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Abstract 
 

 

Genetic Algorithms (GA) and Genetic 
Programming were inspired by ideas from 
evolutionary biology. However modern 
Evolutionary Computation (EC) only in outline 
reminds the strategies of biological evolution. 
The application of other algorithms and 
biological ideas may substantially improve the 
performance of this area of computer science. 
Namely, the selfish (or parasitic) mobile genetic 
elements - transposons are good candidates for 
this breakthrough. These genomic parasites live 
on a substratum of genomes of whole biological 
communities. Many biologists assume that 
processes in the world of transposons are the 
main source of evolution creativity. They 
thought to act as wise higher-level mutators for 
their hosts. In this communication we propose a 
strategy of construction of a new approach 
exploiting the most essential aspects of co-
evolution of the hosts-chromosomes and their 
genetic parasites. We named this strategy as the 
Two-level Evolving Worlds. The key feature of 
the approach is usage of artificial transposons. 
We apply it to one of known benchmark 
problems - the John Muir ant's trail test. We 
found that our enhancement of GA technique by 
the artificial transposons obviously increase the 
efficacy of searching of the ant's navigation 
algorithm. We investigate in details the way of 
the transposons action as intelligent mutators of 
host-chromosomes. 

1 INTRODUCTION 

Many areas of evolutionary computation, especially 
genetic algorithms (GA), and genetic programming (GP), 
are inspired by achievements in genetics and evolutionary 
biology. However modern evolutionary biology has since 
advanced considerably, revealing that genes are not 
simply parameter settings, but components of a complex 
biochemical machine (Cf. Luke et al., 1999; Lee and 
Antonsson, 2001; Lones and Tyrrell, 2001).  

On the other hand, many branches of modern 
evolutionary computation research are aimed at evolution 
of mechanisms (neural networks, decision trees, cellular 
automata, L-systems, finite state automata). For these 
domains, recent genomic achievements seems more 
appropriate as an inspirational model then classic set of 
Darwinian algorithms. 

There is a feeling that the field of EC is getting more 
inspired with the latest achievements in biology, trying to 
make the evolutionary algorithms more effective. Such 
techniques as transposition, host-parasite interaction, 
gene-regulatory networks and some others have yet been 
applied to EC.  

 •Host-parasite methods: These methods are based on the 
co-evolution of two different populations, one of them 
acting as “parasite” , and the other acting as “host” . The 
parasites usually encode a version the problem domain, 
and the hosts the solution to the problem (Hillis, 1990; 
Potter and De Jong, 1994; 1995; De Jong and Potter, 
1995; Olsson, 1996; 2001).  

•Transposition operators (“bacterial”  algorithms): The 
basic idea of these approaches is to make intra-
chromosome crossovers, that is, crossover of a 



chromosome with another part of itself, or else 
asymmetric crossover, in which a donor chromosome 
transfers part of its genetic material to an acceptor 
chromosome (Harvey, 1996, Nawa et al., 1996; Simoes 
and Costa, 2001). In some cases, these operators seem to 
be better than classical genetic algorithms for 
combinatorial optimization problems. 

•Gene-regulatory networks approach: Luke et alls (1999) 
use a method similar to genetic regulatory networks to 
evolve finite state automata that represent a language 
grammar. It is appropriate also to mention here the Burke 
et alls (1998) project, as well as “enzyme genetic 
programming”  (Lones and Tyrrell, 2001).  

•Evolution based on the selfish elements: Corno et alls 
(1998) implemented the Selfish Genetic Algorithm 
inspired by Dawkins concept of the selfish gene. The 
algorithm evolves a Virtual Population, in which alleles 
compete for appearance in their respective locus in the 
genotype.  

