
 Jumping Genes-Mutators Can Rise Efficacy of Evolutionary Search

Alexander V. Spirov

The Sechenov Institute of Evolutionary
Physiology and Biochemistry, 44 Thorez Ave.,

St. Petersburg, 194223, Russia

and

Dept. of Applied Mathematics and Statistics,
The State University of New York at Stony

Brook, Stony Brook NY 11794-3600, USA

Email: spirov@kruppel.ams.sunysb.edu

fone: 631-632-8370

fax: 631-632-8490

Alexander B. Kazansky

The Sechenov Institute of Evolutionary
Physiology and Biochemistry, 44 Thorez
Ave., St. Petersburg, 194223, Russia

Email: kazansky@iephb.nw.ru

fone/fax: +7 (812) 552 3219

Abstract

Genetic Algorithms (GA) and Genetic
Programming were inspired by ideas from
evolutionary biology. However modern
Evolutionary Computation (EC) only in outline
reminds the strategies of biological evolution.
The application of other algorithms and
biological ideas may substantially improve the
performance of this area of computer science.
Namely, the selfish (or parasitic) mobile genetic
elements - transposons are good candidates for
this breakthrough. These genomic parasites live
on a substratum of genomes of whole biological
communities. Many biologists assume that
processes in the world of transposons are the
main source of evolution creativity. They
thought to act as wise higher-level mutators for
their hosts. In this communication we propose a
strategy of construction of a new approach
exploiting the most essential aspects of co-
evolution of the hosts-chromosomes and their
genetic parasites. We named this strategy as the
Two-level Evolving Worlds. The key feature of
the approach is usage of artificial transposons.
We apply it to one of known benchmark
problems - the John Muir ant's trail test. We
found that our enhancement of GA technique by
the artificial transposons obviously increase the
efficacy of searching of the ant's navigation
algorithm. We investigate in details the way of
the transposons action as intelligent mutators of
host-chromosomes.

1 INTRODUCTION

Many areas of evolutionary computation, especially
genetic algorithms (GA), and genetic programming (GP),
are inspired by achievements in genetics and evolutionary
biology. However modern evolutionary biology has since
advanced considerably, revealing that genes are not
simply parameter settings, but components of a complex
biochemical machine (Cf. Luke et al., 1999; Lee and
Antonsson, 2001; Lones and Tyrrell, 2001).

On the other hand, many branches of modern
evolutionary computation research are aimed at evolution
of mechanisms (neural networks, decision trees, cellular
automata, L-systems, finite state automata). For these
domains, recent genomic achievements seems more
appropriate as an inspirational model then classic set of
Darwinian algorithms.

There is a feeling that the field of EC is getting more
inspired with the latest achievements in biology, trying to
make the evolutionary algorithms more effective. Such
techniques as transposition, host-parasite interaction,
gene-regulatory networks and some others have yet been
applied to EC.

 •Host-parasite methods: These methods are based on the
co-evolution of two different populations, one of them
acting as “parasite” , and the other acting as “host” . The
parasites usually encode a version the problem domain,
and the hosts the solution to the problem (Hillis, 1990;
Potter and De Jong, 1994; 1995; De Jong and Potter,
1995; Olsson, 1996; 2001).

•Transposition operators (“bacterial” algorithms): The
basic idea of these approaches is to make intra-
chromosome crossovers, that is, crossover of a

chromosome with another part of itself, or else
asymmetric crossover, in which a donor chromosome
transfers part of its genetic material to an acceptor
chromosome (Harvey, 1996, Nawa et al., 1996; Simoes
and Costa, 2001). In some cases, these operators seem to
be better than classical genetic algorithms for
combinatorial optimization problems.

•Gene-regulatory networks approach: Luke et alls (1999)
use a method similar to genetic regulatory networks to
evolve finite state automata that represent a language
grammar. It is appropriate also to mention here the Burke
et alls (1998) project, as well as “enzyme genetic
programming” (Lones and Tyrrell, 2001).

