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Abstract

Interaction among decision variables is inherent
to a number of real-life engineering design
optimisation problems. There are two types of
interaction that can exist among decision
variables: inseparable function interaction and
variable dependence. The aim of this paper is to
propose an Evolutionary Computing (EC)
technique for handling variable dependence in
multi-objective optimisation problems. In spite
of its immense potential for real-life problems,
lack of systematic research has plagued this field
for a long time. The paper attempts to fill this
gap by devising a definition of variable
dependence. It then uses this analysis as a
background for identifying the challenges that
variable dependence poses for optimisation
algorithms. The paper further presents a brief
review of techniques for handling variable
dependence in optimisation problems. Based on
this analysis, it devises a solution strategy and
proposes an algorithm that is capable of handling
variable  dependence  in  multi-objective
optimisation problems. The working of the
proposed algorithm is demonstrated, and its
performance is compared to that of two high
performing evolutionary-based multi-objective
optimisation algorithms, NSGA-II and GRGA,
using two test problems extracted from literature.
The paper concludes by giving the current
limitations of the proposed algorithm and the
future research directions.

1 INTRODUCTION

Real-life engineering design optimisation problems, as
opposed to the theoretical problems (test cases), are those
that are encountered in industry. Some examples of these
problems are the design of aerospace structures for

minimum weight, the surface design of automobiles for
improved aesthetics and the design of civil engineering
structures for minimum cost (Rao, 1996). A survey of
industry and literature reveals that along with multiple
objectives, constraints, qualitative issues and lack of prior
knowledge, most real-life design optimisation problems
also involve interaction among decision variables (Roy et
al., 2000). However, lack of systematic research has
plagued the field of interaction for a long time. This can
mainly be attributed to the lack of sophisticated
techniques, and inadequate hardware and software
technologies. However, in the last two decades, with the
improvements in hardware and software technologies
some research has been carried out in this area especially
in the field of statistical data analysis (Draper and Smith,
1998). This has been further augmented in the recent past
with the growth of computational intelligence techniques
like Evolutionary Computing (EC), Neural Networks
(NNs) and Fuzzy Logic (FL) (Pedrycz, 1998). This paper
focuses on the development of an evolutionary-based
algorithm for handling variable interaction in multi-
objective optimisation problems.

2 TYPES OF VARIABLE
INTERACTION

In an ideal situation, desired results could be obtained by
varying the decision variables of a given problem in a
random fashion independent of each other. However, due
to interaction this is not possible in a number of cases,
implying that if the value of a given variable changes, the
values of others should be changed in a unique way to get
the required results. The two types of interaction that can
exist among decision variables are discussed below.

2.1 INSEPARABLE FUNCTION INTERACTION

The first type of interaction among decision variables,
known as inseparable function interaction, is discussed in
detail by Tiwari et al. (2001). This interaction occurs
when the effect that a variable has on the objective
function depends on the values of other variables in the



function (Taguchi, 1987). This concept of interaction can
be understood from Figure 1.
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Figure 1: Examples of Interaction (a) No Interaction
(b) Synergistic Interaction (c) Anti-synergistic Interaction
(Phadke, 1989)

In GA literature, the inseparable function interaction, as
defined above, is termed as epistasis. The GA community
defines epistasis as the interaction between different
genes in a chromosome (Beasley et al., 1993). A review
of literature reveals that the evolutionary-based
techniques for handling inseparable function interaction
can be classified into two broad categories based on the
approach used for the prevention of building block
disruption. These categories involve managing the race
between linkage evolution and allele selction (Harik,
1997), and modelling the promising solutions
(Muhlenbein and Mahnig, 1999).

A number of real-life examples can be found in literature
that involve this type of interaction. For example, the
temperature (T) of an ideal gas varies with its pressure (P)
and volume (V) as T=kPV, where k is the constant of
proportionality. This equation has cross-product term PV
clearly demonstrating the interaction between P and V in
the definition of T.