So far, it has not been found in the literature a technique 
that is general enough to be applied to a wide range of 
problems, and that, in some cases, is able to yield as good 
or better results than evolutionary algorithms 

This stimulates us to search for prospective mechanisms 
that simulate the creative, heuristic and self-organizing 
character of (biological) evolution (Spirov, 1996a; 1996b; 
Spirov and Samsonova, 1997; Spirov and Kadyrov, 1998; 
Spirov et al., 1998; Spirov and Kazansky, 1999). The 
mobile selfish genetic elements (synonymous or related 
terms are jumping genes, transposons, retroviruses) are 
good candidates for this breakthrough  (Makalowski, 
1995). Many biologists speculate that processes in the 
world of transposons, living on a substratum of genomes 
of the whole biological communities, are the main source 
of macroevolution creativity (Doolittle and Sapienza, 
1980; Orgel and Crick, 1980; Brosius, 1991). 

In this connection, special interest is attracted by well-
known examples of both competitive and cooperative 
strategies in populations of transposons.  

In this communication we propose a strategy of 
construction of a new approach exploiting the most 
essential aspects of co-evolution of the hosts-
chromosomes with their genetic parasites. We named this 
strategy as the Two-level Evolving Worlds. The key 
feature of the approach is usage of artificial transposons. 
We treat transposons as high-level and intelligent 
mutators. In the next part we give the definition of the 
strategy. To demonstrate the efficacy of a new approach 
we apply it to one of known benchmark problems - the 
John Muir ant's trail test (Jefferson et al. 1992; Koza, 
1992). 

1.1 THE TWO-LEVEL EVOLVING 
WORLD 

Parasites and parasite ensembles always accompany 
biological evolution. Tom Ray simulated this process in 
his Tierra (Ray, 1991). 

A special kind of parasites is genomic parasites living in 
the host genome. Known biological proverb says that “ the 
viruses in all of us - the viruses that make us” .  

In the course of evolutionary time, parasites form 
“community”  of their own. They populate the united 
genomic space of many hosts. We shall name these 
parasites as InfoParasites (IP), and the “community of the 
parasites”  as IP world.  

There are examples of evolvable virtual worlds such as 
Swarm, Creatures, Network Tierra (Daniels, 1999; Cliff 
and Grand, 1999; Ray, 2001). In the course of evolution 
the worlds of that type can split over IP and host co-
evolving worlds, i.e. they can become the two-leveled. It 
is the question of time and such worlds’  complexity. In 
less complex virtual worlds similar splitting could be 
realized “by hand” , as in the case of developing world of 
computer viruses. 

1.1.1 Strategy of Development of The Two-
level Worlds 

We assume that the simplest realization of the two-layer 
evolving worlds would be as follows: 

the hosts-world is GA-like system (standard GA 
in the simplest case). The manifold of hosts’  
chromosomes-strings is the environment for IPs. In the 
simplest case these GAs don’ t have any mutation 
operators of their own; 

the InfoParasites are the LISP-like programs, 
manipulating with the hosts’  strings. (For our applications 
these programs must include the SEARCH function 
performing the search of patterns in the host strings). IPs 
live in hosts, they are transmitted vertically (when host 
reproduces) and horizontally (from one host to another, as 
infection or computer virus); 

genotypes of parasite and host are encoded by 
the same text, i.e. the same string of symbols is 
interpreted in two different languages, the host’s and the 
parasite’s one; 

“bad”  (too harmful) parasites are eliminated 
together with their hosts, “good”  parasites minimize their 
harmfulness (for example, by exploiting unessential parts 
of host’s chromosomes).  

1.1.2 Intelligent Mutators 

IPs acts as intelligent and sophisticated mutators. They 
can generate arbitrary procedures of manipulations with 



hosts’ chromosomes. In general, these operators can be 
the unitary, binary or plural ones. Each host has got the 
mutators of its own. In the simplest case IPs are the only 
source of the host’s mutations. 

If IP founds hopeful mutation strategy, then both host and 
parasite will get chance for reproduction, the parasite 
rides on a new turn of evolution on the transformed host. 
Virtually we have co-evolution of hosts and their 
intelligent mutators-parasites.  

