
More E�ective Genetic Search for the Sorting Network Problem

Sung-Soon Choi and Byung-Ro Moon

School of Computer Science and Engineering,
Seoul National University,
Seoul, 151-742 Korea

firranum,moong@soar.snu.ac.kr

Abstract

In [8], the authors proposed a hybrid ge-
netic algorithm for the optimal sorting net-
work problem. In this paper, we propose an
approach to further improve this work. For
this, we designed a novel data structure to
eÆciently process the dominating operation
in solving the problem. We also developed
an e�ective local search heuristic based on
a fast approximate measure. Combining it
with genetic operators, we obtained the most
stable results so far.

1 Introduction

A sorting network is composed of buses and a number
of homogeneous comparators. Each comparator c(a,b)
performs the elementary operation that compares the
a
th and b

th buses; if their values are in order, they
pass the comparator straight, otherwise they are ex-
changed. We call a sorting network with n inputs an
n-bus sorting network. For any input sequence of an n-
bus sorting network, the output sequence is monotoni-
cally non-decreasing (y0 � y1 � : : : � yn�1). Figure 1
shows a 4-bus sorting network with �ve comparators:
[c(0,1), c(2,3), c(0,2), c(1,3), c(1,2)].

Usually, there are some comparators that can run si-
multaneously. In Figure 1, the �rst and second com-
parators can run simultaneously since they are inde-

9

17

2
17

17

25

17

9

2 9
= 25

=

=

=

=

=

=

=

2

9

25

17

x1

x2

x3

9 2

25
0

y3

1

y2

0x y
y

Figure 1: A 4-bus sorting network

pendent. Likewise, the third and fourth comparators
also can run simultaneously. Thus, the sorting can be
completed in just three parallel steps.

There have been many studies of sorting networks be-
cause of their applications and rich underlying theory
[17] [20] [18]. The research has two main aims [17]:
to reduce the number of comparators or to reduce the
number of parallel steps. We focus on minimizing the
number of comparators following the convention [13]
[9] [15].

This paper pursues improvement upon the authors'
work on the sorting network problem [8]. We focus
on the 16-bus sorting network problem. And we �x
the �rst 32 comparators as in [8]. Historically most
studies included 16-bus sorting networks [4] [11] [2]
[21] [12]. In 1969, Green [12] �rst discovered a 60-
comparator sorting network which is still one of the
best known. Recently, 16-bus sorting networks have
attracted attention again due to the improvements in
new stochastic search methods [13] [3] [9] [15] [10] [8].

Most practical studies of 16-bus sorting networks used
supercomputers because of the huge computational
needs [13] [9] [15]. In [7] and [8], the authors �rst found
60-comparator sorting networks on a single-CPU PC
in a few minutes. In this study, we propose an ap-
proach to further improve this result. For this, we �rst
designed a novel data structure in order to eÆciently
process the time-dominating operation in solving the
problem. We also devised a fast approximate measure
that evaluates the potential quality of a given network.
Then we developed an e�ective local search heuristic
based on this measure. Finally, we combined it with
genetic operators to lead a strong synergy.

The rest of this paper is organized as follows. In Sec-
tion 2, we present our previous works related to the
sorting network problem. In Section 3, we describe
the novel data structure and our local optimization
heuristic, and in Section 4 we provide a genetic algo-

rithm combined with the local optimization heuristic.
We give the experimental results in Section 5. Finally,
we summarize the study in Section 6.

2 Preliminaries

In this section, we brie
y review our previous works in
[7] and [8] for further discussions.

2.1 Zero-One Principle and Networks as

Functions

A valid sorting network guarantees to sort any input
sequence in order. It is, however, possible to restrict
the inputs to binary sequences by the following [17]:

Theorem 1 (Zero-One Principle)

If an n-bus sorting network sorts all 2n sequences of 0's
and 1's into nondecreasing order, it sorts any arbitrary
sequence of n numbers into nondecreasing order.

