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Abstract 
 
 
In real-world multi-objective problems, the 
evaluation of objective functions usually requires 
a large amount of computation time. Moreover, 
due to the curse of dimensionality, solving multi-
objective problems often requires much longer 
computation time than solving single-objective 
problems. Therefore, it is essential to develop ef-
ficiency enhancement techniques for solving 
multi-objective problems. This paper investi-
gates fitness inheritance as a way to speed up 
multi-objective genetic and evolutionary algo-
rithms. Convergence and population-sizing mod-
els are derived and compared with experimental 
results in two cases: fitness inheritance without 
fitness sharing and fitness inheritance with fit-
ness sharing. Results show that the number of 
function evaluations can be reduced with the use 
of fitness inheritance. 

1 INTRODUCTION 
For many large-scale and real-world problems, the fitness 
evaluation in genetic and evolutionary algorithms may be 
a complex simulation, model or computation. Therefore, 
even this subquadratic number of function evaluations is 
rather high. This is especially the case in solving multi-
objective problems. It is not only because the number of 
the objectives to be evaluated is increased, but also the 
curse of dimensionality may increase the convergence 
time of genetic algorithms (GAs). As a result, it is benefi-
cial to utilize efficiency enhancement techniques (EETs) 
in multi-objective GAs. 
In practice EETs have improved the performance of GAs. 
Many real-world applications of GAs usually use EETs to 
improve the speed, ranged from parallel computing, dis-
tributed computing, domain-specific knowledge, or 

cheaper fitness functions. Recently, Sastry (2001) pro-
posed an analytical model for analyzing and predicting 
behavior of single-objective GAs with EETs. However, 
due to the popularity of multi-objective GAs, there is a 
need to investigate multi-objective GAs with EETs. In 
this paper, one EET called fitness inheritance is modeled 
and optimized for greatest speedup. In fitness inheritance, 
an offspring sometimes inherits a fitness value from its 
parents rather than through function evaluations. 
The objective of this paper is to model fitness inheritance 
and to employ this model in predicting the convergence 
time and population size required for the successful de-
sign of a multi-objective GA. This paper is organized in 
the following manner. Section 2 briefly reviews the past 
works on EETs and fitness sharing. Section 3 describes 
the bicriteria OneMax problem and fitness inheritance, 
and derives convergence-time and population-sizing 
models for multi-objective GAs with EETs, as well as the 
optimal proportion of inheritance, the speed-up. The ex-
perimental results on fitness inheritance with and without 
fitness sharing are presented in Section 4.  The paper is 
concluded in Section 5. 

2 BACKGROUND 
As background information, a brief review of the fitness 
inheritance literature is first presented. Then, a brief 
summary on how to incorporate fitness inheritance in 
multi-objective GAs is provided. Since fitness inheritance 
with and without fitness sharing will be discussed in this 
paper, section 2.2 presents a brief summary on fitness 
sharing. 

2.1 LITERATURE REVIEW 
Smith, Dike and Stegmann (1995) proposed two ways of 
inheriting fitness, one by taking the average fitness of the 
two parents and the other by taking a weighted average of 
the fitness of the two parents. Their results indicated that 
GAs with fitness inheritance outperformed those without 



inheritance in both the OneMax and an aircraft routing 
problem. However, theoretical analysis in this paper was 
limited to considering a flywheel effect that arises in the 
schema theorem. Zheng, Julstrom, and Cheng (1997) used 
fitness inheritance for the design of vector quantization 
codebooks. A recent study by Sastry (2001, 2001a) devel-
oped a theoretical framework for analyzing fitness inheri-
tance, and discussed how to determine the optimal pro-
portion of fitness inheritance and speed-up of using fit-
ness inheritance in single-objective GAs. However, until 
now, there is no study on using fitness inheritance for 
multi-objective GAs. 

2.2 FITNESS INHERITANCE 
In fitness inheritance, the fitness of all the individuals in 
the initial population are evaluated. Thereafter, the fitness 
of some proportion of individuals in the subsequent popu-
lation is inherited. This proportion is called the inheri-
tance proportion, pi.  The remaining individuals receive 
evaluated fitness. If none of the individuals receive inher-
ited fitness (pi = 0), all the individuals are evaluated as 
usual, then no speed-up will be obtained. On the other 
hand, if all the individuals receive inherited fitness (pi = 
1), it means that none of the individuals are evaluated. 
Thereafter, the fitness diversity in the population will 
vanish rapidly and the population will premature con-
verged, so that GAs will fail to search the global optimum. 
As a result, it is important to choose an optimal inheri-
tance proportion, so that maximum speed-up will be 
yielded. The flowchart of multi-objective GAs with fit-
ness inheritance is shown in figure 1. 