1.2 THE ARTIFICIAL ANT PROBLEM 

The artificial ant problem is the simulation of an ant 
navigation aimed at passing through the labeled trail placed 
in a grid world (Jefferson et al. 1992; Koza, 1992). The 
trail was nicknamed as “The John Muir Trail” in the UCLA 
experiment (Jefferson et al., 1991). Each labeled cell is 
numbered sequentially, from the 1st which is settled 
directly next to the starting cell, through to the last cell. 
The ant’s task is to pass through the labeled cells one by 
one (the more the better) for the limited time period. The 
ants are simple finite-state automata or an artificial neural 
network, which can move along the grid world and test their 
immediate surroundings. The trail starts off quite easy to 
follow, and gradually gets more difficult, as the turns 
become more unpredictable and gaps appear (See Fig.2). 
Therefore, the successful ant’s program must be quite 
sophisticated. The problem has been repeatedly used as a 
benchmark problem (For references See Langdon and 
Poli, 1998). 

2 METHODS AND APPROACH  

While the ant test was implemented at least in two 
different C++ libraries (Zongker and Punch, 1995), we 
gave preference to the Peter Brennan’s version (Brennan, 
1994). This “ANT program” was designed in such a way 
that to isolate, as far as possible, the components of the 
genetic algorithm from the trail-following experiment and 
the ant representation. Brennan’s ants are finite state 
automata.  

2.1 TECHNIQUE OF MOBILE 
GENETIC ELEMENTS - TRANSPOSONS 

Mobile Genetic Elements (MGEs) - transposons are akin 
to computer viruses. They are the autonomous programs, 
which are transmissible horizontally (viz., from one site to 
another one on the same or another chromosome) or 
vertically (from the ancestor to the descendants in the 
reproduction process). These autonomous parasitic 
programs cooperate with the host genetic programs, thus 
realizing process of self-replication - the only aim, which 
can be associated with that activity. We developed some 
new operators which are the computer program 
procedures, performing processes of replication, mutation 
and invasion of MGEs into specific sites on 

chromosomes, as well as interactions of MGE with the 
chromosome (interrelations of parasite - host type).  

It is appropriate here to make some notes, concerning the 
terminology. MGE technique comprises the procedures 
for initialization of mobile genetic elements and 
procedures for operating with these elements. Hereinafter 
in this section mobile elements will be referred to as 
“viruses”, whereas the procedures, operating with them 
will be termed as “MGE operators”. There are only two 
types of operators. The one-place operator is an analogue 
of point mutation and the two-place (binary) operator 
realizing the procedure of transmission of virus from one 
chromosome (host) to another chromosome (another 
host).  

2.1.1 Viruses 

Let us recall that the ant binary string - chromosome is 
coding a state transition table of finite state automation. 
Altogether there are 32 finite states of automation, 
ranging from STATE#0 up to STATE#31. All operators 
start reading and interpreting the table beginning from the 
STATE#0. For example, STATE #0 determines one of the 
four actions or instructions (FWD - “forward”, RGT - “to 
the right”, LFT - “to the left” or NOP - “do-nothing”) and 
the number of the next state, depending on binary input 
value (0 or 1). This finite state automation can be 
represented as a state transition diagram and interpreted as 
a decision tree but, as far as references to already passed 
by states are permissible, that tree can have loops.  

Henceforward we will refer to these state number 
sequences, which ant can pass through moving along the 
branches of the tree and according sequences of 
instructions (routines), which it will perform, as 
“patterns”. In other words, pattern is concrete sequence of 
states, which an ant can come through and sequence of 
instructions, which an ant can perform, when it passes 
from state to state. Concrete example of patterns are given 
on the Fig. 1. Hereinafter, the abbreviations of 
instructions in the pattern will be referred to as elements 
of pattern.  

We use this concrete definition of our virus (mobile 
genetic element - transposon). Virus is the pattern, having 
the following properties: 

the pattern should include elements which number lie 
in the range between minimum and maximum values; 

the pattern should not contain NOP elements and 
internal circles; 

the pattern should be finished up with a reference to 
the initial state. The transitions cycle will be executed 
until only white squares remain ahead of the ant.  