2.2 VARIABLE DEPENDENCE

The second type of interaction among decision variables,
known as variable dependence, is the main focus of this
paper. This interaction occurs when the variables are
functions of each other, and hence cannot be varied
independently. Here, change in one variable has an impact
on the value of the other. A typical example of this type
of interaction is the case when the function y is A+B°,
where 4 and B are as defined below.

A = Random(a,b)
B = f(A) + Random(c,d)

As can be seen, variable 4 is fully independent and can
take any random value between a and b. On the other
hand, variable B is not fully independent and has two
components. The first component, which is a function of
variable 4, takes values depending on the values of 4. The
second component is a random number lying between ¢
and d. It should be noted that in case of no dependence
among decision variables, ¢ and b define the range of
variable A4, and ¢ and d define the range of variable B.

The above example reveals that the presence of
dependence among decision variables has the following
effects.

e Both variables 4 and B cannot simultaneously take
random values in their respective ranges. If variable
A takes a value A4,;, variable B can take only those
random values that lie between [f(4;)+c] and
[f(4,)+d]. With the change in value of 4, the range of
random values that B can take also changes. So, the
variables cannot be varied independently of each
other.

e The above discussion implies that the presence of
dependence among decision variables modifies the
shape and location of variable search space. In case
of no dependence among decision variables, both
variables 4 and B can independently take random
values in their respective ranges making the A4-B
search space rectangular in shape. However, the
presence of dependence makes the search space take
the shape and location based on the nature of function
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Figure 2: Relationship between Stress(S) and
Temperature(T)
(FRIV: Feasible Region with Independent Variables and
FRDV: Feasible Region with Dependent Variables)

The dependence among decision variables is frequently
observed in real-life problems. As an example, the
resistance (R) of a wire is defined in terms of two
variables, namely Temperature (7) and Stress (S), where T
and S are as defined below.

R=F(S,T)
T = Random(Ty,T,)
§ = f(T) + Random(S{,S,)

This real-life problem is analogous to the example
discussed earlier. As illustrated in Figure 2, the presence
of dependence among decision variables modifies the
variable search space. In case of no dependence among
decision variables, 7-S search space is rectangular in
shape. It is shown as FRIV (Feasible Region with
Independent Variables) in Figure 2. In presence of
dependence among variables, the modified search space is
shown as FRDV (Feasible Region with Dependent
Variables) in Figure 2.



3 CHALLENGES POSED BY VARIABLE
DEPENDENCE

Complex variable dependence poses a number of
challenges for multi-objective optimisation algorithms. In
the presence of variable dependence, the decision
variables cannot be varied independently of each other.
Also, the search space gets modified creating a new
feasible region based on the dependence among decision
variables. This is demonstrated in Figure 2. Depending
upon the nature of variable dependency, additional
features (such as bias (non-linearity), multi-modality,
deception and discontinuity) may also be introduced in
the problem. A generic Genetic Algorithm (GA)
independently varies the decision variables and works in
the feasible region that does not take variable dependence
into account. So, it creates solutions that have limited
practical significance since they do not lie in the actual
feasible region of the search space. Therefore, there is a
need to develop GAs that have mechanisms for handling
variable dependence in their search processes.

4 TECHNIQUES FOR HANDLING
VARIABLE DEPENDENCE

Most of the dependent-variable optimisation problems do
not have known dependency relationships. In these
problems, multiple sets of variable values are available
from which the dependency relationships need to be
inferred. An optimisation algorithm that is capable of
handling variable dependence should be able to infer
these relationships from the given data, identify the
independent variables and manage the search process
accordingly. Due to the lack of systematic research in this
area, the literature in the field of optimisation does not

report any dedicated technique that can deal with variable
dependence. However, as shown in Table 1, the survey of
literature in related areas of research reveals some
techniques that can be used for inferring dependency
relationships among decision variables and identifying
independent variables.