The Zero-One Principle says that we can prove the
validity of an n-bus sorting network by testing just 2n

binary sequences instead of n! sequences. We denote
by Tn the entire set of 2n binary sequences and by Sn
the set of sorted sequences from Tn. (Sn � Tn) We can
consider an n-bus network as a function from Tn to Tn.
Then we denote by f� the function corresponding to
a sorting network �.

2.2 O/N-pairs and Parallel Layers

Let t(i) be the ith bit value of a binary sequence t. For
two input bus indices x and y such that x < y (x; y =
0; 1; 2; :::; n�1), if (f�(t))(x) � (f�(t))(y) for all t 2 Tn,
then the sorting is acceptable with the sorting network
� as far as the two input buses are concerned. We
call such an input bus pair (x,y) an ordered pair (o-
pair) with respect to the network �. On the other
hand, if there exists a t 2 Tn such that (f�(t))(x) >
(f�(t))(y), then the sorting is not guaranteed for the
two buses. We call such an input bus pair (x,y) a non-

ordered pair (n-pair) with respect to the network �.
We denote by OP(�) the entire set of o-pairs for a
network � and by NP(�) the entire set of n-pairs for
it. It is clear that jOP(�)j+ jNP(�)j =

�
n

2

�
.

In a sorting network, a number of consecutively lo-
cated independent comparators are allowed to be shuf-

ed. We handle these interchangeable comparators as
a group, since the sequence of these comparators does
not a�ect the function of the network. We call such a
group of comparators a parallel layer. For example,

the network in Figure 1 has three parallel layers.

A parallel layer strongly a�ects the subsequent search
direction. If a considerable number of leading parallel
layers have been determined, the rest may be easily
constructed to the optimality by the repair heuristic
of the next section. From the perspective of parallel
layers, the sorting network problem can be considered
to be the problem of �nding a considerable number
of leading parallel layers. For this reason, we evolved
only a �xed number of leading parallel layers; this sig-
ni�cantly reduced the computational load in [8].

2.3 Edit and Repair Heuristics

In [7] and [8], we devised two heuristics, edit and re-
pair, to enhance the GAs' �ne-tuning around local op-
tima. The edit removes redundant comparators in a
network. If the input bus pair of a comparator is an
o-pair with respect to its previous comparators, the
comparator is redundant. The repair modi�es an in-
valid network to a valid one. In [7] and [8], the number
of the n-pairs of a network was used as a measure eval-
uating the quality of the network. The repair builds
a valid network by adding a set of comparators that
reduce the largest number of n-pairs. The repair con-
sists of two operations: appending and insertion. The
appending adds comparators in the rear part of a net-
work; the insertion adds comparators in the middle of
a network. See [8] for details.

3 The Proposed Approach

3.1 Performance Improvement Using

Function Value Tables

Rabin showed that the validity check problem of a
given sorting network is co-NP-complete; it is consid-
ered that the problem is intrinsically diÆcult [17]. If
we know the number of the n-pairs in a network, we
can decide whether the network is valid or not. So it
is also intrinsically diÆcult to �nd the number of the
n-pairs.

Thus, it occupied most of the running time, in [8], for
the edit and repair since they use the number of n-pairs
as a measure of evaluating a network. They examined
the output sequences obtained by feeding binary se-
quences into a network in order to get the number of
n-pairs simultaneously with o/n-pairs, which are used
in the edit and repair heuristics. Thus the comparison
operation for the comparators dominated the edit and
repair processes.

The local optimization algorithm described in the next
section evaluates a network on the basis of the length
of the edited network and the number of n-pairs.

1 1 0 001 0 0

2

0 1 2

0
1

C()

65535

119

150,

25

14

000 1 0 0 1132792
()

()

Figure 2: A function value table

The comparison operation still dominates the running
time. Hence, the eÆciency of the suggested approach
essentially depends on how eÆciently we process the
comparison operation.

