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Abstract

In this paper, we present a new algorithm —
an Enhanced Annealing Genetic Algorithm
for Multi-Objective Optimization problems
(MOPs). The algorithm tackles the MOPs
by a new quantitative measurement of the
Pareto front coverage quality — Coverage
Quotient. We then correspondingly design
an energy function, a fitness function and
a hybridization framework, and manage to
achieve both satisfactory results and guaran-
teed convergence.

1 Introduction

Many real world decision-making problems involve si-
multaneous optimization of several incommensurable
and often competing objectives. Usually, there is no
single optimal solution, but rather a set of alterna-
tive solutions. These solutions are known as Pareto-
optimal solutions, to which no other solutions in the
search space are superior in all the objectives.

Often, for a multi-objective optimization problem
(MOP), a full perception of all the Pareto-optimal so-
lutions would be highly desirable (even imperative) to
the decision-makers so that a comprehensive and high
quality decision can be made. To achieve this, a prac-
tical algorithm should have the capability of simul-
taneously searching a set of Pareto-optimal solutions.
Among various candidates, Evolutionary Algorithms
(EAs) are particularly suitable for this purpose.

In this paper, we present a new algorithm — an
Enhanced Annealing Genetic Algorithm (eAGA) for
MOPs. The algorithm tackles the MOPs by introduc-
ing a quantitative measurement of the Pareto front
coverage quality — Coverage Quotient (CQ). Based on
CQ we can derive the energy function in the Simulated

Annealing Algorithm (SAA) and the fitness function
in the Genetic Algorithm (GA). In the algorithm, a
population is interpreted as a state in the search space.
The proposed algorithm explores the search space from
state to state by means of genetic operations (selection,
crossover, and mutation) and converges to a minimal
energy state containing only Pareto optima. Both sat-
isfactory results and guaranteed convergence can be
achieved with the eAGA.

The paper is organized as follows: Section 2 gives
a brief introduction to multi-objective optimization
problems and an overview of the EA implementation.
Our algorithm is detailed in section 3, followed by the
theoretical analysis in section 4. The simulation re-
sults are presented in section 5. The last section is the
conclusion and the future work.

2 Background

In this section, the basic concepts of multi-objective
optimization problems are introduced. A brief survey
of EAs implementation in MOPs and their strength
and weakness are briefed as the motivation of our al-
gorithm.

2.1 Multi-objective Optimization

A general multi-objective optimization problem is to
optimize a set of objectives subject to some constrains.
Mathematically, a MOP may be stated as in (Rao,
1991):

Min/Max fi(x) i = 1, 2, ..., N
Subject to gj(x) ≤ 0 j = 1, 2, ..., J

hk(x) = 0 k = 1, 2, ..., K

where alternative x is a p-dimensional vector having
p design or decision variables, fi(x) (i = 1, 2, ..., N)
are the objective functions, and gj(x) (j = 1, 2, , ..., J)
and hk(x) (k = 1, 2, ...,K) are the constraint functions.



Solutions to the MOP are mathematically character-
ized in terms of the non-dominated alternatives. Let
F (x) = (f1(x), f2(x), ..., fN (x)) represent the objec-
tive vector. In a minimization problem, for instance,
alternative x(1) is said to be partially less than alter-
native x(2) (denoted by x(1) ≺ x(2)), if no component
of F (x(2)) is less than that of F (x(1)) and there is at
least one component of F (x(2)) is strictly greater than
that of F (x(1)). If x(1) is partially less than x(2), alter-
native x(1) is said to dominate x(2). Any alternative
that is not dominated by others is said to be a non-
dominated point. Any non-dominated points associ-
ated with the MOP are called optimal solutions (more
precisely, Pareto-optimal solutions or non-dominated
solutions) of the MOP. Usually, the image of all Pareto
optimal solutions in objective space is called the Pareto
front.

2.2 Multi-objective Evolutionary Algorithms

According to Zitzler (Zitzler, 1998), the current EA
implementation can be categorized as plain aggre-
gation approaches, population-based non-Pareto ap-
proaches and Pareto-based approaches.