•Evolution based on the selfish elements: Corno et alls
(1998) implemented the Selfish Genetic Algorithm
inspired by Dawkins concept of the selfish gene. The
algorithm evolves a Virtual Population, in which alleles
compete for appearance in their respective locus in the
genotype.

So far, it has not been found in the literature a technique
that is general enough to be applied to a wide range of
problems, and that, in some cases, is able to yield as good
or better results than evolutionary algorithms

This stimulates us to search for prospective mechanisms
that simulate the creative, heuristic and self-organizing
character of (biological) evolution (Spirov, 1996a; 1996b;
Spirov and Samsonova, 1997; Spirov and Kadyrov, 1998;
Spirov et al., 1998; Spirov and Kazansky, 1999). The
mobile selfish genetic elements (synonymous or related
terms are jumping genes, transposons, retroviruses) are
good candidates for this breakthrough (Makalowski,
1995). Many biologists speculate that processes in the
world of transposons, living on a substratum of genomes
of the whole biological communities, are the main source
of macroevolution creativity (Doolittle and Sapienza,
1980; Orgel and Crick, 1980; Brosius, 1991).

In this connection, special interest is attracted by well-
known examples of both competitive and cooperative
strategies in populations of transposons.

In this communication we propose a strategy of
construction of a new approach exploiting the most
essential aspects of co-evolution of the hosts-
chromosomes with their genetic parasites. We named this
strategy as the Two-level Evolving Worlds. The key
feature of the approach is usage of artificial transposons.
We treat transposons as high-level and intelligent
mutators. In the next part we give the definition of the
strategy. To demonstrate the efficacy of a new approach
we apply it to one of known benchmark problems - the
John Muir ant's trail test (Jefferson et al. 1992; Koza,
1992).

1.1 THE TWO-LEVEL EVOLVING
WORLD

Parasites and parasite ensembles always accompany
biological evolution. Tom Ray simulated this process in
his Tierra (Ray, 1991).

A special kind of parasites is genomic parasites living in
the host genome. Known biological proverb says that “ the
viruses in all of us - the viruses that make us” .

In the course of evolutionary time, parasites form
“community” of their own. They populate the united
genomic space of many hosts. We shall name these
parasites as InfoParasites (IP), and the “community of the
parasites” as IP world.

There are examples of evolvable virtual worlds such as
Swarm, Creatures, Network Tierra (Daniels, 1999; Cliff
and Grand, 1999; Ray, 2001). In the course of evolution
the worlds of that type can split over IP and host co-
evolving worlds, i.e. they can become the two-leveled. It
is the question of time and such worlds’ complexity. In
less complex virtual worlds similar splitting could be
realized “by hand” , as in the case of developing world of
computer viruses.

1.1.1 Strategy of Development of The Two-
level Worlds

We assume that the simplest realization of the two-layer
evolving worlds would be as follows:

the hosts-world is GA-like system (standard GA
in the simplest case). The manifold of hosts’
chromosomes-strings is the environment for IPs. In the
simplest case these GAs don’ t have any mutation
operators of their own;

the InfoParasites are the LISP-like programs,
manipulating with the hosts’ strings. (For our applications
these programs must include the SEARCH function
performing the search of patterns in the host strings). IPs
live in hosts, they are transmitted vertically (when host
reproduces) and horizontally (from one host to another, as
infection or computer virus);

genotypes of parasite and host are encoded by
the same text, i.e. the same string of symbols is
interpreted in two different languages, the host’s and the
parasite’s one;

“bad” (too harmful) parasites are eliminated
together with their hosts, “good” parasites minimize their
harmfulness (for example, by exploiting unessential parts
of host’s chromosomes).

1.1.2 Intelligent Mutators

IPs acts as intelligent and sophisticated mutators. They
can generate arbitrary procedures of manipulations with

hosts’ chromosomes. In general, these operators can be
the unitary, binary or plural ones. Each host has got the
mutators of its own. In the simplest case IPs are the only
source of the host’s mutations.