Table 1: Techniques for Identification of Dependency
Relationships and Independent Variables

o Neural Networks (NNs) (Hertz et al.,
1991; Richards, 1998; Gershenfeld,

1999)
Identification | ¢ Probabilistic Modelling (PM) (Pelikan et
of al., 1998; Larranaga et al., 1999; Evans

Dependency
Relationships

and Olson, 2000; Muhlenbein and
Mahnig, 1999)

e Regression Analysis (RA) (Frees, 1996;
Draper and Smith, 1998; Evans and

Olson, 2000)
Identification | ¢ Tree Diagrams (TDs) (Banzhaf et al.,
of 1998; Richards, 1998; Larranaga et al.,
Independent 1999)
Variables o Direct Analysis (DA) (Gershenfeld, 1999)

4.1 IDENTIFICATION OF DEPENDENCY
RELATIONSHIPS

Table 2 presents an analysis of the techniques that can be
used for inferring dependency relationships from the
avaiable sets of variable values. This table highlights the
following.

e NNs: As can be seen from Table 2, the NNs require a
priori knowledge regarding the classification of
variables as dependent and independent (Hertz et al.,
1991). Since this information is rarely available in
real-life problems, the choice of the NN is ruled out
in spite of their other attractive features.

Table 2: Analysis of Techniques for Identification of Dependency Relationships

Techniques for Identification of Dependency Relationships

Comparative Analysis

Regression Analysis (RA)

Probabilistic Modelling

Neural Networks (NNs) (PM)

Difficulty of

. Medium
Implementation

Very high (due to many open

High issues)

Dependent on degree of RA

Dependent on number of Dependent on choice of

Relationships

Accuracy equation hidden units modelling method
Computational Expense Low High Medium
Nature of Dependency Explicit Explicit (for given dependent Purely implicit

variables)

Features

Identification of Multiple

Built-in multiple relationships

Dependency
Relationships

Multiple RA equations

(based on choice of NN
structure)

Built-in multiple relationships

Identification of
Independent Variables

Through multiple repetitions
of RA

Not possible

Not required

Difficulty of Data Addition

Medium (repetition required)

Medium (repetition required
by most NNs)

Low (updating required)




e PM: PM is also a very powerful technique, requiring
little information regarding the nature of variables.
As shown in Table 2, it also has a number of other
features that are required for dealing with real-life
problems. However, the application of PM to model
multiple interacting decision variables is a relatively
new area of research, and a number of research issues
need to be addressed before it could be chosen for
handling real-life problems having multiple real
variables (Evans and Olson, 2000).

e RA: Table 2 reveals that the multiple explicit
equations that are identified by the RA give good
insight to the designer regarding the relationships
among decision variables. RA is also easy to
implement and maintain (Frees, 1996). Further, it
addresses most of the above-mentioned limitations of
NNs and PM. However, the accuracy of RA is
dependent on its degree.

4.2 IDENTIFICATION OF INDEPENDENT
VARIABLES

The main strengths and weaknesses of the techniques
used for the identification of independent variables are the
following.

e TDs: The dependence among decision variables can
be graphically represented using TDs, in which each
node represents a variable in the problem. TDs are
easy to use and have good visualisation capabilities,
but they are difficult to be encoded in a computer
language.

e DA: DA involves the analysis of dependency
equations to identify the independent variables. This
method is easy to be encoded in a computer language
but is difficult to visualise.

5 PROPOSED GA FOR VARIABLE
DEPENDENCE (GAVD)

This section proposes a novel algorithm ‘GA for Variable
Dependence (GAVD)’, described in Figure 3. Based on
the discussion in Section 4, the RA is chosen in GAVD to
identify variable dependency equations using the data
provided. Furthermore, GAVD uses TDs for visualisation
of dependency relationships, and DA to automate the
identification of independent variables. The steps
involved in GAVD are described below.