As mentioned above, we consider an n-bus sorting net-
work as a function from Tn to Tn. Similarly, we can
consider each comparator as a function from Tn to Tn.
We denote by j�j the number of comparators in a sort-
ing network �. Suppose that an n-bus network � con-
sists of the comparators c0; c1; : : : ; cj�j�1. If we denote
by f� the function corresponding to � and by fci the
function corresponding to ci (0 � i � j�j � 1), then,
for any t 2 Tn, it holds that

f�(t) = (fcj�j�1
Æ fcj�j�2

Æ � � � Æ fc1 Æ fc0)(t)

= fcj�j�1
(fcj�j�2

(� � � fc1(fc0(t)) � � �)) :

From the above equation, if we know the images of all
binary sequences under fci for all ci (0 � i � j�j � 1),
we could get the value f�(t) for any t 2 Tn in just
j�j table lookups, instead of comparing a sequence of
pairs.

We prepare a matrix in advance. In the matrix, each
row represents an integer in [0; 2n � 1]; each integer
corresponds to a binary sequence in Tn. Each column
represents an integer in [0;

�
n

2

�
�1] and corresponds to a

comparator. The element mij in the matrix represents
the binary sequence after applying the jth comparator
to the i

th binary sequence. In the case of the 16-bus
network problem, the memory space required to create
such a table is

�
16

2

�
�216�2 = 120�65536�2 bytes <

16 Mbytes. Figure 2 shows the matrix for the 16-bus
problem. In addition to this, we generate a table that,
for each t 2 Tn, stores the pairs in t that are not in
order. By using these tables, we could considerably
reduce the computational time for the comparison op-
erations.1

1Experiments showed that the computational time was
reduced to less than one third by using the tables.

3.2 A Local Search Heuristic

3.2.1 An Approximate Measure for Network

Quality

We mentioned before that we had devised edit and re-
pair heuristics to enhance the GA's �ne-tuning around
local optima in [7] and [8]. The repair heuristic is a
type of greedy and constructive algorithm that mod-
i�es an invalid network to a valid one with the num-
ber of n-pairs as a measure. In general, the pertur-
bation by crossover and mutation considerably lowers
the qualities of o�spring networks. In this case, it is
diÆcult to recover the qualities of networks only by the
edit and the greedy and constructive repair heuristic.
In this study, we devised a local search heuristic to
alleviate this problem.

Let �0 be a neighbor of a network � in the problem
space. The eventual quality of �0 can be the quality
of the network obtained by performing the edit and
repair to �

0. Due to the tablization of the previous
section, we can considerably reduce the time for edit
and repair. Nevertheless, the repair is still a heavy-
computing operation.

For a sorting network �, let E(�) and R(�) be the net-
works obtained by performing edit and repair heuris-
tics to �, respectively. We get the following fact from
Fact 2 in [7]:

Fact 1 For a sorting network �,

jR(E(�))j � jE(�)j+ jNP(�)j :

Proof: Omitted.

We denote by cj�j the value of jE(�)j+jNP (�)j and call
cj�j as the potential-length upper bound of �. From the

above fact, cj�j is an upper bound of the length of the
network obtained by performing the edit and repair
heuristics to �. In other words, the quality of � is

bounded by cj�j.
For a neighbor network �

0 of a valid network �, it

is clear that dj�0j � j�j implies jR(E(�0))j � j�j. This
means that, if the potential-length upper bound of �0 is
not greater than the length of �, the potential quality
of �0 is not worse than the quality of �. Therefore, we
can replace � with �0 and improve the network quality.

Furthermore, we approximate the quality of any net-

work � obtained in the process of local search by cj�j.
It is, of course, not true that cj�j � dj�0j always im-
plies jR(E(�))j � jR(E(�0))j. However, experiments

showed that there is a strong correlation between cj�j

c2

c3c1

c4

c0

(a) A sorting network �

v0 v2

v4

v3v1

(b) Its underlying graph G(�)

Figure 3: An example sorting network and its under-
lying graph

and jR(E(�))j. When a tie occurs, we give favor to
the networks with shorter edited lengths.

3.2.2 Underlying Graphs of Sorting

Networks

Sorting networks have been generally represented in
such a way as in Figure 1. Since it draws buses across
comparators in order to focus on the data
ows on
buses, it is not appropriate for representing a physical
situation involving discrete comparators and the re-
lationship among them. We devised a more intuitive
model to represent the relationship among compara-
tors.