If IP founds hopeful mutation strategy, then both host and
parasite will get chance for reproduction, the parasite
rides on a new turn of evolution on the transformed host.
Virtually we have co-evolution of hosts and their
intelligent mutators-parasites.

1.2 THE ARTIFICIAL ANT PROBLEM

The artificial ant problem is the simulation of an ant
navigation aimed at passing through the labeled trail placed
in a grid world (Jefferson et al. 1992; Koza, 1992). The
trail was nicknamed as “The John Muir Trail” in the UCLA
experiment (Jefferson et al., 1991). Each labeled cell is
numbered sequentially, from the 1st which is settled
directly next to the starting cell, through to the last cell.
The ant’s task is to pass through the labeled cells one by
one (the more the better) for the limited time period. The
ants are simple finite-state automata or an artificial neural
network, which can move along the grid world and test their
immediate surroundings. The trail starts off quite easy to
follow, and gradually gets more difficult, as the turns
become more unpredictable and gaps appear (See Fig.2).
Therefore, the successful ant’s program must be quite
sophisticated. The problem has been repeatedly used as a
benchmark problem (For references See Langdon and
Poli, 1998).

2 METHODS AND APPROACH

While the ant test was implemented at least in two
different C++ libraries (Zongker and Punch, 1995), we
gave preference to the Peter Brennan’s version (Brennan,
1994). This “ANT program” was designed in such a way
that to isolate, as far as possible, the components of the
genetic algorithm from the trail-following experiment and
the ant representation. Brennan’s ants are finite state
automata.

2.1 TECHNIQUE OF MOBILE
GENETIC ELEMENTS - TRANSPOSONS

Mobile Genetic Elements (MGEs) - transposons are akin
to computer viruses. They are the autonomous programs,
which are transmissible horizontally (viz., from one site to
another one on the same or another chromosome) or
vertically (from the ancestor to the descendants in the
reproduction process). These autonomous parasitic
programs cooperate with the host genetic programs, thus
realizing process of self-replication - the only aim, which
can be associated with that activity. We developed some
new operators which are the computer program
procedures, performing processes of replication, mutation
and invasion of MGEs into specific sites on

chromosomes, as well as interactions of MGE with the
chromosome (interrelations of parasite - host type).

It is appropriate here to make some notes, concerning the
terminology. MGE technique comprises the procedures
for initialization of mobile genetic elements and
procedures for operating with these elements. Hereinafter
in this section mobile elements will be referred to as
“viruses”, whereas the procedures, operating with them
will be termed as “MGE operators”. There are only two
types of operators. The one-place operator is an analogue
of point mutation and the two-place (binary) operator
realizing the procedure of transmission of virus from one
chromosome (host) to another chromosome (another
host).

2.1.1 Viruses

Let us recall that the ant binary string - chromosome is
coding a state transition table of finite state automation.
Altogether there are 32 finite states of automation,
ranging from STATE#0 up to STATE#31. All operators
start reading and interpreting the table beginning from the
STATE#0. For example, STATE #0 determines one of the
four actions or instructions (FWD - “forward”, RGT - “to
the right”, LFT - “to the left” or NOP - “do-nothing”) and
the number of the next state, depending on binary input
value (0 or 1). This finite state automation can be
represented as a state transition diagram and interpreted as
a decision tree but, as far as references to already passed
by states are permissible, that tree can have loops.

Henceforward we will refer to these state number
sequences, which ant can pass through moving along the
branches of the tree and according sequences of
instructions (routines), which it will perform, as
“patterns”. In other words, pattern is concrete sequence of
states, which an ant can come through and sequence of
instructions, which an ant can perform, when it passes
from state to state. Concrete example of patterns are given
on the Fig. 1. Hereinafter, the abbreviations of
instructions in the pattern will be referred to as elements
of pattern.