5.1 STEP 1: IDENTIFICATION OF
DEPENDENCY RELATIONSHIPS

This step is omitted in those cases in which the
dependency relationships are known. In the other cases,
this step analyses the given data for identifying multiple
dependency equations, while keeping the computational
expense as low as possible. GAVD uses RA in such a way
that it not only identifies all non-decomposable
relationships among decision variables but also removes

any cyclic dependency in those relationships. To attain
this, a strategy that ensures good ‘book keeping’ is
adopted. The salient features of this strategy are discussed
below.

e The RA that is used in GAVD breaks down a
regression equation until it becomes non-
decomposable. In this way, all the underlying
relationships among the decision variables are
identified.

e A Dependency Chart (DC), which is a tool for DA, is
maintained to keep track of the variables that are
identified as dependent (D) and independent (I) in the
regression process. In this way, unnecessary
repetitions of RA are avoided for the variables that
have already been identified as ‘D’ or ‘I’. This also
ensures that the regression equations do not involve
any cyclic dependency.

e  When determining the regression equation for a given
variable, only those variables that are marked as ‘I’
or are unmarked in DC are considered as
independent. This guarantees that the variables that
are identified as ‘D’ are not considered as
independent in subsequent stages of the RA, thereby
ensuring that the regression equations obtained are as
non-decomposable as possible. This also reduces the
number of variables that are considered at each stage
of the RA.

5.2 STEP 2: IDENTIFICATION OF
INDEPENDENT VARIABLES

TDs are wused here for visual representation of
relationships among decision variables. A TD is
constructed here to give a visual representation of the
dependency relationships to the user. The end nodes of
this tree are the independent variables. The TD also aids
in the identification of cyclic dependencies that may be
present in the given dependency equations. Since TDs are
difficult to be encoded in a computer language, the DC is
used to automate the process of identification of
independent variables and remove any cyclic dependency.
Here, the DC is used to identify the independent variables
as those that are marked as ‘I’. The construction of this
chart also aids the identification and removal of cyclic
dependencies from the dependency equations.

5.3  STEP 3: OPTIMISATION

Being a high-performing latest algorithm, Generalised
Regression GA (GRGA) has been chosen as the
optimisation engine for GAVD. GRGA is a multi-
objective optimisation algorithm that uses RA for
handling complex inseparable function interaction (Tiwari
et al., 2001). Here, the independent variables, identified in
the previous step, define the GA chromosome. For each
alternative solution generated by the GA, the dependency
equations are used to calculate the wvalues of the
dependent variables. It should be noted here that the
bounds on independent variables are treated as variable



limits and those on dependent variables are treated as
constraints.

Since GAVD uses GRGA as its optimisation engine, the

basic operations of GRGA also form part of GAVD. In
addition, it uses the RA to model the relationship among

decision variables. Therefore, the overall computational
complexity of GAVD is the complexity of GRGA
increased with the complexity of the RA, where in most
cases the latter is much smaller than the former.

Given:

« Objective functions (F’s) and constraints

considering first variable as dependent

« Variable bounds
* Multiple sets of variable values
sept ()
’ Perform Regression Analysis (RA),

l Set first regression coefficient to zero

Set next regression coefficient to zero

Re-perform RA

All regression coefficients (in
new equation) analysed?

Same correlation coefficient?
(within +10%)

[ Mark all RA variables in Dependency Chart (DC), L
as Dependent (D) or Independent (I) “

All variables marked?

Re-perform RA,
considering next unmarked variable as dependent ———
and all unmarked or ‘I’ variables as independent

No

Yes

l Mark F’s as peak nodes of Tree Diagram (TD) l

l Decompose first F l

Decompose first child node of F [«

Step 2 |I~ l

Are all nodes at this
level non-decomposable?

Decompose all dependent nodes

Decompose next child node of F

Decompose next F

Optimisation |I~

variable limits

constraints

Use GRGA as optimisation engine:

* GA chromosome defined by independent
variables (end nodes of TD or marked ‘I in DC)
« Dependent variables (marked ‘D’ in DC)
calculated from dependency equations

* Bounds on independent variables treated as

« Bounds on dependent variables treated as

Figure 3: GA for Variable Dependence (GAVD)

54 A WORKED EXAMPLE

This worked example demonstrates the application of
GAVD to a problem that has dependence among its
decision variables. This problem is given below.

Objective _ Function : F = F(xl ,xz,x3,x4,x5)
) .

