
Applying Genetic Algorithms to Finding the Optimal Gene Order
in Displaying the Microarray Data

Huai-Kuang Tsai

Dept. of Computer Science and
Information Engineering National
Taiwan University, Taipei, Taiwan

d7526010@csie.ntu.edu.tw

Jinn-Moon Yang

Dept. of Biological Science and
Technology & Institute of

Bioinformatics, National Chiao Tung
University, Hsinchu, Taiwan

moon@cc.nctu.edu.tw

Cheng-Yan Kao1,2

1 Dept. of Computer Science and
Information Engineering National
Taiwan University, Taipei, Taiwan
2 Bioinformatics Center, National

Taiwan University, Taipei, Taiwan

cykao@csie.ntu.edu.tw

Abstract
In this paper the Family Competition Genetic
Algorithm (FCGA) is applied to analyze DNA-
microarray data. DNA Microarray technology is
a significant impact on genomics study. The
proposed approach consists of global and local
strategies by integrating the family competition,
edge assembly crossover, and neighbor-join
mutation. Experiments are performed to compare
the FCGA with several methods in some real-
world biological data sets. Numerical results
indicate that FCGA performs very robustly and
is very competitive with other approaches. Using
FCGA, we are able to find a gene order to
display the microarray data in a meaningful way.

1 INTRODUCTION
DNA microarray technology can be applied to many

biological domains, such as drug discovery, molecular
diagnosis, and toxicological research. During the past few
years, the development of DNA-microarray technology
had provided the means to monitor the expression levels
of a large number of genes simultaneously.

In the microarray experiments, messenger RNAs
(mRNA) are extracted from the cell culture.
Complementary DNAs (cDNA) are generated from the
RNAs, amplified, labeled and then hybridized to a large
array of DNA probes immobilized on a solid surface. The
array is then scanned by a laser to obtain the signal for
each probe region. From the signal strengths of the probes
from a particular gene, one can infer the expression level
of the gene in the cell type under study. Fig. 1 is the
schematic procedures for monitoring gene expression
using DNA microarray. With many chips, the expression
data can be represented by a real-valued expression
matrix X where Xij is the measured expression level of
gene i in experiment j.

However with thousands of genes and hundreds of
experiments, it is difficult to evaluate the immense
amount of gene expression profiles. A large number of
approaches have been developed for analyzing the huge
microarray data. For examples, clustering, classification,
and genetic network analysis are usually adapted for

analyzing these data. In any case, it is important to display
microarry data in a meaningful way to best illustrate
trends in gene expression.

An intuitive way to display microarray data is to find
an optimal order of genes such that genes with similar
expression profiles are blocked together. However, it is
NP-complete to find an optimal order of genes [1].
Several approaches have been proposed for solving this
problem. For example, the hierarchical clustering
approach, a widely used tool [2-6], has been used to
approximate the solution. Since the constructing process
of the hierarchical tree is greedy, this approach may get
stuck at local minima. Some approaches have been
proposed to improve the solution quality of hierarchical
clustering approach, such as flipping the internal nodes in
the tree [7] and neural networks [8]. In this paper, finding
an optimal order of genes is formulated as a travel
salesman problem (TSP). Evolutionary approaches (EAs)
are one of promising directions for solving TSPs.

Evolutionary approaches have been successfully
applied to optimization problems that are inherently
computationally complex [9-11]. EAs are an adaptable
concept for problem solving and especially well suited for
solving difficult optimization problems. They have been
used to solve problems involving large search spaces,
where traditional optimization methods are less efficient.