We use this concrete definition of our virus (mobile
genetic element - transposon). Virus is the pattern, having
the following properties:

the pattern should include elements which number lie
in the range between minimum and maximum values;

the pattern should not contain NOP elements and
internal circles;

the pattern should be finished up with a reference to
the initial state. The transitions cycle will be executed
until only white squares remain ahead of the ant.

2.1.2 MGE - operators

MGE - operators scan the predetermined quota of
chromosomes in population. Successively decoding
chromosome record, this operator is seeking for procedure
sequences, which are identified as virus. But, MGE
operator perceives procedures and state transitions only
with the proviso that there is no labeled square ahead of
the ant, i.e. under condition input=0 (See fig. 1).

State Input=0

0 LFT/#17

17 FWD/#13

13 FWD/#21

21 LFT/#9

9 LFT/#0

Figure 1. Here is an example of a virus. The virus is a
closed five-element cycle of states transitions (0, 17, 13,
21, 9, and again, 0). There are 32 states at all. Each state
determines two alternate actions, depending on input
signal. The input signal is what an ant sees before him. If
the cell before him is black then the input is 1, in opposite
case the input is 0. Each of alternative actions includes
one of four possible movements (FWD, RGT, LFT or
NOP) and transition to the next state.

Two-place MGE operator provides the transmission of the
virus from an ant to another one, thus realizing the
reproduction procedure of this virus in gene pool of the
host (ant) population. This procedure performs the
following operations.

First, a pair of ants is chosen at random. Then, the
chromosome of any of them is scanned in search of the
virus. If the virus is found, it is replicated in the partner
chromosome, irrespectively of initial record character in
that chromosome. The chromosome scanning starts from
the zero line (state#0) and goes on as far as the first virus
is met. If no virus is met, scanning finishes up only when
the chromosome record ends. So, scanning ceases
irrespectively of the remaining chromosome un-scanned
part content.

One-place MGE operator is a sort of point mutation,
realized under particular conditions. This is what we call
an intelligent mutator. In detail, the operator acts in such a
way. If it finds a pattern in the predetermined length
range, and the action NOP completes this pattern, then
this instruction is substituted for the one of the three other
actions (FWD, RGT or LFT). Specifically, this NOP is
substituted for the action from the fifth element of the
pattern, counted in order. But, if the found pattern is
completed by the reference to the one of the elements
inside pattern (internal cycle), then we have the following.
The action of this element is substituted for the action of
the fifth element, counted backward from the end, the

reference being substituted for found at random reference
to the element outside of the pattern.

3 RESULTS

The test trail, used in this work is illustrated in Fig. 2. It
can be seen that up to the 64th element our trail coincide
with the Los Altos one, but the next part of the trail
includes chaotically scattered elements of high
complexity. Being trained on much simpler preceding
trail part, the ant is not prepared to surmount the
subsequent, complicated sector (biologists would say that
the ant is not pre-adapted to new conditions it faced with
in this sector). More specifically, problems arise at
attempts to get over gaps between the 64th and the 65th, or
the 67th and the 68th cells.

Figure 2. Ant trail used in our computer experiments. The
trail itself is a series of squares on a 32x32 white toroidal
grid. Each cell is numbered sequentially, from the 1st to
the 89th. The first two gaps of the higher complexity are
between 64th and 65th and 67th and 68th.

3.1 MGES REALLY ACCELERATES THE
EVOLUTIONARY SEARCH

The preliminary computer experiments showed that the
accelerating effect of MGE is especially noticeable for
small populations, when the probability of the effective
navigation algorithm finding by applying standard
crossover and mutation operators is low.

On this basis, the following experiments were carried out
on populations of 100 ants. The choice of such a small

population is also explained by our aim to carry out a
comprehensive analysis of MGE dynamics. Such an
analysis is not feasible for large populations of ants
because of great number of viruses.