Figure 1: Fitness inheritance in multi-objective GAs. 
 
There are several different ways to inherit fitness (objec-
tive fitness values), such as weighted-sum. For a multi-
objective problem with z objective, fitness inheritance in 
multi-objective GAs can be defined as 
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where fz is the fitness value in objective z, w1, w2 are the 
weights for the two parents p1, p2, and fz,p1, fz,p2 is the 
fitness values of  p1, p2 in objective z, respectively. In 
practice, fitness inheritance can be performed on all the 
objectives or just several objectives. 
In this paper, we assume that all the objective receives 
inherited fitness from the parents, and the inherited fitness 
(objective values) is taken to be the average of the two 
parents. Therefore, w1 and w2  are set to 1.  

2.3 FITNESS SHARING REVISITED 
Most multi-objective problems have multiple Pareto-
optimal solutions. This usually causes difficulties to any 
optimization algorithm in finding the global optimum 
solutions. In prior GA literature, there have been many 
niching methods on how to promote and maintain popula-
tion diversity. Fitness sharing, proposed by Goldberg and 
Richardson (1987), may be the most widely used niching 
method in solving multi-modal and multi-objective prob-
lems.  The basic idea of fitness sharing is to degrade the 
fitness of similar solutions that causes population diver-
sity pressure. The shared fitness of an individual i is given 
by 
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where Fi is the fitness of the individual, and mi is the 
niche count, which defines the amount of overlap (sharing) 
of the individual i with the rest of the population. The 
niche count is calculated by summing a sharing function 
over all individuals of the population: 
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The distance di, j represents the distance between individ-
ual i and individual j in the population, determined by a 
similarity metric. The similarity metric can be based on 
either phenotype or genotype similarity. If the sharing 
function determines that the distance is within a fixed 
radius σsh, it returns a value, as equation (4).  
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The parameter α is usually set to 1. σsh is often conserva-
tively estimated.  

3 FITNESS INHERITANCE IN MULTI-
OBJECTIVE OPTIMIZATION 

In this section the bicriteria OneMax problem is extended 
from OneMax problem for analyzing multi-objective GAs 



with fitness inheritance. In this section, a brief summary 
of fitness inheritance is also presented.  

3.1 BICRITERIA ONEMAX PROBLEM 
The OneMax or bit-counting problem is well-known and 
well-studied in the context of GAs. The OneMax problem 
is a bit-counting problem where fitness value of each 
binary string is equal to the number of one bits in it. Ac-
cordingly, the optimum binary string is an all 1s string. 
The simplicity of the OneMax problem makes it a prime 
candidate to study the effect of fitness inheritance on the 
performance of GAs. In order to investigate the perform-
ance of multi-objective GAs with fitness inheritance, we 
develop the bicriteria OneMax problem for analyzing 
multi-objective GAs with fitness inheritance. The bicrite-
ria OneMax problem is defined by 
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where string s is the string to be evaluated, x1, and x2 are 
two fixed string, the string length is l, and d(s, x) is the 
hamming distance of two string. If the fixed string x is all 
1s string, then the corresponding objective function will 
be the OneMax problem. The number of Pareto-optimal 
solutions, m, in the bicriteria OneMax problem can be 
calculated by 

( )21 ,2 xxdm = . (6)

In this paper, unless otherwise mentioned, x1 is all 1s 
string, and x2 is all 1s string except the first four bits of x2 
is 0s. 

3.2 TIME TO CONVERGENCE 
In this section we derive convergence-time model for the 
bicriteria OneMax problem with fitness inheritance. For 
OneMax domain, the convergence model can be derived 
by using the response to selection equation (Mühlenbein 
and Schlierkamp-Voosen ,1993), 

ftt Ifff σ=−=∆ +1 . (7)

This equation was derived by calculating the difference in 
mean fitness of two populations using the selection inten- 
sity I, the population’s fitness variance 2σ f  at time t.  
Sastry (2001) extended this model for fitness inheritance 
in single-objective GAs. This population-sizing model 
derived by Sastry is reproduced below: 

fitt pIfff σ−=−=∆ + 11  (8)

