. None of our other PRNGs caused consistent
performance differences across the 42 GA test func-
tions.

Having confirmed that rand1k causes unexpected GA
performance, we next tried to determine if the poor
quality of rand1k caused higher Vose discrepancy val-
ues than our other PRNGs. For the GA test functions
we have had time to calculate Vose discrepancy statis-
tics for, this is indeed the case. Representative results
for three of our shorter-length GA test functions are
shown in Tables 2, 3, and 4.

The DC 19 GA test function has chromosome length
l = 12. The function is an instance of CNF-SAT, for
12 variables, 300 clauses, and five variables per clause.
The bits of the chromosome determine the values of
each variable.

The DC 37 and DC 41 GA test functions have
chromosome length l = 8. These functions are
a modified version of the emergency-unit place-

ment problem described by Haupt and Haupt
[Haupt and Haupt, 1998]. In this case, an emergency
response building must be placed on a city map, rep-
resented as a 16 by 16 grid, with a river cutting across
the map at row seven. A bridge is placed over the river
to allow vehicles to cross the river. For the DC 37 func-
tion, the bridge is in column one of row seven, while
in the DC 41 function, the bridge is in column seven
of row seven.

In the figures, the letter ’W’ represents a case where
the row-label PRNG caused statistically higher Vose
discrepancy values compared to the column-label
PRNG. The figures show that, for these GA test
functions, rand1k causes higher discrepancy values
than any of our other PRNGs. Other PRNGs cause
sporadic Vose discrepancy differences, but rand1k
causes higher Vose discrepancies compared to all other
PRNGs, in all of the GA test functions we have com-
puted the statistics on so far. We speculate that the
sporadic Vose discrepancy differences of other PRNGs
are caused by the small population size of our GA
runs; Vose theory says that higher discrepancy values
are likely in small population GAs.

It is interesting that the infamous RANDU PRNG
[Knuth, 1997], which scores as badly as rand1k in the
Diehard suite of PRNG quality tests, does not impact
the GA in the same way rand1k does. In particu-
lar, RANDU never caused GA performance differences
in our runs (while rand1k did 68% of the time), and
neither did RANDU cause consistently higher discrep-
ancy values than the other PRNGs (while rand1k did).
Therefore, it seems that the Diehard suite is not pre-
dictive for GA use. We have developed a GA-specific
empirical test of PRNG quality (described in a poster
presented at this conference [Meysenburg et al., 2002])
which eliminates this false positive problem. Our new
test, tailored to the specific GA parameters of our
test functions, gives poor scores to rand1k but normal
scores for RANDU.

In summary, for the GA functions we have been able
to examine to date, rand1k does cause higher Vose
discrepancy values than other, higher quality PRNGs.

5 CONCLUSIONS AND FURTHER

WORK

We have shown that poor PRNG quality does correlate
with abnormally high Vose discrepancy values. We
feel that this correlation explains why a poor quality
PRNG, such as rand1k, can cause improved or de-
graded GA performance, compared to other PRNGs.
High enough discrepancy values could cause the GA



to enter the basins of attraction of unexpected fixed
points of the Vose heuristic; this would be manifest as
GA performance differences.

In order to further bolster our confidence in our hy-
pothesis, we are continuing Vose discrepancy calcula-
tions on our larger GA test functions. As the results
become available, we will determine if the correlation
between poor PRNG quality and high Vose discrep-
ancy values continues. In addition, we would like to
determine the fixed points of the Vose heuristic for our
GA test functions, in order to confirm that rand1k
drives GA populations to fixed points different than
other PRNGs do.

Acknowledgments

This work is supported by the Doane College Cooper
Undergraduate Research Program, the Initiative for
Bioinformatics and Evolutionary STudies (IBEST)
at the University of Idaho; by NIH NCRR grant
1P20RR016454-01; and by NIH NCRR grant NIH
NCRR 1P20RR016448-01; and by NSF grant NSF
EPS 809935.