2.1.2 MGE - operators  

MGE - operators scan the predetermined quota of 
chromosomes in population. Successively decoding 
chromosome record, this operator is seeking for procedure 
sequences, which are identified as virus. But, MGE 
operator perceives procedures and state transitions only 
with the proviso that there is no labeled square ahead of 
the ant, i.e. under condition input=0 (See fig. 1). 

State Input=0 

0 LFT/#17 

17 FWD/#13 

13 FWD/#21 

21 LFT/#9 

9 LFT/#0 

Figure 1. Here is an example of a virus. The virus is a 
closed five-element cycle of states transitions (0, 17, 13, 
21, 9, and again, 0). There are 32 states at all. Each state 
determines two alternate actions, depending on input 
signal. The input signal is what an ant sees before him. If 
the cell before him is black then the input is 1, in opposite 
case the input is 0. Each of alternative actions includes 
one of four possible movements (FWD, RGT, LFT or 
NOP) and transition to the next state. 

 

Two-place MGE operator provides the transmission of the 
virus from an ant to another one, thus realizing the 
reproduction procedure of this virus in gene pool of the 
host (ant) population. This procedure performs the 
following operations. 

First, a pair of ants is chosen at random. Then, the 
chromosome of any of them is scanned in search of the 
virus. If the virus is found, it is replicated in the partner 
chromosome, irrespectively of initial record character in 
that chromosome. The chromosome scanning starts from 
the zero line (state#0) and goes on as far as the first virus 
is met. If no virus is met, scanning finishes up only when 
the chromosome record ends. So, scanning ceases 
irrespectively of the remaining chromosome un-scanned 
part content.  

One-place MGE operator is a sort of point mutation, 
realized under particular conditions. This is what we call 
an intelligent mutator. In detail, the operator acts in such a 
way. If it finds a pattern in the predetermined length 
range, and the action NOP completes this pattern, then 
this instruction is substituted for the one of the three other 
actions (FWD, RGT or LFT). Specifically, this NOP is 
substituted for the action from the fifth element of the 
pattern, counted in order. But, if the found pattern is 
completed by the reference to the one of the elements 
inside pattern (internal cycle), then we have the following. 
The action of this element is substituted for the action of 
the fifth element, counted backward from the end, the 

reference being substituted for found at random reference 
to the element outside of the pattern. 

3 RESULTS 

The test trail, used in this work is illustrated in Fig. 2. It 
can be seen that up to the 64th element our trail coincide 
with the Los Altos one, but the next part of the trail 
includes chaotically scattered elements of high 
complexity. Being trained on much simpler preceding 
trail part, the ant is not prepared to surmount the 
subsequent, complicated sector (biologists would say that 
the ant is not pre-adapted to new conditions it faced with 
in this sector). More specifically, problems arise at 
attempts to get over gaps between the 64th and the 65th, or 
the 67th and the 68th cells.  

 

Figure 2. Ant trail used in our computer experiments. The 
trail itself is a series of squares on a 32x32 white toroidal 
grid. Each cell is numbered sequentially, from the 1st to 
the 89th. The first two gaps of the higher complexity are 
between 64th and 65th and 67th and 68th.  
 

3.1 MGES REALLY ACCELERATES THE 
EVOLUTIONARY SEARCH 

The preliminary computer experiments showed that the 
accelerating effect of MGE is especially noticeable for 
small populations, when the probability of the effective 
navigation algorithm finding by applying standard 
crossover and mutation operators is low. 

On this basis, the following experiments were carried out 
on populations of 100 ants. The choice of such a small 



population is also explained by our aim to carry out a 
comprehensive analysis of MGE dynamics. Such an 
analysis is not feasible for large populations of ants 
because of great number of viruses.  