We set a vertex for each comparator. If an output of
comparator ci is fed into comparator cj , we put an arc
eij from the vertex vi to the vertex vj . We have a graph
G = (V;E) corresponding to a sorting network where
V is the set of vertices and E is the set of directed
edges. For a given network �, we call such a graph
an underlying graph and denote by G(�). Figure 3
shows an example sorting network and its underlying
graph.

3.2.3 Search Strategy

From the viewpoint of underlying graphs, the opti-
mal sorting network problem can be considered to be
the problem of �nding the edges that optimally con-
nects the vertices corresponding to given comparators
| the problem of �nding the optimal network topol-
ogy. At �rst glance, it seems to be reasonable to do
local search by creating and deleting arcs between two
random vertices. However, for a network �

0 obtained
from a network � in this manner, we have to consider
all the binary sequences in the test set in order to get

the value of dj�0j in most cases. This makes the local
search intractable.

For this reason, we consider the networks, obtained by
exchanging every two input bus indices of compara-
tors in each layer of � proceeding from left to right,
as neighbor networks of �. This exchanging process is
equivalent to swapping two input-output pairs of the

vi

vj

(a) A sorting network �

vi

vj

(b) A neighbor of �

Figure 4: An illustration of exchanging process

two vertices corresponding to two comparators in the
same layer in the underlying graph G(�). Figure 4
shows an example. Such a strategy considerably re-
duces the computational load of local search for the
following reason.

Suppose that the number of parallel layers in � is l,
and let the parallel layers of � be �0; �1; : : : ; �l�1; let
the functions corresponding to these parallel layers be
f�0 ; f�1 ; : : : ; f�l�1

. In general, if � does not have any
redundant comparator, the number of unsorted binary
sequences steeply decreases as the parallel layers are
added one by one. In other words,

jf�0(f�32(Tn))� Snj � jf�1(f�0(f�32(Tn)))� Snj �

� � � � jf�l�1
(f�l�2

� � � f�0(f�32(Tn)) � � �)� Snj :

Therefore, in evaluating the qualities of neighbors,
when we exchange two input bus indices for the com-
parators in the ith layer of �, we can considerably re-
duce the time of editing the neighbors and getting the
numbers of n-pairs by considering only the sequences
in f�i�1

(f�i�2
� � � f�0(f�32(Tn)) � � �)� Sn instead of all

the sequences in f�32(Tn)�Sn. Such a strategy, which
successively improves layers left to right, is natural in
that a parallel layer strongly a�ects the subsequent
layers [8].

In each layer, we improve the layer by exchanging in-
put bus indices of comparators in the manner of se-
quential 2-opt [16] [19] [1]. Let n be the number of
input bus indices and l the number of parallel lay-
ers of a network �. And let �i be the i

th layer of �
(0 � i � l � 1). We denote by exchange(�; a; b) the
layer obtained by exchanging the a

th and b
th input

bus indices of comparators in a parallel layer � and by
��=�i the network obtained by replacing a layer �i in
� with another layer �. Figure 5 describes our local
optimization algorithm.

4 GA Framework

We used a hybrid steady-state genetic algorithm. Fig-
ure 6 shows the outline of the hybrid genetic algorithm.

LocalOptimize(�)
f

for i 0 to l� 1 f
Q ;;
�
0

i �i;
for j 1 to n=2 f

choose a; b 2 f0; 1; : : : ; n� 1g �Q

such that �j = exchange(�
j�1
i ; a; b)

and dj��j=�i j is maximal;

Q Q [fa; bg;

�
j
i exchange(�j�1i ; a; b);

g
choose k 2 f1; 2; : : : ; n=2g

such that dj��k
i
=�i
j is maximal;

� ��k
i
=�i

;

g
� R(E(�));
return �;

g

Figure 5: The outline of the local optimization

create initial population of a �xed size;
do f

choose parent1 and parent2 from population;
o�spring crossover(parent1, parent2);
mutation(o�spring);
edit(o�spring);
repair(o�spring);
local-optimization(o�spring);
replace(population, o�spring);

g until (stopping condition);
return the best individual;

Figure 6: The outline of the hybrid genetic algorithm

The details are described in the following.