Pr {τ (p) = q}

= r!
∏

(

G(p)j

)rqj

(rqj)!

= exp

(

−r
∑

qj log
qj

G (p)j

−
∑

(

log
√

2πrqj +
1

12rqj + Θ (rqj)

)

+ O (log r)

)

Figure 1: Vose equation for probability that population q came from population p.

Function Name Length Function Name Length

DC 01 Rastrigin’s Function 20 DC 22 Ackley’s Trap Function 20
DC 02 Michalewicz’s Function 16 DC 23 Ackley’s 1-Max Function 20
DC 03 Whitley’s Function 20 DC 24 Ackley’s Mix Function 20
DC 04 Rana’s Function 20 DC 25 Ackley’s Plateaus Function 20
DC 05 Schwefel’s Function 20 DC 26 Hoelting’s Projectile 16
DC 06 Griewangk’s Function 20 DC 27 Koza’s Cart-Pole 20
DC 07 Schaffer’s Function 20 DC 28 New Light’s Bug Bomb 16
DC 08 McElvain’s Fibonacci 16 DC 29 Haupt’s 4-letter Word Guesser 20
DC 09 Shaffer’s Function 20 DC 30 Koza’s Cart-Pole II 20
DC 10 Keane’s Bump Function 20 DC 31 Koza’s Cart-Pole III 20
DC 11 Shopping Cart Packing 18 DC 32 Koza’s Cart-Pole IV 20
DC 12 Function F9 20 DC 33 6-city TSP 18
DC 13 Schubert’s Function 20 DC 34 Max Clique 16
DC 14 16-200-4 CNF-SAT 16 DC 35 6-city TSP II 18
DC 15 16-50-3 CNF-SAT 16 DC 36 6-city TSP III 18
DC 16 20-80-3 CNF-SAT 20 DC 37 Haupt’s ERU Location 8
DC 17 15-5-5 CNF-SAT 15 DC 38 Haupt’s ERU Location II 8
DC 18 20-80-3 CNF-SAT II 20 DC 39 Real Topology Hill-Climber 9
DC 19 20-300-5 CNF-SAT 20 DC 40 Binary-to-Gray Circuit 17
DC 20 Ackley’s 2-Max Function 20 DC 41 Haupt’s ERU Location III 8
DC 21 Ackley’s Porcupine 20 DC 42 Meysenburg’s DFA 18