Plain aggregation approaches combine the objectives
into a higher scalar function which is used for fitness
calculation; they produce one single solution and re-
quire profound domain knowledge which is often not
available. Population-based non-Pareto approaches,
however, are able to evolve multiple non-dominated
solutions in parallel; thereby, the population is mostly
monitored for Pareto optima. However in contrast to
the Pareto-based approaches, they do not make di-
rect use of the concept of Pareto dominance. Such
designed algorithms are effective to some extent, but
they usually suffer from prematuring to some special
areas (Schaffer, 1985). Pareto-based EAs compare so-
lutions according to the ≺ relation in order to deter-
mine the reproduction probability of each individual.
This strategy can meet our requirement well. Nev-
ertheless identifying the ≺ relation among individu-
als usually brings higher running time consumption
(Srinivas, 1994).

More comprehensive overviews of EAs in MOPs can
be found in (Zitzler, 1999) (Carlos, 1999),

3 The Enhanced Annealing Genetic
Algorithm

In this section, we present the new algorithm — an
Enhanced Annealing Genetic Algorithm (eAGA) for
MOPs. As most of non-dominated sorting GAs, we
design our algorithm based on two considerations: 1)

the non-dominance of solutions, and 2) the coverage
of the Pareto front.

As suggested by its name, the new algorithm is a
hybridization of the Simulated Annealing Algorithm
(SAA) (Laarhoren, 1989) and the Genetic Algorithm
(GA) (Goldberg, 1989). The algorithm tackles the
MOPs by introducing a quantitative measurement of
the Pareto front coverage quality — Coverage Quo-
tient (CQ). The energy function in SAA and the fit-
ness function in GA are derived from this measurement
correspondingly. In the algorithm, a population is in-
terpreted as a state in the search space. The neighbor-
hood relationship between states is defined in terms of
their individual discrepancy. The proposed algorithm
explores the search space from state to state by means
of genetic operations (selection, crossover, and muta-
tion). Ultimately, the exploration converges to a min-
imal energy state which can be proved to contain only
Pareto optima. The details are given in the following
subsections.

3.1 Uniform Expression of Population

For clarity and simplicity, we define an alternative rep-
resentation of populations. In this representation, all
populations that differ from each other only in the
order of individuals are treated as the same and ex-
pressed in a unique format.

Suppose the individuals are all expressed as L bits bi-
nary strings. Then the individual space is given by
{0, 1}L and can be isomorphic to the finite-state space:

{0, 1, · · · , i, · · · , 2L − 1}

where i (0 ≤ i ≤ 2L − 1) is the index of indi-
viduals (Reeves, 1993). From this point of view, a
population Φ with size n can then be represented as
Φ = (φ0 φ1 · · · φi · · · φ2L−1) where φi is the number
of times of individual i appearing in the population Φ.
It is clear that there are at most n nonzero elements

in Φ and
2L−1∑
i=0

φi = n.

The set consisting of all the populations with size
n is denoted as Sn. Each population is interpreted
as a state in Sn. The neighbors of a state Φ =

(φ0 φ1 · · · φ2L−1) are defined as all the populations

Φ′ = (φ′0 φ
′
1 · · · φ′2L−1) which satisfy:

2L−1∑
i=0

|φi−φ′i| = 2.

All the neighbors of Φ are denoted as N(Φ).



3.2 The Pareto Front Coverage Quality
Measurement

The Coverage Quotient (CQ) gives a quantitative mea-
surement of the Pareto front coverage quality. It is
based on the idea that a good coverage of the Pareto
front by a population Φ should minimize the potential
that a non-Pareto point is wrongly judged as a Pareto
point when compared against Φ. The formal definition
is given as follows:

Definition. 1: Given F is a MOP and N is the number
of objectives:.

• Let Pmini, Pmaxi be the minimum and maximum of
all the Pareto points in objective i (1 ≤ i ≤ N), the
hyper-cube

U = [Pmin1, Pmax1] × ... × [PminN , PmaxN ],

which contains all the Pareto points, is defined as P-
Cube of F .

• Given a population Φ = {d1, d2, ..., dn},

D(di) = [F (di)1,∞]× ... × [F (di)N ,∞], and
Dn(Φ) = D(d1) ∪D(d2) ∪ ... ∪D(dn)

(1)
are defined as the dominating region of individual di
(1 ≤ i ≤ n) and dominating region of population Φ
respectively.

• The Coverage Quotient (CQ) of Φ is defined as

CQ(Φ) = |U | − |U ∩Dn(Φ)|. (2)

• The population Φ is said to be an optimal coverage of
the Pareto front if

CQ(Φ) = min
Φ′
{CQ(Φ′)| Φ′ ∈ Sn}.