In this paper, we propose the family competition
genetic algorithm (FCGA) to find the optimal order of
genes with expression profiles. The FCGA combines a
family competition, the neighbor-join mutation (NJ), and
the edge assembly crossover (EAX) [12]. The family
competition, derived from (1+λ)-ES and Lin-Kernigan
heuristic, had been successfully applied to several
continuous parameter optimization problems, such as
protein docking [13] and thin-film coatings [14]. In our
pervious studies [15], we had successfully integrated the
family competition and EAX for solving traveling
salesman problems (TSPs). In order to balance
exploration and exploitation, we also designed the
neighbor-join mutation [16] to cooperate with the EAX.
The main difference in methodology between the present
work and our previous studies is the integrations of these
mechanisms.

reference experiment

Figure 1. Schematic procedures for monitoring gene expression
using DNA microarray

We illustrate features of FCGA by some TSPs
benchmarks and biological data sets. The TSPs were used
to verify the performance of FCGA by comparing with
several methods [12][17-19]. Three biological data sets
are tested to shown that FCGA is superior to the existing
heuristic methods of gene order, including hierarchical
clustering [2] and self-organizing map (SOM) [20].
Experimental results demonstrated that the FCGA is an
encouraging approach for finding the optimal order of
genes in expression profiles.

This paper is organized as follows. Section 2 describes
the problem of ordering genes in expression profiles.
Section 3 introduces the evolutionary nature of the FCGA.
In Section 4, some experimental results are presented to
illustrate the performance of the FCGA. We also compare
the FCGA with various approaches on three biological
problems and discuss the biological meanings.
Concluding comments are drawn in Section 5.

2 PROBLEM DEFINITION
One important issue in the microarray data analysis is

to display the data in a meaningful way that best
illustrates the trends in gene expression. The problem can
be formulated as follows: find an optimal order of genes
such that genes with similar expression profiles are close
together. Different criteria result in different objective
functions: such as distances between gene expression
profiles [1] or distances between both adjacent genes and
block similarities [21]. In this paper, we used the sum of
distances of adjacent genes as our fitness function defined
as

∑
=

+

M

i
ii

ggD
1

),(
1ππ

, (1)

where gi denote a gene, ni ≤≤1 , π denote a gene order,
M is number of genes and D(gi, gj) is the distance of two
genes gi and gj. This problem is the same as to determine
the shortest route passing through a set of M cities under
the condition that each city is visited exactly once. This
so-called traveling salesman problem is well known to be
NP-complete [22].

Some methods have been proposed to define the
distance D(gi, gj), or called similar, between two genes,
such as Pearson correlation, absolute correlation,
Spearman Rank correlation, Kendall's Tau, and Euclidean
distance. In this paper, we applied centered Pearson
correlation which is widely used in DNA microarray. Let

kxxxX ,...,, 21= and
kyyyY ,...,, 21= be the expression levels

of two genes (prepared in log-transformed data) observed
over a series of k conditions. Based on Pearson
correlation the distance of genes X and Y can be given

YXsYXD ,1),(−= . (2)

sX,Y is the centered Pearson correlation defined as

()()
YX

i Yy
k

i

Xx
YX k

s σσ
−

=

−∑= 1

1
,

1
(3)

where X and σX is the mean and standard derivation of the
expression levels. The value of σX is

∑
=

−=
k

i
ikX Xx

1

21)(σ . (4)

According to the above steps, the problem finding an
optimal order of genes can be formulated as a TSP. Then
we applied our method to solve this problem.

Initialize population S with N solutions

Randomly select another individual

Generate an intermediate solution
(oi) by applying EAX crossover

Select the better one (Ii) from si

and (o1, o2…oL)

Generate a child (ci) by applying NJ
mutation on Ii, insert ci into Snext

Replace S with Snext and let
Snext be an empty set.

Repeat for each
individual
(“ family
parent si”) in S

Satisfy terminal
conditions

No

Yes

Output the best solution

Repeat L
times

Figure 2. The outline of FCGA

3 METHOD

In this section, the details of the proposed genetic
algorithm, called family competition genetic algorithm
(FCGA), for optimizing the gene order in gene expression
data are presented. The FCGA has three major
mechanisms, including a family competition, the edge
assembly crossover (EAX), and the neighbor-join
mutation (NJ). The EAX and the NJ mutation are genetic
operators considered to be able to preserve and add good
edges to generate a child. The family competition is a
local search mechanism incorporated into the EAX and
the NJ mutation. These three mechanisms have been
studied to balance exploration and exploitation in the
search space.