Now, we can proceed to derive the convergence model for 
the bicriteria OneMax problem by extending equation (8). 
Based on the concept of fitness sharing, assumed that the 
population were divided into several subpopulations 
(niches), and each niche optimizes its own separate One-

Max problem. Therefore, the optimizing process for the 
bicritiera OneMax problem can be regarded as optimizing 
several OneMax problems simultaneously. Since niches 
are from the same population, each niche will receive 
external noise from other niches. As a result, we can use 
the OneMax model with noisy fitness functions (Miller, 
1997) to predict convergence time in the presence of 
external noise caused by niches. For each niche, the con-
vergence model for the bicriteria OneMax problem can be 
expressed as 
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where 2
Nσ  is the noise variance from other niches.  

Let M be the number of niches in the population, and  
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Assumed that each niche has same proportion of correct 
BBs, let pt be the proportion of correct BBs in the niche at 
generation t. For the OneMax domain, the mean fitness at 
generation t equals lpt, the fitness variance can be ap-
proximated by lpt (1 - pt), and the noise variance from 
other niches can be approximated by (M – 1) pt (1 - pt). 
The population is converged to optimal when pt = 1. 
Equation (9) now yields 
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Approximating the above equation with a differential 
equation and integrating this equation using the initial 
condition p|t=0 = 0.5, we get 
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Then we can derive an equation for convergence time, 
tconv, by equating pt = 1, and inverting equation (11), 
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Finally, we can yield 
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If pi is taken as 0, and M is taken as 1, then the above 
relation reduces to 

I
ltconv 2

π
= , (14)

which agrees with existing convergence-time models for 
the OneMax problem.  



Generally, M can be set to the number of niches in the 
population or the number of Pareto-optimal solutions in 
equation (13). However, it is difficult to determine M, 
because niches are often overlapped in the real-world 
problems, and the number of niches in the population is 
always varied in the real runs of GAs with fitness sharing. 
The convergence-time model will be examined and com-
pared with experiments in the later section. 

3.3 POPULATION SIZING 
Selecting a conservative population size reduces the 
chance of premature convergence, and it also influences 
the quality of the solution obtained. Therefore, it is impor-
tant to appropriately size the population to incorporate the 
effects of fitness inheritance. For the OneMax problem, 
the Gambler’s Ruin population-sizing model (Harik et al., 
1997) can be used to determine the population-sizing 
model. Sastry (2001) extend this model for fitness inheri-
tance. This population-sizing model derived by Sastry is  
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where n is the population size, k is the building block (BB) 
length, ψ is the failure rate, and σf is the variance of the 
noisy fitness function. For an OneMax with string length 
100, k = 1, 2σ f = 25. 
Assuming the population were divided into M niches, and 
each niche optimizes for its own separate OneMax prob-
lem. Similar to the population-sizing model for the bicri-
teria OneMax problem, we can extend this model by us-
ing the OneMax model with noisy fitness functions 
(Miller, 1997) to predict population-sizing in the presence 
of external noise caused by niches. The population model 
for the bicriteria OneMax problem can be written as 
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where 2
Nσ  is the noise variance from other niches, and  M 

is the number of niches.  
The population-sizing model will be examined and com-
pared with experiments in the later section. 

3.4 OPTIMAL INHERITANCE PROPORTION 
AND SPEED-UP 

Given a problem there should be a range of inheritance 
proportions that are more efficient than the others. An 
inappropriate inheritance proportions would not reduce 
the number of function evaluations. For large sized prob-
lems, Sastry’s study indicates that the optimal inheritance 
proportion, pi, lies between 0.54 -0.558. The total number 
of function evaluations required can be calculated by 

( )[ ]iiconvfe pptnN +−= 1 . (17)

From the equation (10) and equation (13), we can the 
predicted the total number of function evaluations re-
quired, as shown in figure 1. 
The speed-up of fitness inheritance is defined as the ratio 
of number of function evaluations with pi = 0 to the num-
ber of function evaluation at optimal pi. From the practical 
view, a user usually fixes the population size and then 
optimizes the proportion of fitness inheritance. Therefore, 
the optimal proportion of fitness inheritance with a fixed 
number of population size can be obtained by the inverse 
of equation (16). 
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where )()ln(2 221
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k M σσπψκ +−= − . Equation  

(18) indicates that if the population is larger than κ, the 
larger the population size, the higher of inheritance pro-
portion can be used. 

Figure 1: Total number of function evaluations predicted 
by equation (17) with a failure rate of 0.0001.  