Figure 1: The Coverage Quotient in 3 cases: (a) evenly

distributed Pareto points, (b) crowded Pareto points, and

(c) non-Pareto points

A graphic illustration of Def.1 is given in Figure 1.
Assuming the curve is the Pareto front, the shadowed
regions represent the Coverage Quotient in 3 cases re-
spectively.

In Def.1, when we identify an individual’s non-
dominance by comparing it with population Φ, it can
be correctly justified only if it is located inside Dn(Φ).

Thus we can reduce the risk of misjudgment by max-
imizing the dominating region Dn(Φ) or equivalently,
minimizing the Coverage Quotient CQ(Φ). However,
a direct calculation of CQ from Formulas (1) and (2) is
difficult for high dimension objectives. Thus in Def.2,
an alternative definition of the Coverage Quotient is
presented:

Definition 2: Given F , N , Φ, U and D(·) as in Def.1:

• Let P (Φ) = {d1, d2, .., dnp} ⊂ Φ (np ≤ n) be all the
individuals which satisfy;

1. di 6= dj ( 1 ≤ i, j ≤ np);

2. ∀ di ∈ P (Φ), 6 ∃ dj ∈ Φ, s.t. dj ≺ di
(1 ≤ i ≤ np, 1 ≤ j ≤ n).

The Coverage Quotient (CQ) of Φ is defined as

CQ(Φ) = −
∑

di 6=dj∈P (Φ)

|(D(di) ∪D(dj)) ∩ U |.

In Def.2, the calculation of CQ just needs n2 running
time complexity. Meanwhile, with such defined CQ,
the proposed algorithm can be guaranteed to converge
to a population consisting of only distinct Pareto in-
dividuals as proved in section 4.

Correspondingly, we define the energy function of a
state Φ as:

E(Φ) = CQ(Φ),

and the fitness function of an individual di ∈ Φ (1 ≤
i ≤ n) as:

fit(di,Φ) = e
CQ(Φ\di)−MinCQ(Φ)

MaxCQ(Φ)−MinCQ(Φ) ,

in which:

MinCQ(Φ) = min
d∈Φ
{CQ(Φ\d)}

MaxCQ(Φ) = max
d∈Φ
{CQ(Φ\d)}

3.3 State Transformation (ST) Operation

In the eAGA, the ST operation is the primary search
technique. A GA-like evolutionary process is adopted
to form the backbone of the ST operation. Further-
more, an additional acceptance procedure is employed
to guarantee the global convergence of our algorithm.
The framework of this operation is given as follows:
For a population Φ = {φ0 φ1.......... φ2L−1}:

1. Perform Roulette selection on Φ to choose two indi-
viduals d1 and d2 as the parents.

2. Perform crossover and mutation on d1 and d2 to pro-
duce two children d′1 and d′2.



3. Randomly select a parent d ∈ {d1, d2} and a child
d′ ∈ {d′1, d′2}.

4. Replace d in Φ with d′ to form a new population Φ′.

5. Accept Φ′ to be the new state at probability

min{1, P (d,Φ′)
P (d′,Φ)}

in which, P (k,Φ) is the probability at which individual
k (k ∈ {0, 2L − 1}) is produced by performing selec-
tion, crossover, and mutation on population Φ. It is
calculated as follows:

Given the indices of the nonzero elements in Φ are

0 ≤ p1 < p2 < p3 < ....pn′ ≤ 2L − 1 (n′ ≤ n),

then
P (k,Φ) = F̃ T (Φ)R̃(k)F̃ (Φ), (3)

where F̃ (Φ) = (F̃0(Φ), ..., F̃n′(Φ)) ∈ Rn′ with

F̃i(Φ) =
fit(pi,Φ)φpi

n′∑
j=1

fit(pj ,Φ)φpj

i = 1, ..., n′. (4)

and R̃(k) = (R̃(k)i,j) = (rpi,pj (k)) ∈ Rn′×n′ .
ri,j(k) (i, j = p1, . . . , pn′) is the probability at which
individual k is produced from the crossover and mu-
tation of the individuals i and j. It is computed by
means of the transformation:

ri,j(k) = ri⊕k,j⊕k(0) (5)

and

ri,j(0) = 1
2

L∑
k=0

Rc
L+1 ((1−Rm)L−H(m1(i,j,k))R

H(m1(i,j,k))
m

+(1−Rm)L−H(m2(i,j,k))R
H(m2(i,j,k))
m )