With the aim of demonstrating of the MGE technique
efficiency we performed 100 independent runs of the
program, 5000 generations each. The results of test and
control runs (population with MGE and without MGE
correspondingly) were compared in several series with the
different values of standard mutation parameters.
Everywhere in this section we will accept that the
effective navigation algorithm should overcome the level
of maximum score in 64 for 330 time steps.

The results of program runs with the MGE operator and
without it are illustrated in Fig. 3. It can be seen, that
MGE technique obviously increases the probability of
finding of effective navigation algorithm for small
populations and for a little number of generations.

Figure 3. Numerical experiments, demonstrating
statistically certain increasing of the GA efficiency due to
the effect of MGE operators. A comparison of the mean
and the best-of-generation score dynamics (MGE operator
being activated) with the control (MGE operator is
disabled). The score values are averaged over 100 runs in
both cases. The size of population = 100; the number of
generations = 5000; the pattern size varies from 5 to 11;
crossover rate (P/bit)/generation = 0.0001; mutation rate
(P/bit)/generation = 0.04; i are the best-of-generation
scores and iii are the mean scores for the runs with MGE
operators; ii are the best-of-generation scores and iiii are
the mean scores for the control runs (without MGE
operators).

As it is evident from the graphs on Fig. 3, the mean and
the best-of-generation score scores in experiment and in
control are growing, to a first approximation, linear in
time. But the increment of growth in experiment with
MGE is substantially higher, than in control.

It may be suggested that MGE operators raise ant
variability mainly in nonspecific manner thus

supplementing mutation effect of standard operators. But,
this suggestion is not substantiated by the detailed
analysis of mutation process. We carried out control runs
with different values of standard mutations: the high
level of standard mutation does not raise the effectiveness
of the navigation algorithm search, moreover, it decreases
this effectiveness.

3.2 HORIZONTAL TRANSMISSION OF MGES
IS NECESSARY FOR THEIR EFFECTIVE
ACTION

As far MGEs are transmitted vertically (from ancestors to
descendants), MGE of the host, that have superiority in
reproduction success is rapidly spreading in the
population and gives new forms. But this process per se is
insufficient for the effective acceleration of ant learning.
Two-place MGE operator, performing horizontal
distribution of MGE from one ant to another is a
necessary for rising of ant training ability. In Fig. 4 we
illustrate the results of comparing of the test, presented in
Fig.3, with the similar test, in which frequency of
applying of two-place MGE operator was reduced by the
factor of 10 and accounted 5%. This parameter
determines the proportion of population, which is
subjected to the action the two-place MGE operator in a
generation. In previous experiments, this quota accounted
50%.

Figure 4. The influence of decreasing of frequency of
applying of two-place MGE operator on the ant learning
abilities. i are the best-of-generation scores and iii are the
mean scores for the runs with high frequency of the two-
place MGE operator action (50%); ii are the best-of-
generation scores and iiii are the mean scores for the runs
with low frequency of the two-place MGE operator action
(5%). The other parameters are the same as in the
previous experiments (see caption to Fig. 3).

The obvious lowering of ant learning abilities with the
decreasing of frequency of the two-placed operator
application is seen from the diagram. Disabling of the

operator lowers the efficacy further and makes it almost
equal to the control (case without MGE).

4 DISCUSSION

The problem of programming an artificial ant to follow
the Santa Fe trail has been repeatedly used as a
benchmark problem in GP (For references See Langdon
and Poli, 1998). Recently Langdon and Poli have shown
that performance of several techniques is not much better
than the best performance obtainable using uniform
random search (Langdon and Poli, 1998). According to
these authors, the search space is large and forms a Karst
landscape containing many false peaks and many plateaus
riven with deep valleys. The problem fitness landscape is
difficult for hill climbers and the problem is also difficult
for Genetic Algorithms as it contains multiple levels of
deception.

There are many techniques capable of finding solutions to
the ant problem (GA, GP, simulated annealing, hill
clmbing) and although these have different performance
the best typically only do marginally better than the best
performance that could be obtained with random search
(Langdon and Poli, 1998). That is why the ant problem
may be indicative of real optimization problem spaces.