� Encoding: Each sorting network is represented
by a chromosome. Figure 7 shows the structure
of a chromosome. A chromosome is composed of
a �xed number of parallel layers and one supple-
mental layer. Each gene is represented by an inte-
ger corresponding to a comparator as in the func-
tion value table. Each parallel layer consists of
a bounded number of independent comparators
and the supplemental layer consists of an unlim-
ited number of comparators.

In our GA, only the genes in the parallel lay-
ers are used for crossover. On the other hand, the
genes in the supplemental layer are used only for
the evaluation of �tness; genes in the supplemen-
tal layer are appended by repair and local opti-
mization. This is a variant of Baldwinian hybrid
GAs [22] [14] [23].

gene 2 gene 8 gene 2

parallel parallel parallel
layer 1 layer 2 layer k

at most 8 genes no limit to the number of genes

gene 1 gene 1

supplemental layer

Figure 7: The structure of a chromosome in the 16-bus
case

� Initialization: We set the population size to
be 50. For each parallel layer in a chromosome,
we randomly generate independent comparators.
The number of independent comparators is chosen
to be between a quarter and a half the number of
input buses. We then perform the edit and repair
processes to make the chromosome valid.

� Parent Selection: The �tness value Fi of chro-
mosome i is calculated as follows:

Fi = (
1

Li

�
1

Lw

) + (
1

Lb

�
1

Lw

)=3

where

Lw : the length of the worst (longest),

Lb : the length of the best (shortest), and

Li : the length of chromosome i:

Each chromosome is selected as a parent with a
probability proportional to its �tness value. This
is a typical proportional selection scheme.

� Crossover: As mentioned, we consider only the
parallel layers of the two parents in crossover. We
perform one-point crossover with each layer inde-
pendent of the other layers. Since the numbers of
genes in the two parents are usually not the same,
the traditional one-point crossover is not possible.
Thus, we generate a cut point on the \relatively"
similar position in the parents. Few parallel layers
of o�springs made in this way are usually valid.2

We convert each layer to a valid one by remov-
ing comparators until there is no comparator that
shares the same bus with another comparator in
the layer.

� Mutation: We randomly select each compara-
tor with a low probability (P=0.07) in each layer
and change one of the input buses at random. If
there exists a comparator, say c, in the same layer

2Here, a \valid" layer means a layer that consists of
independent comparators. This usage is di�erent from the
other parts, e.g., Section 2.3, of this paper.

Table 1: Comparison of Experimental Results and Environments

Hillis [13] Drescher [9] Juill�e [15]y Choi & Moon [8] This Study
Population size 65,536 524,288 4,096 50 50

Machine CM-1 CM-5 Maspar MP-2 Pentium III Pentium III
(17,000 Mips) 866 MHz 866 MHz

of processors 65,536 64 4,096 1 1
Results 61 comparators 60 comparators, 60 comparators, 60 comparators, 60 comparators,

100 % for 10 runs almost 100 % 100 % for 100 runs 100 % for 100 runs
Execution time 5 to 50 min 5 to 18 min 5 to 10 min 2 to 15 min 32 to 144 sec

(average 5 min) (average 72.5 sec)

yThe version where the �rst 32 comparators are �xed

that occupies the changed bus, we connect the
comparator c to the (necessarily) absent bus after

change.

� Edit, Repair and Local Optimization: As

mentioned in Section 2, we perform the edit and
repair processes to an o�spring after mutation.

Then we perform the local search heuristic of Sec-
tion 3 to it.

� Replacement: We replace the inferior of the two
parents if the o�spring is not worse than both
parents. Otherwise, we replace the worst member
of the population. This scheme is a compromise
between preselection [6] and GENITOR-style re-
placement [24], and showed successful results in
[5].

The genes in the parallel layers are updated as a result
of local optimization while those in the supplemental
layer are appended only for �tness evaluation. This
is a combination of Lamarckian and Baldwinian GAs.
This model can reduce the computational load of the
Lamarckian side by ignoring some of the last compara-
tors in the evolution.