+ 1
2 (1−Rc)((1−Rm)L−H(i)R

H(i)
m

+(1−Rm)L−H(j)R
H(j)
m )

where

m1(i, j, k) = i ⊗ (2k − 1)⊕ j ⊗ (2k − 1),

m2(i, j, k) = i ⊗ (2k − 1)⊕ j ⊗ (2k − 1), 0 ≤ k ≤ L,

with Rc being the crossover rate; Rm being the muta-
tion rate; ⊕ being the exclusive-or operator; ⊗ being
the logical-and operator; − being the inverse opera-
tor; and H(m) being the Hamming distance between
individuals m and 0 (Vose, 1991) (Vose, 1995).

3.4 P-Cube Approximation

Notice that identifying P-Cube requires pre-knowledge
of all the Pareto optima, which is usually unavailable
in most cases. In the eAGA, a dynamic estimation ap-
proach is adopted which can approximate the P-Cube

as the algorithm proceeds. In the algorithm, two ar-
rays Bmini and Bmaxi and 2N binary strings Imini
and Imaxi (1 ≤ i ≤ N) are maintained. The Bmini
and Bmaxi record the minimal and maximal values in
the ith objective of all the Pareto points ever found
and the Imini and Imaxi (1 ≤ i ≤ N) record the in-
dividuals which attain Bmini and Bmaxi in the ith
objective respectively. For Imini/Imaxi, it is replaced
by a new Pareto point d iff

• d ≺ Imini/Imaxi; or

• d and Imini/Imaxi are non-dominated to each
other, but F (d)i < Bmini/F (d)i > Bmaxi.

(Note: / denotes or).
Once an Imini/Imaxi is modified, Bmax and Bmin
must be updated correspondingly by:

Bmini = min {F (Imink)i, F (Imaxk)i| k = 1, ..., N}
Bmaxi = max {F (Imink)i, F (Imaxk)i| k = 1, ..., N}

(1 ≤ i ≤ N.)
(6)

It is proved in section 4 that this estimation can ap-
proximate and eventually converge to the P-Cube as
the algorithm progresses.

3.5 Algorithm Framework

The overall framework of our algorithm is given as
follows:

1. Initialization

1.1 Select an initial population Φ

1.2 Select an initial temperature T

1.3 Select an annealing function S(T ) = α · T
1.4 Perform non-dominated sorting on Φ and fill the

Bmin, Bmax, Imin and Imax

2. State Transformation

2.1 Perform Roulette selection on Φ to choose two
individuals d1 and d2 as the parents.

2.2 Perform crossover and mutation on d1 and d2 to
produce two children d′1 and d′2.

2.3 Randomly select a parent d ∈ {d1, d2} and a child
d′ ∈ {d′1, d′2}.

2.4 Replace d in Φ with d′ to form a new population
Φ′.

2.5 Update the Bmin, Bmax, Imin and Imax with
individual d′.

2.6 Accept Φ′ to be the new state at probability

min(1,
P (d,Φ′)

P (d′,Φ)
) min{1, eE(Φ)−E(Φ′)

T
}

2.7 If Φ′ is accepted, then Φ := Φ′,

3. T := S(T )



4. If stop criterion is not met, then goto 2.1

5. Exit.

Note: α is an annealing parameter which satisfies 0 <
α < 1.

4 Convergence Analysis

In this section, the theoretical analysis of the proposed
algorithm is presented.

Lemma 1: For MOP F , suppose Bmingi and
Bmaxgi (1 ≤ i ≤ N) are minimal and maximal val-
ues of all Pareto points in the ith objective; Imingi
and Imaxgi ∈ {0, 1}L (1 ≤ i ≤ N) are the individu-
als which attain Bmingi and Bmaxgi in the ith objec-
tive respectively. Given mutation rate Rm is nonzero,
the estimations Bmini and Bmaxi will converge to
Bmingi and Bmaxgi (1 ≤ i ≤ N) as the algorithm
progresses.

Proof: We prove the Lemma in two steps:

1. We will prove that Imingi (1 ≤ i ≤ N) will be found
as the algorithm proceeds. Let pni be the probability
that Imingi is not found in iteration n. It is obvious

that pni ≤ 1−RLm < 1. Then the probability P ni that
Imingi (1 ≤ i ≤ N) is not found in the first n iteration
is:

Pni =

n∏

j=1

pji < (1−Rm)n −→ 0 (n→∞).