4 EXPERIMENTS AND RESULTS 
The experiments were performed using selectorecombina-
tive GAs with binary tournament selection, and uniform 
crossover with crossover probability of 1.0. No mutation 
operator is used. The sharing factor σsh is set to 50. The 
fitness assignment strategy we used is proposed by Ho 
(1999), is defined by 

cqpXF +−=)( , (19)

where p is the number of individuals which can be 
dominated by the individual X, and q is the number of 
individuals which can dominate the individual X in the 
objective space. To ensure a positive fitness value, a 
constant c is added. Generally, the constant c can be 
assigned using the number of all participant individuals. 



All experiments were performed 30 runs using the 100-bit 
bicriteria OneMax problem. 
As to M in equation (13) and equation (16), considering 
the bicriteria OneMax problem and assuming perfect 
niching, M can be set to 2. Because better mixing of BBs 
is able to generate other Pareto-optimal solutions from x1 
and x2. It should be an approximated lower-bound for the 
comparison with experimental results. However, it is 
noted that, in the real runs of GAs with fitness sharing, M 
is varied in the population. Therefore, equation (13) and 
equation (17) is also varied. 
In order to investigate multi-objective GAs with fitness 
inheritance, two kind of experiments, ftiness inheritance 
without fitness sharing and fitness inheritance with fitness 
sharing, were performed and compared with analytical 
results. However, since multi-objective GAs without 
fitness sharing may lead to only some niches. Therefore, 
for fitness inheritance without fitness sharing, the algo-
rithm used an external non-dominated set to store the non-
dominated solutions during its search process. 

4.1 FITNESS INHERITANCE WITHOUT FIT-
NESS SHARING 

The convergence time observed experimentally is com-
pared to the above prediction for a 100-bit bicriteria 
OneMax problem in figure 2. Although fitness sharing 
was not used, the results indicate fitness inheritance is 
able to find all the Pareto-optimal solutions during the 
search process. The discrepancy between the empirical 
and analytical results may due to some niches disappear 
out of the population. Therefore, multi-objective GAs will 
focus the search on the remaining niches. When there is 
only one niche left, it lead to that all the population is 
optimizing an OneMax problem.  
The population-sizing model is compared to the results of 
100-bit OneMax problem and the results obtained for a 
100-bit bicriteria OneMax problem and in figure 3.  From 
the plot it can be easily seen that when the proportion of 
fitness inheritance is smaller than 0.4, our population-
sizing model fits the experimental result accurately. How-
ever, when the proportion of fitness inheritance is bigger 
than 0.4, the experiments results get closer to the analyti-
cal results of the OneMax problem. It is because when the 
proportion of inheritance is higher, the diversity of popu-
lation becomes lesser. So that the search was focused on 
the remaining niches when some niches disappeared dur-
ing the search process.  As a result, the convergence time 
of fitness inheritance without fitness sharing is varied and 
may be lower then the analytical results predicted by 
equation (13).  
By using an appropriate population size and proportion of 
fitness inheritance and from the equation (13) and equa-
tion (16), we can the predicted the total number of func-
tion evaluations required and compared with experimental 
results, as shown in figure 4. The above results indicates 
the optimal inheritance proportion lies between 0.6 – 0.8 

for fitness inheritance without fitness sharing. The speed-
up is around 1.4. In other words, the number of function 
evaluations with inheritance is around 40% less than that 
without inheritance. This implies that we can get a mod-
erate advantage by using fitness inheritance. The discrep-
ancy between our results and Sastry’s study occurs due to 
the disappearance of niches.  
Considering the fixed population size, the speed-up is 
different to the speed-up obtained above. From figure 5, it 
can be seen that if the population size is 2000, then fitness 
inheritance can yield a speed-up of 3.4. The result agrees 
with that obtained by Sastry (2001). 

Figure 2: Convergence time for a 100-bit bicriteria One-
Max problem for different proportion of inheritance pre-
dicted by equation (13) compared to experimental results. 

 
Figure 3: Verification of the population-sizing model for 
various inheritance proportions with empirical results. 
The curves are analytical results of Onemax problem and 
bicriteria OneMax problem, respectively. Experimental 
results depict the population size required for optimal 
convergence with failure rate of 0.0001. 



Figure 4: Total number of function evaluations predicted 
by equation (17) compared to experimental results. The 
curves are the analytical results of 100-bit Onemax prob-
lem and 100-bit bicriteria OneMax problem, respectively.  