. < x; =
x; Sx;p i 1..5

Given : Multiple _Sets _of _Variable Values

) <

Suppose the underlying relationships among decision
variables that need to be identified are as follows.

xp = f1(xg,%3)
x3 = fr(xp,x4,x5)

The flowchart of Figure 3 identifies the following steps
for solving this problem.

e  Determine the following equation for x;.
¥ = vy (xg,x3,%4,%5)

e No change is observed in correlation coefficient,
when the RA is performed with the regression
coefficient of x, set to zero. The new equation is as
follows.



xl = Vl'(X3,X4,X5)

e Correlation coefficients reduce, when the RA is
performed with the regression coefficients of x;, x,
and x; set to zero in steps.

e Mark x; as ‘D’ and x3, x, and x5 as ‘I’ in the DC
(Table 3).

e Determine the following equation for x, in terms of
those variables that are so far identified as ‘I’ or are
so far unmarked in the DC.

¥y =va(¥3,%4,%5)

e Correlation coefficients reduce, when the RA is
performed with the regression coefficients of x;, x,
and x; set to zero in steps.

e Mark x, as ‘D’ and x3, x, and x5 as ‘I’ in the DC
(Table 3).

e The variables marked ‘I’ in the DC are independent
whereas those marked ‘D’ are dependent.

e Use the dependency equations determined above for
drawing the TD for the problem (Figure 4). The
nodes that are encircled in this figure represent the
independent variables. All other variables are treated
as dependent.

e Use GRGA as the optimisation engine.

» X3 x4 and xs constitute the GA chromosome.

» x; and x; are determined from the dependency
equations.

» Bounds on x3 x, and x5 are treated as variable
limits.

»  Bounds on x; and x, are treated as constraints.

Table 3: Dependency Chart (DC) for Worked Example

Dependency Variables
Chart (DC X X; X; X, Xs
X D [ | |
Regression | X; D | | |
Equations X;
X4
X5

oINS é;@é\'

Figure 4: Tree Diagram (TD) for Worked Example

Table 4: Test Problems for Performance Analysis of GAVD

Problem Objective Functions (Minimisation) Dependency Equations
1
D(x')_—[l—ex;{— ax )| Vo <3 <1 , ,
. (l - eXp(—4)) xy =1-0.1x3 —0.2x3 —0.3x4 —0.1x} —0.3x3x
Problem-1 x'")= 2—exp(2x2)cos(87vc2) 0<x2 <1 VO<x3 SL,V0O<Sxy <1
s(f1 D=2~ /1) Data _ Generation : x,'= x5 + Normal(0,0.05)
f1 =DE") (Figure 5(a))
S =s(f, DXIE)
1
D(x') = —[1 - exp(— 3x) )], V0 <x <1
(1-expe) (2, ) (4my) Xy = 02402x4 +0.6x2 Y0 < xq <1
I(X'") =3 —exp(—x ) cos\ 270¢5 ) — exp(—x3 ) cos\ 47y ), V0 < x5, x5 <1 2= R A A
Problem-2 i i 2 0. '2 32 3 273 Data _ Generation : x5 "= x5 + Normal(0,0.05)
s(-D=2=-(/{ /D =1/ Dcos@r] ) (Figure 5(b))
f; = DG
fr =s(fj, DXIE")

6 PERFORMANCE ANALYSIS

In this section, GAVD is tested using two multi-objective
optimisation test problems that have dependence among
their decision variables (Table 4). The features of these
test problems make them particularly difficult for multi-
objective optimisation algorithms. In the absence of any
dedicated technique for handling variable dependence,
this section compares the performance of GAVD with two

high-performing multi-objective optimisation algorithms:
NSGA-II and GRGA. However, unlike GAVD, both these
algorithms do not take variable dependency into account.

6.1 EXPERIMENTAL RESULTS

All the tests reported here correspond to 100 population
size, 500 generations, 0.8 crossover probability, 0.05
mutation probability, and simulated binary crossover with
10 crossover distribution index and 50 mutation



distribution index. The results obtained from these tests
are shown in Figure 6 for Problem-1 and Figure 7 for
Problem-2. The y (convergence metric) and A (diversity
metric) values corresponding to these results are shown in
Table 5 (Deb et al., 2000). These results form the typical
set obtained from 10 runs with different random number
seed values. No major variation was observed in the
results with the change in the seed values.