2. We will prove that once an Imingi (1 ≤ i ≤ N) is
found, it cannot be replaced by other individuals.
Suppose Imingi is found, then an individual d will
replace it iff

Case 1: d ≺ Imingi ; or

Case 2: d and Imingi are non-dominated to each
other, but F (d)i < Bmingi .

Because Imini is a Pareto point, Case 1) would not
happen. If Case 2) happens, this means that there
exists another non-dominated individual d′ satisfies:
F (d′)i < Bmingi which contradicts with the assump-
tion.

The Imaxgi (1 ≤ i ≤ N) case can be proved in the same
way.

Combining 1, 2 and Formula (6), we finish the proof of

Lemma 1.

Lemma 2: Given population Φ = {d1, d2, ..., dn} is
the optimal coverage in Def.1, then di (1 ≤ i ≤ n) are
all Pareto individuals. (Suppose there exist more than
n Pareto individuals).

Proof: (By contradiction). Suppose dk (1 ≤ k ≤ n) is not
a Pareto individual. Then there exists a Pareto individual
d which dominates dk.

1. If d ∈ Φ, then replace dk with a Pareto individual
d′ 6∈ Φ to form a new population Φ′. It is easy to see
that:

E(Φ) > E(Φ′),

which contradicts with the definition of optimal cov-
erage.

2. If d 6∈ Φ, then replace dk with d to form a new popu-
lation Φ′. It is the same as in 1 that:

E(Φ) > E(Φ′),

which contradicts with the definition of optimal cov-
erage.

This finishes our proof of Lemma 2.

Lemma 3: Given population Φ = {d1, d2, ..., dn} is
the optimal coverage in Def.2, then di (1 ≤ i ≤ n) are
all distinct Pareto individuals. (Suppose there exist
more than n Pareto individuals).

Proof: The proof of Lemma 3 is similar to that of Lemma

2 with minor modification.

Theorem : As T→ 0, the eAGA converges to a pop-
ulation consisting of only distinct Pareto individuals.

Proof: It is clear that for any fixed temperature T, as the
population evolves, the eAGA defines a homogeneous finite
state population Markov chain. Let M be the number of
total populations. Then the probability transition matrix
of the Markov chain can be expressed as (Iosifescu, 1980):
For states Φi and Φj ,

Pi,j(T ) =





Gi,j(T )Ai,j(T ) j 6= i

1−
M∑

l=1,l6=i
Gi,l(T )Ai,l(T ) j = i . (7)

Here

Gi,j(T ) =

{
P (Φi,Φj)min{1, P (d,Φi)

P (d′,Φj)} Φj ∈ N(Φi)

0 otherwise.
(8)

and Ai,j(T ) = min{1, e(
E(Φi)−E(Φj )

T
)}, (9)

in which: d ∈ Φj and d 6∈ Φi; d′ ∈ Φi and d′ 6∈ Φj .

From Formula 8, we can see that Gi,j(T ) = Gj,i(T ).

From Formula 9, it follows that whenever E(Φi) ≤
E(Φj) ≤ E(Φk),

Ai,k(T ) = min{1, e(
E(Φi)−E(Φk)

T
)} = Ai,j(T )Aj,k(T )

and whenever E(Φi) ≤ E(Φj), 0 ≤ Ai,j(T ) ≤ 1 and

lim
T→0

e(
E(Φi)−E(Φj )

T
) = 0.



Accordingly, lim
T→0

Ai,j(T ) = 0. By the Folklore’s lemma

(Laarhoren, 1989), the stationary distribution q(T ) of the
Markov chain exists and satisfies

lim
T→0

qi(T ) =
1

|Sopt|
χSopt(i), (10)

in which Sopt = {Φ|E(Φ) attains the minimum}, and

χSopt(i) =

{
1 i ∈ Sopt
0 otherwise.

from Formula 10, lim
T→0

Φ(T ) ∈ Sopt follows.

This finishes the proof of the Theorem.