Fig. 2 shows the main steps of the FCGA. N solutions
are generated as the initial population. Each solution is
represented as a random permutation from 1 to M where
M is the number of genes. After evaluating the fitness,
each individual in the population sequentially becomes
the “family father (si)” to produce L offspring, (o1,...,oL),
by conducting the EAX and the family competition. The
one with lowest fitness value from o1,o2...oL and si

becomes the intermediate offspring (Ii). The NJ is then
applied to generate a child (ci) by refining from the
intermediated solution Ii. Each individual in the
population sequentially executes the above steps to
generate its child. These N solutions (c1,...,cN) become the
new population of the next generation. Therefore, LN
solutions are generated in one generation and N solutions
are selected as the parent population of the next
generation.

Our algorithm terminated when one of criteria is
satisfied: 1) the maximum preset search time is exhausted,
2) all individuals of a population are the same, or 3) all of
the children generated in continuous five generations are
worse than their parents. Please note that both the
crossover and mutation rates are 1.0. In the following
subsections, the family competition, the EAX, and the NJ
mutation are described.

3.1 REPRESENTATION

In the chromosome representation of our FCGA, each
solution si represents a gene orderπ, where Ni ≤≤1 and
N is the population size. Assume there are M genes
{g1,…,gM}, the solution si is represented as:

),...,,(
21 M

gggsi πππ= . (5)

The fitness function follows the equation (1).

3.2 FAMILY COMPETITION

The family competition, derived from (1+λ)-ES and
Lin-Kernigan heuristic, is considered as a local search
procedure in FCGA. In the family competition step, L
offspring, (o1,...,oL), are generated by EAX crossover
operator and after family selection, the one with best

fitness from (o1,...,oL) and the family father (si) is survived.
The procedure of the family competition is described as
follows. Each individual (si) sequentially becomes the
“family father.” This “family father” and another solution
(sj) randomly chosen from the rest of the parent
population are used as parents to do EAX crossover
operation to generate an offspring (ol). For each family
father, such a procedure is repeated L times. Finally L
solutions (o1,...,oL) are produced. After L solutions
compete with “family father,” only the one (Ii) with the
best objective value survives. Since we create L solutions
from the same “family father” and perform a selection,
this is a family competition strategy. Because each
individual sequentially becomes the “family father“, LN
offspring are generated in one generation.

3.3 EDGE ASSEMBLY CROSSOVER

The EAX [10] is considered a powerful crossover
operator [23]. It has two important features: preserving
parents’ edges with a novel approach and adding new
edges with a greedy method, analogous to a minimal
spanning tree. Several issues, such as the selection
mechanism and heuristic methods, influencing EAX
performance have been discussed [15][16][23][24]. In this
paper the EAX is considered as the global search strategy
in our proposed algorithm.

The EAX is briefly described here. Two individuals,
denoted as A and B, were selected as the parents. The
EAX first merges A and B into a single graph denoted G.
The EAX travels G to generate many AB-cycles by
alternately picking edges from parents A and B.
According to the heuristic and random selection rules,
some of AB-cycles are selected to generate a quasi
solution which contains some disjointed subtours. Then,
the EAX uses a greedy method to merge these disjointed
subtours into a valid solution. This solution is returned if
the fitness of this solution is better than its parents.
Otherwise this procedure is repeated until a solution that
is better than both A and B or K children are produced
where K is the local search length.

3.4 NEIGHBOR-JOIN MUTATION

The neighbor-join (NJ) operator constructs a new
solution by stealing edges from other individuals in the
population or by considering the geometric information.
Although the NJ is applied only on the single solution, the
offspring is generated considering both the neighborhood
information and knowledge from other individuals. Thus,
the NJ operator is a genetic operator combining with the
characteristics of local search, mutation, and
recombination.