5 Experimental Results

With the �rst 32-comparators of networks �xed, we
evolved the population of networks using a genetic al-
gorithm on an Intel Pentium III 866 MHz. We used
a population size of 50, which is signi�cantly smaller
than other studies [13] [9] [15].

The chart in Figure 8 shows the performances of GAs
according to the number of parallel layers used for the
GAs. Each bar indicates the number of 60-comparator
sorting networks (of quality equivalent to the best
known) that the corresponding GA found in 144 sec-
onds in 100 trials. When we used four parallels, the

of networks

of parallel layers

0

20

40

60

80

100

2 3 4 5 9 101 6 87

Figure 8: The number of 60-comparator sorting net-
works that we found in 144 seconds in 100 trials, ac-
cording to the number of parallel layers

GA found 60-comparator networks in all of the 100
trials. On the other hand, when we used one paral-
lel layer, we could not �nd any 60-comparator sorting
network. The performance of the GA showed a bitonic
distribution with respect to the number of parallel lay-
ers.

Table 1 summarizes the experimental results and the
environments of Hillis [13], Drescher [9], Juill�e [15], our
previous study [8], and this study. This work showed
the most stable performance in signi�cantly less time
even after considering the di�erence of CPU powers.

When we examined the 100 networks with 60 com-
parators that we found using 4 parallel layers, there
were 72 distinct sorting networks.3 Table 2 classi�es
the 72 sorting networks according to the number of
parallel steps. We present in Figure 9 one of the 60-
comparator sorting networks (with 10 parallel steps)
that we found.

3We ignored the sequences in the same parallel step.

Table 2: The number of distinct sorting networks ac-
cording to the number of parallel steps

of parallel steps 10 11 12 Total

of sorting networks 47 4 21 72

6 Conclusion

We paid attention to the relative importance of the
comparison operations in the process of solving the
sorting network problem. Experiments showed that
these operations have a great e�ect on the perfor-
mance. We designed a novel data structure in order to
process the operations eÆciently, and this led to the
remarkable performance improvement.

To the best of our knowledge, no e�ective local search
algorithm for the optimal sorting network problem has
been proposed yet. We realized that this was because
there was no eÆcient measure for evaluating the qual-
ities of networks. We devised an approximate measure
that not only re
ects the qualities of networks suÆ-
ciently but also needs small computational time.

We also developed an e�ective local search heuristic
based on this measure. In particular, we maximized
the eÆciency of the local search heuristic by re
ecting
the characteristics of the problem. Such an eÆcient
and e�ective local search heuristic came to be another
factor in the improvement of the performance.

A notable aspect of the proposed GA is that it evolves
only a �xed number of parallel layers; the remaining
layers are appended by the local optimization just for
the evaluation of the solutions. This is a combina-
tion of a Lamarckian and a Baldwinian GA. It turned
out that, when the chromosomal size of the Lamarck-
ian side is properly determined, the Baldwinian side is
easily optimized to a solution of best-known quality.
This signi�cantly reduces the problem search space
and helps the GA to conduct an eÆcient search.

When the local optimization heuristic and the genetic

algorithm were combined, they showed strong synergy.
We found the best known solutions in 16-bus networks
with a fairly small time budget. To the best of our
knowledge, this is the most eÆcient result in the dis-
covery of 60-comparator sorting networks.

We restricted the problem space by �xing the �rst 32
comparators. We are currently working on the theoret-
ical justi�cation of the restriction. The study includes
experiments using the model without �xing any com-
parators. We will also consider greater-than-16 bus

problems in the future.

Figure 9: A 60-comparator sorting network that we
found

Acknowledgements

This work was supported by KOSEF through the
Statistical Research Center for Complex Systems at
Seoul National University (SNU) and Brain Korea 21
Project. The RIACT at SNU provided research facili-
ties for this study.

References

[1] E. Aarts and J. K. Lenstra, editors. Local Search
in Combinatorial Optimization. John Wiley &
Sons, 1997.