Figure 5: Total number of function evaluations for various 
proportion of fitness inheritance at different population 
sizes.. 

4.2 FITNESS INHERITANCE WITH FITNESS 
SHARING 

In section 4.2, the experiments were performed using 
fitness inheritance with fitness sharing. The external non-
dominated set was not used.  
Recalling the definition of fitness sharing in section 2.3, 
we know that fitness sharing will degrade the fitness of 
similar individuals, so that these individuals will have 
smaller opportunity to be selected into the next generation. 
However, considering fitness inheritance with fitness 
sharing, an individual inherits fitness (objective value) 
from its parents. So the objective values are approximated. 
Then the dummy fitness is assigned according to the ap-
proximated objective values. Therefore, the dummy fit-
ness is also approximated. Apparently, if some individu-
als are over-estimated and receive better fitness than their 

actual fitness, fitness sharing will also maintain these 
individuals. As a result, when fitness inheritance is used 
with fitness sharing, we expect that over-estimated indi-
viduals are likely to survive in the population and affect 
other solutions as the proportion of inheritance increased.  
Figure 6 and figure 7 present the convergence model and 
population-sizing model observed for 100-bit bicriteria 
OneMax problem using fitness inheritance with fitness 
sharing. When the inheritance proportion is smaller than 
0.7, the experimental results fit the predicted convergence 
model and population-sizing model. However, when the 
inheritance proportion is bigger than 0.8, GAs with fitness 
inheritance and fitness sharing cannot converge to all the 
Pareto-optimal solutions.  

Figure 6: Convergence time for different proportion of 
inheritance predicted by equation (13) compared to ex-
perimental results using fitness inheritance with fitness 
sharing. 

Figure 7: Verification of the population-sizing model for 
fitness inheritance with fitness sharing compared with 
empirical results. Experimental results depict the popula-
tion size required for optimal convergence with failure 
rate of 0.0001. 



Figure 8 presents the distance to Pareto front of both ac-
tual and inherited fitness for the experimental results with 
inheritance proportion 0.9. It indicates that the search 
process was divided into two phases. In this first phase, 
fitness inheritance proceeded well. The second phase 
started around the 40th generation. Some individuals were 
approximated to better fitness and maintained by fitness 
sharing. Due to the high inheritance proportion, these 
inferior individuals mixed with other individuals. Finally 
the population was filled with incorrect individuals. This 
phenomenon explains the discrepancy between empirical 
and analytical results in figure 6.  

Figure 8: The distance to the Pareto front of actual fitness 
and inherited fitness for the experimental results with 
inheritance proportion 0.9. The empirical results are aver-
aged over 30 runs. 

Figure 9: The distribution of function evaluations. The 
curve is the total number of function evaluations predicted 
by equation (17) for optimal convergence of a 100-bit 
bicriteria OneMax problem with a failure rate of 0.0001.  
 
 

The predicted number of function evaluations is com-
pared with experimental results in figure 9. The speed-up 
is around 1.25. The discrepancy between our results and 
analytical results may due to the number of niches, M, is 
varied in the real runs of GAs with fitness sharing. some 
inferior individuals are maintained by fitness sharing, and 
then mixed with other niches. Therefore, more function 
evaluation times are required. This may be the overhead 
in using GAs with fitness sharing. 
In summary, the experimental results of fitness inheri-
tance with fitness sharing indicate that the proportion of 
inheritance lies between 0.4 -0.5, so that incorrect niches 
will have lesser chance to be maintained by fitness shar-
ing. The result is slightly different to the optimal propor-
tion of inheritance derived by Sastry.  

5 CONCLUSIONS 
In this paper, we have developed a bicriteria OneMax 
problem and derived models for convergence-time and 
population-sizing. The models have been analyzed in two 
cases: fitness inheritance without fitness sharing and fit-
ness inheritance with fitness sharing. In the first case, 
fitness inheritance yields saving on 40% in terms of the 
number of function evaluations. While using a fixed 
number of population size, fitness inheritance can yield a 
speed up of 3.4. In the second case, fitness inheritance 
yields saving to 25%.   
Though the speed-up of fitness inheritance seems to be 
modest, it can be incorporated with parallelism, time 
continuation, and other efficiency enhancement tech-
niques. In such case, a speed up of 1.25 can be important. 
Further studies on using complex inheritance techniques 
and incorporating fitness inheritance with state-of-the-art 
multi-objective genetic algorithms are still remains to be 
done. 
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