The NJ is inspired by the inver-over mutation [25]
and by analyzing the TSP search space [26]. The main
difference between the inver-over mutation and the other
mutations is that it inherits edges both from parent and
from other individuals in the current population.
According to the analysis of the optimal tour of att532,

we find that most of the links in the optimal tour of att532
are the neighbor cities of each city.

The details of the NJ are described as follows. By
given the input of an individual Ii and the search length K,
the NJ applies K modifications from the start solution Ii’=
Ii. In each modification, a gene c is randomly selected
from Ii’. With equal probability, a gene c’ is randomly
selected either from the geometric nearest three neighbors
of c or from the neighbor of c of an individual, which is
randomly selected from the population. If the edge (c’,c)
does not appear in Ii’, to reconnect c and c’ together
generates four possible types. The NJ generates four
candidates by sequentially executing each type once. The
one with lowest fitness from these four candidates and Ii’
are selected as the parent of next loop. Above steps are
executed K times.

In the four candidates, two are the simple invert
operation to align c and c’ together, the other two will
result in two disjoint subtours. A greedy method is
applied to merge two disjoint subtours into a valid
solution. The greedy method works as follows: Let vi

represent a gene, (vi, vj), i≠j, represents an edge, and w(vi,
vj) be the edge length of (vi, vj). At the same time, let (vr,
vr+1) and (vs, vs+1) be the edges of the subtour Gr and the
subtour Gs, respectively. We find a pair of edges (vr, vr+1)
and (vs, vs+1) to connect these two subtours, Gr and Gs,
into a legal tour by maximizing the value of the following
equation:

),(),(),(),(1111 ++++ −−+ rssrssrr vvwvvwvvwvvw (6)

sr GsGrsr ∈∈∀ and;, .

The new edges (vr, vs+1) and (vs, vr+1) are inserted to
replace the original edges (vr, vr+1) and (vs, vs+1) to form
the new solution.

4. EXPERIMENTAL RESULTS
In this section FCGA first was tested on some TSP

benchmarks to verify the correctness and efficiency. Four
efficient methods for TSPs were compared with FCGA to
show the robustness of FCGA. FCGA is then applied on
three biological data sets to find the optimal gene order.
By comparing to the hierarchical clustering [2] and self-
organizing map (SOM) [20], FCGA is superior to other
approaches in: 1) minimizing the cost of order, 2)
uncovering the correct cell cycle, and 3) most genes with
the same group are aligned together. Finally we conclude
this section by presenting biological results with
visualized representation.

FCGA has been implemented in C++ and executed on
a Pentium III 500MHz personal computer with single
processor. As introduced in Section 3, the population size
(N), the family competition length (L), and the local
search length (K) are the main parameters in our
algorithm. According to our previous study [15][16], the
population size (N) is roughly set to the number of cities

(for TSP problem) and the number of genes (for
microarray data), while the family competition length (L)
is set to 5 and the local search length (K) is set to 20 for
the tradeoff between solution quality and convergence
time.

4.1 RESULTS OF STSP PROBLEMS

Table I summarizes the results of our method and four
other approaches, including nature crossover genetic
algorithm (NGA) [18], ant colony system (ACS) [19],
distance-preserving crossover genetic algorithm (DGA)
[17], and EAX genetic algorithm (EGA) [12]. NGA
integrated nature crossover and LK local search [27];
ACS is an ant colony system cooperated with 3-opt
operator; DGA combined the distance-preserving
crossover and 3-opt; and EGA used the EAX crossover.
These four approaches perform well on these test
problems according to our surveys. The results of first
three methods were directly summarized from original
papers. The average tour length and the average error of
trails are used to measure the performance of comparative
methods. The values in parentheses of the average tour
length represent the percentages of error defined as

optimum
optimumsol − , where sol is the experimental value and

optimum is the optimum of a TSP problem.