5 Simulation

In this section, we show the effectiveness and efficiency
of the eAGA in a set of simulations. The test problems
are given as follows:

Min. T1(x) = (f1(x), f2(x))
f1(x) = 1 − exp(−

∑n

i=1
(xi − 1√

n
)2)

f1(x) = 1 − exp(−
∑n

i=1
(xi + 1√

n
)2)

where −4 ≤ xi ≤ 4, n = 3

Min. T2(x) = (f1(x), f2(x))
f1(x) = x1

f2(x) = g(x)h(f1(x), g(x))
g(x) = 1 + 9 ×

∑n

i=2
xi/(n − 1)

h(f1, g) = 1 −
√
f1/g

where 0 ≤ xi ≤ 1, n = 30

Min. T3(x) = (f1(x), f2(x))
f1(x) = x1

f2(x) = g(x)h(f1(x), g(x))
g(x) = 1 + 9 ×

∑n

i=2
xi/(n − 1)

h(f1, g) = 1 − (f1/g)2

where 0 ≤ xi ≤ 1, n = 30

Min. T4(x) = (f1(x), f2(x))
f1(x) = x1

f2(x) = g(x)h(f1(x), g(x))
g(x) = 1 + 9 ×

∑n

i=2
xi/(n − 1)

h(f1, g) = 1 −
√
f1/g − (f1/g) sin(10πfi)

where 0 ≤ xi ≤ 1, n = 30

The simulations are carried out to verify: 1) the
efficiency of the eAGA, and 2) the effectiveness of
the Coverage Quotient in both definitions. For these
purposes, the execution results of eAGA-I, eAGA-II,
SPEA (Zitzler, 1999) and NSGA (Srinivas, 1994) are
compared in terms of: 1) the non-dominance of result-
ing solutions, and 2) the coverage of the Pareto front,
which are two main considerations in most of the cur-
rent EA-based MOP algorithms. (Note: eAGA-I and
eAGA-II are abbreviations for the eAGA with CQ de-
fined by Def.1 and Def.2 respectively).

To make the comparisons fair, the algorithms are ex-
ecuted 30 times on each of the test problems. In each
run, all algorithms begin from the same initial pop-
ulation. The final results are taken as the average of
these 30 runs. All algorithms are executed for the same
length of time.

Independent of the algorithms and the test problems,
each simulation is carried out using the following pa-
rameters:

Population size : 100
Crossover rate : 0.8
Mutation rate : 0.01
Individual length : 12
Niching parameters σshare : 0.48862
Elitist population size : 100

Particularly, in the eAGA we take:

Initial Temperature T : 1000
Annealing Parameter α : 0.97

In Figures 2 to 5, the Pareto fronts achieved by the
different algorithms are displayed.
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Figure 2: Test function T1
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Figure 3: Test function T2
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Figure 4: Test function T3
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Figure 5: Test function T4

(1): eAGA-I (2): eAGA-II (3): SPEA (4): NSGA

It can be observed from the figures that eAGA-I has
the best performance in all the four test problems.
In T2, T3, and T4, eAGA-II can yield similar per-
formance as eAGA-I. However, in T1, SPEA slightly
outperforms eAGA-II which misses some Pareto op-
tima close to the boundaries.

In measuring the non-dominance of results, we adopt
a quantitative metric, C metric, presented in (Zitzler,
1999). To identify the non-dominance of a solution,
we need to compare it with all the other individuals in
the search space. This is definitely unrealistic. Thus,
instead of identifying the absolute non-dominance of
a solution, C metric compares the non-dominance re-
lationship between the outcomes of two algorithms.
Given a pair of algorithms A1 and A2, C metric es-
timates the non-dominance of A1 by calculating the
percentage of the solutions of A1 which are dominated
by those of A2. Mathematically, C metric is defined
as follows:

Let X ′, X ′′ ⊆ X be two sets of decision vectors.
The function C maps the ordered pair (X ′, X ′′)

to the interval [0,1]:

C(X ′, X ′′) =
|{a′′ ∈ X ′′; ∃a′ ∈ X ′ : a′ ≺ a′′}|

|X ′′| .

The value C(X ′, X ′′) = 1 means that all solutions in
X ′′ are dominated by or equal to solutions in X ′. The
opposite, C(X ′, X ′′) = 0 represents the situation that
none of the solutions in X ′′ are covered by the set X ′.
Note that both C(X ′, X ′′) and C(X ′′, X ′) have to be
considered, since C(X ′, X ′′) is not necessarily equal to
1-C(X ′′, X ′).