With the aim of demonstrating of the MGE technique 
efficiency we performed 100 independent runs of the 
program, 5000 generations each. The results of test and 
control runs (population with MGE and without MGE 
correspondingly) were compared in several series with the 
different values of standard mutation parameters. 
Everywhere in this section we will accept that the 
effective navigation algorithm should overcome the level 
of maximum score in 64 for 330 time steps.  

The results of program runs with the MGE operator and 
without it are illustrated in Fig. 3. It can be seen, that 
MGE technique obviously increases the probability of 
finding of effective navigation algorithm for small 
populations and for a little number of generations.  

 

Figure 3. Numerical experiments, demonstrating 
statistically certain increasing of the GA efficiency due to 
the effect of MGE operators. A comparison of the mean 
and the best-of-generation score dynamics (MGE operator 
being activated) with the control (MGE operator is 
disabled). The score values are averaged over 100 runs in 
both cases. The size of population = 100; the number of 
generations = 5000; the pattern size varies from 5 to 11; 
crossover rate (P/bit)/generation = 0.0001; mutation rate 
(P/bit)/generation = 0.04; i are the best-of-generation 
scores and iii are the mean scores for the runs with MGE 
operators; ii are the best-of-generation scores and iiii are 
the mean scores for the control runs (without MGE 
operators). 
 

As it is evident from the graphs on Fig. 3, the mean and 
the best-of-generation score scores in experiment and in 
control are growing, to a first approximation, linear in 
time. But the increment of growth in experiment with 
MGE is substantially higher, than in control. 

It may be suggested that MGE operators raise ant 
variability mainly in nonspecific manner thus 

supplementing mutation effect of standard operators. But, 
this suggestion is not substantiated by the detailed 
analysis of mutation process. We carried out control runs 
with different values of standard mutations:  the high 
level of standard mutation does not raise the effectiveness 
of the navigation algorithm search, moreover, it decreases 
this effectiveness.  

3.2 HORIZONTAL TRANSMISSION OF MGES 
IS NECESSARY FOR THEIR EFFECTIVE 
ACTION 

As far MGEs are transmitted vertically (from ancestors to 
descendants), MGE of the host, that have superiority in 
reproduction success is rapidly spreading in the 
population and gives new forms. But this process per se is 
insufficient for the effective acceleration of ant learning. 
Two-place MGE operator, performing horizontal 
distribution of MGE from one ant to another is a 
necessary for rising of ant training ability. In Fig. 4 we 
illustrate the results of comparing of the test, presented in 
Fig.3, with the similar test, in which frequency of 
applying of two-place MGE operator was reduced by the 
factor of 10 and accounted 5%. This parameter 
determines the proportion of population, which is 
subjected to the action the two-place MGE operator in a 
generation. In previous experiments, this quota accounted 
50%. 

 

Figure 4. The influence of decreasing of frequency of 
applying of two-place MGE operator on the ant learning 
abilities. i are the best-of-generation scores and iii are the 
mean scores for the runs with high frequency of the two-
place MGE operator action (50%); ii are the best-of-
generation scores and iiii are the mean scores for the runs 
with low frequency of the two-place MGE operator action 
(5%). The other parameters are the same as in the 
previous experiments (see caption to Fig. 3). 
 
The obvious lowering of ant learning abilities with the 
decreasing of frequency of the two-placed operator 
application is seen from the diagram. Disabling of the 



operator lowers the efficacy further and makes it almost 
equal to the control (case without MGE). 

4 DISCUSSION 

The problem of programming an artificial ant to follow 
the Santa Fe trail has been repeatedly used as a 
benchmark problem in GP (For references See Langdon 
and Poli, 1998). Recently Langdon and Poli have shown 
that performance of several techniques is not much better 
than the best performance obtainable using uniform 
random search (Langdon and Poli, 1998). According to 
these authors, the search space is large and forms a Karst 
landscape containing many false peaks and many plateaus 
riven with deep valleys. The problem fitness landscape is 
difficult for hill climbers and the problem is also difficult 
for Genetic Algorithms as it contains multiple levels of 
deception.  