Table I shows that our algorithm performs robustly for
testing symmetric TSPs. For each problem the proposed
algorithm can find the best tour in almost each trial and
the error rate is only 0.01% away from the optimal. Since
the solution qualities of FCGA applied on these TSPs are
good, we believe that it would also proper to optimize the
gene order in gene expression data.

TABLE I

Comparisons of FCGA with other methods, including NGA [18], ACS
[19], DGA [17], and EGA[12], on five TSP problems based on the
average tour length and average solution qualities (error) in 30 trails.

The percentages of error defined as
optimum

optimumsol − , where sol is the

experimental value and optimum is the optimum of a TSP problem.
“N/A” represents not available in original papers.

Methods: average tour length (error in %)Problems/
(optimum) FCGA ACS DGA NGA EGA

Lin318
(42029)

42029.00
(0.000)

N/A
42033.44
(0.011)

42029.00
(0.000)

42041.23
(0.011)

pcb442
(50778)

50778
(0.000)

N/A 50778
(0.000)

50778
(0.000)

50778
(0.000)

att532
(27686)

27688.49
(0.0081)

27718.20
(0.112)

27697.58
(0.042)

27695.61
(0.035)

27696.33
(0.037)

rat783
(8806)

8806.00
(0.000)

8837.90
(0.362)

8806.00
(0.000)

8806.00
(0.000)

8806.00
(0.000)

pcb3038
(137694)

137700.19
(0.0032)

N/A 137760.55
(0.048)

137765.02
(0.052)

137703.77
(0.007)

4.2 RESULTS OF BIOLOGICAL DATA

After the robustness of FCGA is shown, we applied it
to three biological data sets to find the optimal gene order.

FCGA was compared with four widely used methods,
including hierarchical agglomerative clustering algorithm
(single-linkage, complete-linkage, and average-linkage
[2]) and self-organizing map (SOM) [20].

In the aspect of data, the first and second data set, cell
cycle-cdc15 and cell cycle, are about 800 genes which are
cell cycle regulated in saccharomyces cerevisia with
deferent number of experiments [28]. Spellman et al. [28]
assigned these 800 genes to five groups termed G1, S,
S/G2, G2/M, and M/G1. These groups approximate the
commonly used cell cycle groups in the literature. The
authors used a ‘phasing’ method which compare the ‘peak
expression’ for each unknown gene with the expression of
genes that were known to belong to each of these group.
Although the group assignment is not the real grouping, it
is still meaningful to some degree. So, we also use this
information to evaluate a order of genes. The third data
set, yeast complexes, is from MIPS yeast complexes
database [2]. All these three data sets can be found in [7].
Table II gives the brief descriptions of each data set.

TABLE II

The description of three tested biological data set, including the
source, number of experiments, and number of genes of each set.

Data name source Num. of
experiment

Num. of
genes

Cell cycle cdc15 Spellman et al. [28] 24 782

Cell cycle Spellman et al. [28] 59 803

Yeast complexes Eisen et al. [2] 79 979

All these data can be download from [7]

Two scoring systems are adapted here to verify the
correctness of a gene order π . Assume

)...,(
21 M

ggg ππππ = is an order of genes, where M is

the number of genes. The first score is the fitness function
which is the sum of the distance between any two
consecutive genes inπ, denoted as score1(π). The score
Score1(π) is defined as:

∑
=

+
=

M

i
ii

ggDScore
1

1),()(
1πππ , (7)

where
11 ππ gg

M
=

+
,),(

1+ii
ggD ππ is the distance

between two genes (the distance measures are defined in
section 2). In fact, this is just the fitness function
(equation 1). The smaller the score1(π) is, the better
order of genes we would get.