4.1 DOMINANT MGE ARE THE
COMPONENTS OF THE EFFECTIVE
NAVIGATION ALGORITHMS

The results of careful analysis of organization of several
tens of dominant viruses, taken from those ant
populations, which coped with the navigation task, can be
summarized as follows.

1) By the definition, the virus program begins and ends
with the zero state, i.e., it is a loop, executed over and
over until the ant will meet the labeled cell.

2) Four-fold execution of the virus-program produces in
most cases the closed ant trajectories, i.e., the ant will
return to the starting position. As a rule, the closed
contour is located in domains the size of 4×4 or 5×5 cells.

3) As a rule, the virus-program is beginning to work not
from the zero state but from the Nth state, which is
specific to every virus, not beginning with the initial, zero
state. This transition into the Nth state takes place as soon
as the ant (host of the virus) runs against the unlabeled
cell.

4) Start the virus-program from the Nth state provides the
execution of the simplest navigation algorithm, necessary
for overcoming the simplest gaps, arranged in the first
half of the trail (“ looking around” , then one step ahead,
“ looking around” again and so forth). This algorithm
provides the successful passage of trail up to the 64th cell
inclusive.

5) The majority of program-viruses guarantee overcoming
of the element of high complexity between the 64th and
the 65th cells.

6) Some viruses are not suitable for the navigation
programs. In that case the chromosome elements,
arranged in virus-free domain take control over
navigation.

The detailed analysis of the organization of dominant
MGE forms in populations, which are succeeded in
finding of the effective navigation programs, showed, that
the MGE themselves become the components of these
programs. Namely, the case in point is about the part of
navigation program that is used for effective “snuffing
around” in situation, when ant faces with a wide gap.

4.2 WISE MUTATORS HAVE A
SEARCH SPACE CONFINING EFFECT

The Muir’s Trail search space has rugged geometry due to
specific and discrete character of the problem. That is
why, the gradient methods are not effective here.
Moreover, this ant navigation problem is classified as a
GA hard problem, especially if trail is not designed
specially for ant population training. The efficiency of
MGE in the role of intelligent mutators can be measured
by their search space domain confining ability. Therefore,
the selection criteria inserted into MGE operators had to
increase the probability of the effective navigation
algorithm finding on the element of high complexity.

A comparison of mutation frequencies in experiment and
control with the according learning rates confirms
multiple reduction of evaluation numbers, needed for
reaching of the same required learning in experiments
with MGE. Mutation frequencies for basic experiments
(Fig.3) in control accounts: crossover rate + mutation rate
= 0.0001+0.04 P/bit/generation; MGE1 and MGE2
operators add in average 0.0027 and 0.0075
P/bit/generation accordingly. In other words, MGE in
average adds to value 0.041 about 0.012 P/bit/generation.
This addition brings to multiple acceleration of ant
population learning! Hence, according to fig. 3, up to the
end of the experiment (4622 time-step) the control set
gives max score 6.47, whereas in the test set this value is
attained already on the 451 time-step, i.e. 10 times sooner.

5 CONCLUSIONS

• The enhancement of GA by jumping genes-mutators
substantially increases the efficacy of GA
performance in known benchmark test – ant problem.

• The jumping genes-mutators (artificial transposons)
act as intelligent mutators, that “elaborate” code
blocks with high evolvability value.

Acknowledgments

This work is supported by INTAS grant No 97-3095.

References

Altenberg L. (1994) The evolution of evolvability in
genetic programming. In: K. E. Kinnear, ed. Advances in
Genetic Programming. MIT Press, Cambridge, pp. 47-74.

Brennan P. (1994) ANT: Simulated Evolution on a PC,
manuscript.

Brosius J. (1991) Retroposons - Seeds of evolution.
Science 251, 753.