Table 1: Doane College GA Test Suite functions



a
d
d

f
s
r

m
e
r
s
e
n
n
e

m
o
t
h
e
r

p
m

r
a
n
d

r
a
n
d
1
k

r
a
n
d
u

s
h
l
e
c

s
h
p
m

s
h
s
u
b

s
u
b

t
a
u
s
s

t
g
f
s
r

add w w
fsr

mersenne
mother

pm w w w w
rand w w

rand1k w w w w w w w w w w w w w
randu w
shlec w
shpm
shsub

sub
tauss w
tgfsr

Table 2: Vose discrepancy results for DC 19

a
d
d

f
s
r

m
e
r
s
e
n
n
e

m
o
t
h
e
r

p
m

r
a
n
d

r
a
n
d
1
k

r
a
n
d
u

s
h
l
e
c

s
h
p
m

s
h
s
u
b

s
u
b

t
a
u
s
s

t
g
f
s
r

add w w w w w w w w w
fsr

mersenne w w
mother w w w w w w w w

pm w
rand w

rand1k w w w w w w w w w w w w w
randu
shlec
shpm
shsub w

sub w w
tauss w w w w w w w w w
tgfsr w w w w w w

Table 3: Vose discrepancy results for DC 37



a
d
d

f
s
r

m
e
r
s
e
n
n
e

m
o
t
h
e
r

p
m

r
a
n
d

r
a
n
d
1
k

r
a
n
d
u

s
h
l
e
c

s
h
p
m

s
h
s
u
b

s
u
b

t
a
u
s
s

t
g
f
s
r

add w w
fsr

mersenne
mother

pm w w w w
rand w w

rand1k w w w w w w w w w w w w w
randu w
shlec w
shpm
shsub

sub
tauss w
tgfsr

Table 4: Vose discrepancy results for DC 41



References

[Daida et al., 1997] Daida, J., Ross, S., McClain, J.,
Ampy, D., and Holczer, M. (1997). Challenges with
verification, repeatability, and meaningful compar-
isons in genetic programming. In Koza, J. R., Deb,
K., Dorigo, M., Fogel, D. B., Garzon, M., Iba,
H., and Riolo, R. L., editors, Genetic Programming

1997: Proceedings of the Second Annual Conference,
pages 64–69, Stanford University, CA, USA. Morgan
Kaufmann.

[Daida et al., 1999] Daida, J. M., Ampy, D. S.,
Raatanasavetavadhana, M., Li, H., and Chaudhri,
O. A. (1999). Challenges with verification, repeata-
bility, and meaningful comparison in genetic pro-
gramming: Gibson’s conundrum. In Banzhaf, W.,
Daida, J., Eiben, A. E., Garzon, M. H., Honavar, V.,
Jakiela, M., and Smith, R. E., editors, GECCO-99:

Proceedings of the Genetic and Evolutionary Com-

putation Conference, Orlando, FL, USA. Morgan
Kaufmann.

[Haupt and Haupt, 1998] Haupt, S. and Haupt, R.
(1998). Practical Genetic Algorithms. John Wiley
and Sons.

[Knuth, 1997] Knuth, D. E. (1997). The Art of Com-

puter Programming, volume 2. Addison Wesley,
third edition.

[Marsaglia, 1993] Marsaglia, G. (1993). Monkey tests
for random number generators. Computers & Math-

ematics with Applications, 9:1–10.

[Matsumoto and Nishimura, 1998] Matsumoto, M.
and Nishimura, T. (1998). Mersenne twister: A
623-dimensionally equidistributed uniform pseudo-
random number generator. ACM Transactions on

Modeling and Computer Simulation, 8(1):3 – 30.

[Meysenburg, 1997] Meysenburg, M. M. (1997). The
effect of pseudo-random number generator quality
on the performance of a simple genetic algorithm.
Master’s thesis, University of Idaho.

[Meysenburg and Foster, 1997] Meysenburg, M. M.
and Foster, J. A. (1997). The quality of pseudo-
random number generators and simple genetic algo-
rithm performance. In Proceedings of the Seventh

International Conference on Genetic Algorithms,
pages 276 – 281. Morgan Kaufmann.

[Meysenburg and Foster, 1999a] Meysenburg, M. M.
and Foster, J. A. (1999a). Random generator qual-
ity and gp performance. In Banzhaf, W., Daida, J.,
Eiben, A. E., Garzon, M. H., Honavar, V., Jakiela,

M., and Smith, R. E., editors, GECCO-99: Proceed-

ings of the Genetic and Evolutionary Computation

Conference. Morgan Kaufmann.

[Meysenburg and Foster, 1999b] Meysenburg, M. M.
and Foster, J. A. (1999b). Randomness and ga
performance, revisited. In Banzhaf, W., Daida, J.,
Eiben, A. E., Garzon, M. H., Honavar, V., Jakiela,
M., and Smith, R. E., editors, GECCO-99: Proceed-

ings of the Genetic and Evolutionary Computation

Conference. Morgan Kaufmann.

[Meysenburg et al., 2002] Meysenburg, M. M., Hoelt-
ing, D., McElvain, D., and Foster, J. A. (2002).
A genetic algorithm-specific test of random gener-
ator quality. In GECCO-2002: Proceedings of the

Genetic and Evolutionary Computation Conference.
Morgan Kaufmann.

[Vose, 1999] Vose, M. D. (1999). The Simple Genetic

Algorithm. MIT Press.