The second score, score2(π), is to measure the overall
group distribution inπ . As mentioned earlier in this
section, the first and second data have descriptions about
gene group information. By this information, the score
Score2(π) is defined as:

∑
=

+
=

M

i
ii

ggGScore
1

2),()(
1πππ , (8)

where
11 ππ gg

M
=

+
, and),(

1+ii
ggG ππ is defined as:

=
groupsametheinnotaregandif

groupsametheinaregandif
g

ji

ji

ji
ππ

ππ
ππ g,0

g,1
),G(g

In a gene orderπ , if genes with the same groups are
aligned next to each other, score2(π) would be higher. In
summary, we use FCGA to get the optimal gene order by
minimizing the fitness function score1(π). After the
optimal gene orderπ is got, we hope the magnitude of
score2(π) as larger as possible. Fig.3 shows an example
of calculating the score1(π) and score2(π).

Table III and IV summarizes the comparisons on
score1(π) and score2(π) of our method and these four
approaches. Both tables show that the FCGA performs
more robustly than comparative methods for testing sets
in both score1(π) and score2(π). By counting the factor:

genesofnumber

score)(2 π , (9)

we found that almost 70-80% genes with the same groups
are aligned next to each other. In other words, two
neighbor gene in the optimal gene orderπare almost in
the same group. In summary, FCGA provides a way to
reorder the genes in a meaningful order and aligns genes
with the same group together.

Gene order: π = (2,3,6,1,7,4,5)

score1(π) = D(2,3)+D(3,6)+ D(6,1)+D(1,7) + D(7,4)+D(4,5)

= 0.5+0.5+0.6+0.4+0.5+0.4+0.8 = 3.7

score2(π) = G(2,3)+G(3,6)+ G(6,1)+G(1,7) +G(7,4)+G(4,5)

=1+0+0+0+0+1+0 = 2

distance matrix group category

1 2 3 4 5 6 7 gene Group
1 0 0.5 0.3 0.2 0.5 0.6 0.4 1 1
2 0.5 0 0.5 0.3 0.8 0.3 0.2 2 1
3 0.3 0.5 0 0.4 0.4 0.5 0.2 3 1
4 0.2 0.3 0.4 0 0.4 0.5 0.5 4 2
5 0.5 0.8 0.4 0.4 0 0.6 0.6 5 2
6 0.6 0.3 0.5 0.5 0.6 0 0.3 6 3
7 0.4 0.2 0.2 0.5 0.6 0.3 0 7 3

Figure 3. An example of calculating the score1(π) and score2(π).

Table III

Comparisons of our method (FCGA) with other methods
including single-linkage, complete-linkage, average-linkage [2],
and self-organizing map (SOM) [20], on three gene expression
data sets based on score1(π).

Cell cycle
cdc15

Cell cycle
Yeast

complexes

FCGA 137.347 219.233 308.801

Single-
linkage 655.483 599.329 621.311

complete-
linkage 227.828 486.717 435.314

average-
linkage 244.792 398.15 459.529

SOM 363.453 530.635 623.169

Table IV

Comparisons of our method (FCGA) with other methods
including single-linkage, complete-linkage, average-linkage [2],
and self-organizing map (SOM) [20], on two gene expression
data sets based on score2(π).

Cell cycle cdc15 Cell cycle

FCGA 521 627

Single-linkage 251 336

complete-linkage 498 598

average-linkage 500 581

SOM 461 578

4.3 VISUALIZED RESULTS

To further understand the efficiency of our approach,
we show the results by a visualized graph. Fig.4 is the
gene expressions of the cell cycle cdc15 data [28] whose
gene order is reordered by 1) original (random
permutation) and 2) FCGA. For each gene in the figure,
the expression profiles are represented as lines of color
boxes and each box corresponding to one experiment.
Comparing to the original data (random permutation),
genes with similar expression profiles are grouped
together by using FCGA. Some genes are not connected
to their groups because: 1) the global minimization forces
some genes to separate from their original group; 2) the
missing values and the distance metric affect the overall
ordering of genes. (more data results are available at
http://bioinfo.csie.ntu.edu.tw/~survivor/ordering.)