Burke D.S., De Jong K.A., Grefenstette J.J., Ramsey C.L.
and Wu A. S. (1998) Putting more genetics into genetic
algorithms, Evolutionary Computation, 6:4, 387-410.

Cliff D. and Grand S. (1999) The Creatures Global
Digital Ecosystem. Artificial Life 5(1): 77-93.

Corno F., Reorda M. S. and Squillero G. (1998) The
selfish gene algorithm: a new evolutionary optimization
strategy. In: Proceedings of the 1998 ACM symposium on
Applied Computing, February 27 - March 1, 1998,
Atlanta, GA, USA, pp. 349-355.

Daniels M. (1999) Integrating Simulation Technologies
with Swarm, Agent Simulation: Applications, Models and
Tools, October 1999, Argonne National Laboratory,
University of Chicago.

Doolittle W. F. and Sapienza C. (1980) Selfish genes, the
phenotype paradigm and genome evolution. Nature 284:
601-603.

Harries K. and Smith P. (1997) Exploring alternative
operators and search strategies in genetic programming.
In John R. Koza, Kalyanmoy Deb, Marco Dorigo, David
B. Fogel, Max Garzon, Hitoshi Iba, and Rick L. Riolo,
eds, Genetic Programming 1997: Proceedings of the
Second Annual Conference, Stanford University, CA,
USA, 13-16 July 1997. Morgan Kaufmann, pp. 147-155.

Harvey I. (1996) The microbial genetic algorithm,
unpublished work, available at
ftp://ftp.cogs.susx.ac.uk/pub/users/inmanh/Microbe.ps.gz

Hillis W.D. (1990) Co-evolving parasites improve
simulated evolution as an optimization procedure,
Physica D, 42:228-234.

Jefferson D., Collins R., Cooper C., Dyer M., Flowers M.,
Korf R., Taylor C. and Wang A. (1991) Evolution as a
Theme in Artificial Life: The Genesys/Tracker System.
In: Artificial Life II, SFI Studies in the Sciences of
Complexity, vol. X, edited by C.G. Langton, C. Taylor,
J.D. Farmer, and S. Rasmussen. Addison-Wesley, pp.417-
434.

De Jong K.A. and Potter M.A. (1995) Evolving complex
structures via cooperative coevolution, In: Forth Annual

Conference on Evolutionary Computation, San Diego,
CA, 1-3 March 1995.

Koza J.R. (1992) Genetic Programming: on the
Programming of Computers by Means of Natural
Selection. MIT Press, Cambridge, Mass.

Langdon W. B. and Poli R. (1998) Why ants are hard. In
John R. Koza, Wolfgang Banzhaf, Kumar Chellapilla,
Kalyanmoy Deb, Marco Dorigo, David B. Fogel, Max H.
Garzon, David E. Goldberg, Hitoshi Iba, and Rick Riolo,
editors, Genetic Programming 1998: Proceedings of the
Third Annual Conference, University of Wisconsin,
Madison, Wisconsin, USA, 22-25 July 1998. Morgan
Kaufmann, pp.193-201.

Lee C-Y, and Antonsson E.K., Adaptive Evolvability via
Non-Coding Segment Induced Linkage, Proceedings of
the Genetic and Evolutionary Computation Conference,
San Francisco, CA, 2001.

Lones M.A. and Tyrrell A.M., Biomimetic Representation
in Genetic Programming, In: Proceedings of the
Workshop on Computation in Gene Expression at the
Genetic and Evolutionary Computation Conference 2001
(GECCO2001), San Francisco, California, USA, July
2001, pp. 199-204.

Luke S., Hamahashi S. and Kitano H. (1999) “Genetic”
programming, GECCO-99: Proceedings of the Genetic
and Evolutionary Computation Conference, Banzhaf, W.
et al, eds. San Fransisco: Morgan Kaufmann.

Makalowski W. (1995) SINEs as a Genomic Scrap Yard.
Chap. 5 in The Impact of Short Interspersed Elements
(SINEs) on the Host Genome, edited by Richard J.
Maraia. Austin: R.G. Landes Company.