[2] K. E. Batcher. A new internal sorting method.
Goodyear Aerospace Report GER-11759, 1964.

[3] R. K. Belew and T. Kammayer. Evolving
aesthetic sorting networks using developmental
grammars. In Fifth International Conference on

Genetic Algorithms, page 629. Morgan Kau�-
mann, 1993.

[4] R. C. Bose and R. J. Nelson. A sorting problem.
Journal of ACM 9, pages 282{296, 1962.

[5] T. N. Bui and B. R. Moon. Genetic algorithm and
graph partitioning. IEEE Trans. on Computers,
45(7):841{855, 1996.

[6] D. Cavicchio. Adaptive Search Using Simulated

Evolution. PhD thesis, University of Michigan,
Ann Arbor, MI, 1970. Unpublished.

[7] S. S. Choi and B. R. Moon. A graph-based
approach to the sorting network problem. In
Congress on Evolutionary Computation, pages
457{464, 2001.

[8] S. S. Choi and B. R. Moon. A hybrid genetic
search for the sorting network problem with evolv-
ing parallel layers. In Genetic and Evolutionary

Computation Conference, pages 258{265, 2001.

[9] G. L. Drescher. Evolution of 16-number sort-
ing networks revisited. Unpublished manuscript,
1994.

[10] J. R. Koza et al. Evolving sorting networks us-
ing genetic programming and the rapidly recon�g-
urable Xilinx 6216 �eld-programmable gate array.
In 31st Asilomar Conference on Signals, Systems

and Computers, volume 1, pages 404{410, 1998.

[11] R. W. Floyd and D. E. Knuth. Improved con-
structions for the Bose-Nelson sorting problem.
Notices of the Amer. Math. Soc. 14, page 283,
1967.

[12] M. W. Green. Some improvements in nonadap-
tive sorting algorithms. Technical report, Stan-
ford Research Institute, Menlo Park, California,
1969.

[13] W. D. Hillis. Co-evolving parasites improve sim-
ulated evolution as an optimization procedure. In
C. Langton, C. Taylor, J. D. Farmer, and S. Ras-
mussen, editors, Arti�cial Life II. Addison Wes-
ley, 1995.

[14] G. E. Hinton and S. J. Nowlan. How learning can
guide evolution. Complex Systems, 1(3):495{502,
1987.

[15] H. Juill�e. Evolution of non-deterministic incre-
mental algorithms as a new approach for search
in state spaces. In Sixth International Conference

on Genetic Algorithms, pages 351{358, 1995.

[16] B. Kernighan and S. Lin. An eÆcient heuristic
procedure for partitioning graphs. Bell Systems

Technical Journal, 49:291{307, 1970.

[17] D. E. Knuth. The Art of Computer Programming:

Sorting and Searching, volume 3. Addison Wesley,
1973.

[18] W. Li, J. Lin, and R. Unbehauen. On the analy-
sis of sorting networks from the viewpoint of cir-
cuit theory. IEEE Trans. on Circuits and Sys-

tems I | Fundamental Theory and Applications,
45(5):591{593, 1998.

[19] S. Lin and B. Kernighan. An e�ective heuris-
tic algorithm for the traveling salesman problem.
Operations Research, 21(4598):498{516, 1973.

[20] I. Pitas and A. N. Venetsanopoulos. A new �lter
structure for the implementation of certain classes
of image processing operations. IEEE Trans. on

Circuits and Systems, 35(6):636{647, 1988.

[21] G. Shapiro. In D. E. Knuth, The Art of Computer

Programming, Volume 3: Sorting and Searching.
Addison-Wesley, 1973.

[22] G. G. Simpson. The Baldwin e�ect. Evolution,
7:110{117, 1953.

[23] D. Whitley, V. Gordon, and K. Mathias. Lamar-
ckian evolution, the Baldwin e�ect and function
optimization. In International Conference on

Evolutionary Computation, pages 6{15, 1994.

[24] D. Whitley and J. Kauth. Genitor: A di�erent
genetic algorithm. In Rocky Mountain Conf. on

Arti�cial Intelligence, pages 118{130, 1988.