(1)original (2)FCGA

Figure 4. The visualized gene expressions results. This figure
shows the gene order of the cell cycle cdc15 data whose gene
order is 1) original (random permutation) and 2) reordered by
FCGA. For each gene, the expression profiles are represented as
lines of color boxes and each box corresponding to one
experiment. As we can see, (2) is more organized and most
neighbor genes in the order have similar expression profiles.

5 CONCLUSION

This study presents that FCGA has successfully
applied to solve the problem of displaying the microarray
data in an optimal order. FCGA keeps the population
diversity via the family competition and efficiently search

the solution space via incorporating EAX crossover and
NJ mutation. Experiments of the TSPs verify that the
proposed approach is very comparative with other
evolutionary algorithms. Using FCGA on the biological
data can recover the correct cell cycle and group similar
genes in an optimal order. We believe that the flexibility
and robustness of the FCGA make it an effective tool of
analyzing microarray data.

In the future, we will: 1) test more biological data set
to reveal new biological facts; 2) use different distance
metrics to produce better results; and 3) investigate
different objective functions for nonparametric clustering
via FCGA.

References

[1]. Biedl, T., Brejova, B., Demaine, E. D., Hamel, A. M.,
and Vinai, T., “Optimal Arrangement of leaves in the
tree representing hierarchical clustering of gene
expression data,” Technical report, Nov. 2001.

[2]. Eisen, M. B., Spellman, P. T., Brown, P. O., and
Botstein, D., “Cluster analysis and display of
genome-wide expression patterns,” Proc. Natl.
Acad. Sci., pp. 14863–14868, 1998.

[3]. Alizadeh, A. A., Eisen, M. B., et al., “Distinct types
of diffuse large B-cell lymphoma identified by gene
expression profiling,” Nature, 403(6769), pp. 503-
511, 2000.

[4]. Kawasaki, S., Borchert, C., et al., “Gene expression
profiles during the initial phase of salt stress in
rice,” Plant Cell, 13(4), pp. 889-906, 2001.

[5]. Khodursky, A. B., Peter, B. J., et al., “DNA
microarray analysis of gene expression in response
to physiological and genetic changes that affect
tryptophan metabolism in Escherichia coli,” Proc.
Natl. Acad. Sci., pp. 12170-12175, 2000.

[6]. Schaffer, R., Landgraf, J., et al., “Microarray
Analysis of Diurnal and Circadian-Regulated Genes
in Arabidopsis,” Plant Cell, 13(1), pp. 113-123,
2001.

[7]. Bar-Joseph, Ziv., Gifford, D. K., and Jaakkola, T. S.,
“Fast optimal leaf ordering for hierarchical clustering,”
Bioinformatics, vol. 17, suppl. 1, pp. s22-29, 2001,
http://www.psrg.lcs.mit.edu/clustering/ismb01/optimal
.html.

[8]. Herrero, J., Valencia, A., and Dopazo, J., “A
hierarchical unsupervised growing neural network
for clustering gene expression patterns,”
Bioinformatics, vol. 17, pp. 126-136, 2001.

[9]. Goldberg, D. E., Genetic algorithms in search,
optimization & machine learning. Reading, MA:
Addison-Wesley, 1989.

[10]. Chu, P. C. “A Genetic Algorithm for the
Multidimensional Knapsack Problem,” Journal of
Heuristics, vol. 4, pp. 63-86,1998.

[11]. Dandekar, T. and Argos, P., “Folding the main
chain of small proteins with the genetic algorithm,”
J. Mol. Biol., vol. 236, pp. 844- 861, 1994.

[12]. Nagata, Y. and Kobayashi, S., “Edge assembly
crossover: A high-power genetic algorithm for the
traveling salesman problem,” in Proceeding of the
seventh international Conference on Genetic
Algorithms (ICGA), 1997, pp. 450-457.