Nawa N. E., Furuhashi T., Hashiyama T. and Uchikawa
Y. (1999) A study on the discovery of relevant fuzzy rules
using pseudo-bacterial genetic algorithms, IEEE
Transactions on Industrial Electronics, 7, (5), 608-616,
October 1999.

Orgel L. E. and Crick F. H. C. (1980) Selfish DNA: The
ultimate parasite. Nature 284: 604-607.

Olsson B. (1996) Optimization using a host-parasite
model with variable-size distributed populations. In:
Proceedings of the 1996 IEEE 3rd International
Conference on Evolutionary Computation, IEEE Press,
pp. 295-299.

Olsson B. (2001) Co-evolutionary search in asymmetric
spaces, In Wang, P.P., ed., Proceedings of The Fifth Joint
Conference on Information Sciences, Association for
Intelligent Machinery, pp. 1040-1043.

Potter M.A. and De Jong K.A. (1994) A cooperative co-
evolutionary approach to function optimization, In: Third
Parallel Problem Solving from Nature, Jerusalem, Israel,
pp 249-257.

Potter M.A. and De Jong K.A. (1995) Evolving neural
networks with collaborative species, In: Proc. of the 1995
Summer Computer Simulation Conference, Ottawa,
Ontario, Canada, 24-26 July 1995, pp. 340-345.

Ray T. S. (1991) An approach to the synthesis of life. In:
Langton, C., C. Taylor, J. D. Farmer, & S. Rasmussen
[eds], Artificial Life II, Santa Fe Institute Studies in the
Sciences of Complexity, vol. XI, Redwood City, CA:
Addison-Wesley, pp. 371-408.

Ray T. S. (2001) Overview of Tierra at ATR. In:
Technical Information, No.15, Technologies for Software
Evolutionary Systems. ATR-HIP. Kyoto, Japan.

Simoes A. and Costa E. (2001) An evolutionary approach
to the Zero/One knapsack problem: testing ideas from
biology; In: Procs. 5th Int. Conference on Artificial Neural
Networks and Genetic Algorithms (ICANNGA 2001),
Prague, Czech Republic, 22-25 April 2001.

Spirov A.V. (1996a) Self-Assemblage of gene Networks
in Evolution via Recruiting of New Netters. Lecture Notes
in Computer Sciences. 1141: 91-100.

Spirov A.V. (1996b) Self-organisation of gene networks
in evolution via recruiting of new netters. In: Proceedings
of the First International Conference on Evolutionary

Computations and Its Applications, Moscow, Russia, pp.
399-405.

Spirov A.V. and Samsonova M.G. (1997) Strategy of Co-
evolution of Transposons and Host Genome: Application
to Evolutionary Computations. In: Proceedings of the
Third Nordic Workshop on Genetic Algorithms and their
Applications (3NWGA), 20 - 22 August 1997, Helsinki,
Finland, Ed. Jarmo T. Alander, Finnish Artificial
Intelligence Society, pp. 71-82.

Spirov A.V., Kadyrov A.S. (1998) Transposon Element
Technique Applied to GA-based John Muir’s Trail Test,
In: High-Performance Computing and Networking, pp.
925-928.

Spirov A.V., Kazansky A.B. and Kadyrov A.S. (1998)
Utilizing of “Parasitic” Mobile Genetic Elements in
Genetic Algorithms. In: International Conference on Soft
Computing and Measurments, St.Petersburg, pp. 266-269.

Spirov A.V. and Kazansky A.B. (1999) Evolutionary
Biology and Evolutionary Computations: Parasitic Mobile
Genetic Elements in Artifical Evolution, In: 2nd Int. Conf.
on Soft Computing and Measurments, St.Petersburg.

Zongker, D. and Punch, B. (1995) lil-gp 1.0,
http://isl.cps.msu.edu/GA/software/lil-gp