0 02 04 06 08 1
x3

(b)

Figure 5: Dependency Relationships (a) Problem-1
(b) Problem-2

Table 5: Performance Metrics in Problems 1 and 2

Performance Problem-1 Problem-2
Metrics y A Y A
NSGA-II 1.209567 | 0.090002 | 0.986345 | 0.083956

GRGA 0.009143 | 0.080121 | 1.654703 | 0.045431

Optimisation
Algorithms

GAVD 0.008221 | 0.081124 | 0.001373 | 0.014564

6.2  DISCUSSION OF RESULTS

The following observations can be made from the results
obtained from Problem-1 (Figure 6, Table 5).

e Since the dependency equation covers the full range
of x,, it does not alter the Pareto front. Therefore, the
Pareto fronts for the original problem (with no
dependence) and the dependent-variable problem
coincide with each other.

¢ GRGA and NSGA-II do not incorporate variable
dependence in their solution strategies. However,
since the original and the new Pareto fronts are
coincident in this case, the GRGA is able to locate
the Pareto front. However, NSGA-II gets trapped in
one of the local fronts.

e The dependency equation is quadratic, making it
possible for the GAVD (that uses quadratic RA) to
exactly model the dependence. Hence, the Pareto
front that the GAVD sees coincides with the true
Pareto front. Furthermore, since GAVD uses GRGA
as its optimisation engine, it is able to converge to the
Pareto front and distribute the solutions uniformly
across the front.

The following observations can be made from the results
obtained from Problem-2 (Figure 7, Table 5).

In this problem, the original Pareto front occurs when
both x, and x; are equal to 0. Due to the given
dependency among these variables, this is no longer
possible. This causes modifications in the search
space and the Pareto front.

GRGA converges to the global Pareto front of the
original problem (with no dependence among its
decision variables). However, since the new Pareto
front does not coincide with the original one, the
results from GRGA are not feasible in this case.
Similar to the previous case, NSGA-II gets trapped
on a local front, which in this case coincidentally lies
in the new search space.

Also, since GAVD uses quadratic RA, it is able to
exactly determine the dependency equation in this
case. Hence, the Pareto front seen by GAVD is the
same as that of the actual dependent-variable
problem. Therefore, GAVD converges to the Pareto
front and distributes the solutions uniformly across
the front.
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Figure 6: GAVD Performance in Problem-1
(PFIV: Pareto Front for Independent Variables,
PFDV: Pareto Front for Dependent Variables,
EPF: Estimated Pareto Front)
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Figure 7: GAVD Performance in Problem-2
(PFIV: Pareto Front for Independent Variables,
PFDV: Pareto Front for Dependent Variables,
EPF: Estimated Pareto Front)



7 FUTURE RESEARCH ACTIVITIES

The current limitations of GAVD and the corresponding
future research activities are as follows.

e The performance of this algorithm in identifying the
dependence among decision variables is limited by
the degree of RA that it uses. Hence, in dealing with
complex dependence, higher order RAs are required.
This implies that the use of more sophisticated non-
linear modelling tools, such as Neural Networks,
have the potential of improving its performance,
especially in modelling deceptive and complex non-
linear functions.

e  GAVD also needs to be fitted with a mechanism that
can learn the dependency relationships, and update it
each time a new data is added, without having to
repeat the whole process.

e GAVD also needs enhancements to deal with noisy
data and qualitative issues in real-life problems.

8 CONCLUSIONS

There is currently a lack of systematic research in the
field of variable dependence. This paper proposes an
algorithm capable of handling variable dependence in
multi-objective optimisation problems. The performance
of proposed algorithm is compared to that of two state-of-
the-art optimisation algorithms (NSGA-II and GRGA)
using two dependent-variable test problems. It is observed
that the proposed algorithm GAVD enables its
optimisation engine (GRGA) to handle variable
dependence in optimisation problems.
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