[13]. Yang, J. M. and Kao, C.Y. “A Family competition
evolutionary algorithm for automated docking of
flexible ligands to Proteins,” IEEE Trans. on
Information Technology in Biomedicine, vol. 4, no.
3, pp. 225-237, 2000.

[14]. Yang, J. M., Horng, J.T, Lin, C. J., and Kao, C.Y.
“Optical coating designs using an evolutionary
algorithm,” Evolutionary Computation, vol. 9, no.4,
pp. 421-443, 2001.

[15]. Tsai, H. K., Yang, J. M., and Kao, C. Y. (2001) “A
genetic algorithm for traveling salesman problems,”
Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO 2001), pp.687-
693.

[16]. Tsai, H. K., Yang, J. M., and Kao, C. Y., “Solving
Traveling Salesman Problems by Combining Global
and Local Search Mechanisms,” Proceedings of the
Congress on Evolutionary Computation (CEC),
2002, to appear.

[17]. Dorigo, M. and Gambardella, L. M. (1997) “Ant
colony system: A cooperative learning approach to
the traveling salesman problem,” IEEE Trans. on
Evolutionary Computation, vol.1, no.1, pp53-66.

[18]. Freisleben, B. and Merz, P. (1996) “New genetic
local search operators for the traveling salesman
problem,” In Parallel Problem Solving from Nature
IV, Springer-Verlag, pp. 890-899.

[19]. Jung, S. and Moon B. R. (2000) “The nature
crossover for the 2D Euclidean TSP,” Genetic and
Evolutionary Computation Conference (GECCO
2000), pp. 1003-1010.

[20]. Tamato,P., Slonim, D., Mesirov, J., Zhu, Q.,
Kitareewan, S., Dmitrovsky, E., LANDER, E. S.,
and GOLUB., T. R., “Interpreting patterns of gene
expression with self-organizing maps: methods and
application to hematopoietic differentiation,” Proc.
Natl. Acad. Sci., vol 96, pp. 2907-2912, 1999.

[21]. Amir, B. D., Ron, S., and Zohar, Y. “Clustering
Gene Expression Patterns,” journal of
computational biology, vol. 6, pp. 281-297, 1999.

[22]. Garey, M. R. and Johnson, D. S., “Computers and
Intractability: A Guide to the Theory of NP-
Completeness,” Freeman, 1979.

[23]. Watson, J., Ross, C., Eisele, V., Denton, J., Bins, J.,
Guerra, C., Whitely, D., and Howe, A. (1998) “The
traveling salesrep problem, edge assembly crossover,
and 2-opt,” In Parallel Problem Solving from
Nature V, A. E. Eiben et al, eds. Springer-Verlag,
pp.823-832.

[24]. Nagata, Y. and Kobayashi, S. (1999) “An analysis of
edge assembly crossover for the traveling salesman
problem,” IEEE International Conference on
Systems Man and Cybernetics, pp. 628-633.

[25]. Tao, G. and Michalewicz, Z. (1998) ”Inver-over
Operator for the TSP,” In Parallel Problem Solving
from Nature V, Springer-Verlag, pp.803-812.

[26]. Padberg, M. and Rinaldi, G. (1987) “Optimization of
a 532-city symmetric traveling salesman problem by
branch and cut,” Operation Research Letters, vol. 6,
pp.1-7.

[27]. Lin, S. and Kernighan B. (1973) “An effective
heuristic algorithms for the traveling salesman
problem,” Operations Research, Vol.21, pp.498-516.

[28]. Spellman, T. S., Sherlock, G., & et al.,
“Comprehensive identification of cell cycle-regulated
genes of the yeast saccharomyces cerevisia by
microarray hybridization,” Mol. Biol. of the Cell, vol.
9, pp. 3273-3297, 1998.