There are many techniques capable of finding solutions to 
the ant problem (GA, GP, simulated annealing, hill 
clmbing) and although these have different performance 
the best typically only do marginally better than the best 
performance that could be obtained with random search 
(Langdon and Poli, 1998). That is why the ant problem 
may be indicative of real optimization problem spaces.  

4.1 DOMINANT MGE ARE THE 
COMPONENTS OF THE EFFECTIVE 
NAVIGATION ALGORITHMS 

The results of careful analysis of organization of several 
tens of dominant viruses, taken from those ant 
populations, which coped with the navigation task, can be 
summarized as follows. 

1) By the definition, the virus program begins and ends 
with the zero state, i.e., it is a loop, executed over and 
over until the ant will meet the labeled cell.  

2) Four-fold execution of the virus-program produces in 
most cases the closed ant trajectories, i.e., the ant will 
return to the starting position. As a rule, the closed 
contour is located in domains the size of 4×4 or 5×5 cells.  

3) As a rule, the virus-program is beginning to work not 
from the zero state but from the Nth state, which is 
specific to every virus, not beginning with the initial, zero 
state. This transition into the Nth state takes place as soon 
as the ant (host of the virus) runs against the unlabeled 
cell. 

4) Start the virus-program from the Nth state provides the 
execution of the simplest navigation algorithm, necessary 
for overcoming the simplest gaps, arranged in the first 
half of the trail (“ looking around” , then one step ahead, 
“ looking around”  again and so forth). This algorithm 
provides the successful passage of trail up to the 64th cell 
inclusive. 

5) The majority of program-viruses guarantee overcoming 
of the element of high complexity between the 64th and 
the 65th cells.  

6) Some viruses are not suitable for the navigation 
programs. In that case the chromosome elements, 
arranged in virus-free domain take control over 
navigation. 

The detailed analysis of the organization of dominant 
MGE forms in populations, which are succeeded in 
finding of the effective navigation programs, showed, that 
the MGE themselves become the components of these 
programs. Namely, the case in point is about the part of 
navigation program that is used for effective “snuffing 
around”  in situation, when ant faces with a wide gap. 

4.2 WISE MUTATORS HAVE A 
SEARCH SPACE CONFINING EFFECT 

The Muir’s Trail search space has rugged geometry due to 
specific and discrete character of the problem. That is 
why, the gradient methods are not effective here. 
Moreover, this ant navigation problem is classified as a 
GA hard problem, especially if trail is not designed 
specially for ant population training. The efficiency of 
MGE in the role of intelligent mutators can be measured 
by their search space domain confining ability. Therefore, 
the selection criteria inserted into MGE operators had to 
increase the probability of the effective navigation 
algorithm finding on the element of high complexity.  

A comparison of mutation frequencies in experiment and 
control with the according learning rates confirms 
multiple reduction of evaluation numbers, needed for 
reaching of the same required learning in experiments 
with MGE. Mutation frequencies for basic experiments 
(Fig.3) in control accounts: crossover rate + mutation rate 
= 0.0001+0.04 P/bit/generation; MGE1 and MGE2 
operators add in average 0.0027 and 0.0075 
P/bit/generation accordingly. In other words, MGE in 
average adds to value 0.041 about 0.012 P/bit/generation. 
This addition brings to multiple acceleration of ant 
population learning! Hence, according to fig. 3, up to the 
end of the experiment (4622 time-step) the control set 
gives max score 6.47, whereas in the test set this value is 
attained already on the 451 time-step, i.e. 10 times sooner. 

5 CONCLUSIONS 

• The enhancement of GA by jumping genes-mutators 
substantially increases the efficacy of GA 
performance in known benchmark test – ant problem. 

• The jumping genes-mutators  (artificial transposons) 
act as intelligent mutators, that “elaborate”  code 
blocks with high evolvability value. 
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