The comparison results of C metric are given in Ta-
ble 1. For each ordered algorithm pair, there are 30
C values according to the 30 runs performed. Each C
value is computed on the basis of the non-dominated
sets achieved by the pair of algorithms with the same
initial population. The final result is taken as the av-
erage of these 30 C values.

Table 1: Comparison of C(X ′, X ′′) and C(X ′′, X ′), in
which X ′′ is the outcomes of eAGA-I and X ′ is the

outcomes of eAGA-II, SPEA, and NSGA respectively.

C(x′, x′′) T1 T2 T3 T4
eAGA-II 0.1791 0.3492 0.2646 0.4751

SPEA 0.2388 0.1384 0.4101 0.2214
NSGA 0.1194 0.0776 0.1124 0.1041

C(x′′, x′) T1 T2 T3 T4
eAGA-II 0.3024 0.7152 0.5490 0.6964

SPEA 0.2928 0.8412 0.4483 0.7108
NSGA 0.7137 0.9927 0.8334 0.9174

In measuring the coverage of the Pareto front, we
adopted the metric presented by (Deb, 2000). This
metric is based on the consecutive distances among
the non-dominated solutions. The non-dominated so-
lutions are compared with a uniform distribution and
the deviation is computed as follows: Given a set of
non-dominated solutions P ,

∆ =

|P |∑

i=1

|di − d|
|P | ,

in which, di is the Euclidean distance between two
consecutive solutions in P in the phenotype space and
d is the average of all the dis. In order to ensure that
this calculation takes into account of the spread of so-
lutions in the entire region of the Pareto front, the
boundary solutions are included in P . In our imple-
mentation, the boundary solutions are the individuals
which attend minimum in at least one objective func-
tion.



The deviation measure ∆ of these consecutive dis-
tances is then calculated for each run. An average of
these deviations over 30 runs is calculated as the mea-
sure (∆) for comparing different algorithms. Thus, it
is clear that an algorithm having a smaller (∆) is bet-
ter, in terms of its ability to widely and evenly spread
solutions in the Pareto front.

Table 2 shows the average deviation, (∆) in all the test
problems.

Table 2: Comparison of average deviation ∆ obtained
using eAGA-I, eAGA-II, SPEA, and NSGA.

T1 T2 T3 T4
eAGA-I 0.0064 0.0175 0.0093 0.0222
eAGA-II 0.0072 0.0211 0.0101 0.0338

SPEA 0.0069 0.0261 0.0144 0.0482
NSGA 0.0174 0.0318 0.0295 0.0765

The quantitative comparison in Tables 1 and 2 con-
forms with our observation in Figures 2 to 5. In all
the four test problems, eAGA-I is observed to have the
best performance in both the non-dominance of solu-
tions and the coverage of the Pareto front. In T2 and
T4, the results of eAGA-I can cover more than 70%
of those of SPEA. Nevertheless, the results of SPEA
can only cover less than 23% of the those of eAGA-
I. Similar performances are yielded by eAGA-I and
SPEA in T2 and T3. But the results of eAGA-I have
much more even distribution along the Pareto front as
shown in Table 2. As eAGA-II, in T2 and T3, eAGA-I
outperforms it by covering more than 53% of its re-
sults. Meanwhile, it can only cover less than 35% of
those of eAGA-I. In T1 and T4, eAGA-I still has bet-
ter performance, even the superiority is not so remark-
able. In measuring the coverage of the Pareto front,
eAGA-I and eAGA-II outperform SPEA and NSGA
in most of the cases. However, in T1 and T4, eAGA-
II fails to find the Pareto optima in the regions near
the boundaries. We believe that this failure is caused
by the limitation of Def.2 which assigns less reproduc-
tion potential to the individuals in these regions. We
acknowledge the existence of such limitation and will
focus our attention to improve this weakness in the
future work.

6 Conclusion

In this paper, we have presented an Enhanced Anneal-
ing Genetic Algorithm (eAGA) for Multi-Objective
optimization problems. We have also proved its con-
vergence. On four difficult test problems borrowed
from the literatures, it is found that the proposed
eAGA-I and eAGA-II outperform SPEA and NSGA

— two well known multi-objective EAs in the explicit
goals of the non-dominance of the solutions and the
coverage of the Pareto front. With the properties of
high effectiveness and superior performance, the eAGA
should find increasing attention and applications in the
near future.
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