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Abstract

The action of point crossover is modeled as

a random walk on a group, and convergence

and rate results are established for the walk.

Speci�cally, it is shown that there is a cut-o�

phenomenon in the rate at which the sample

get randomized. As long as the number of

crossover steps is less than a certain critical

number, the total variation distance (with re-

spect to the stationary distribution) is large,

and remains essentially constant. But once

the critical number has been crossed, the to-

tal variation distance goes to zero (at an ex-

ponential rate). The cut-o� number of steps

is of order of O(lN lnN) steps, where N is

the sample size, and l is the length of the

chromosome. Finally, it is shown by heuristic

arguments as well as by simulations, that if a

statistical criterion such as Kendall'sW coef-

�cient or the average Kendall's � coeÆcient is
used to measure randomness (rather than to-

tal variation distance), the sample can be said

to be random (upto statistical signi�cance) in

O(lnN) steps, rather than O(lN lnN) steps.

The properties of such criteria are character-

ized.

1 Introduction

The repeated application of point crossover on a �nite

set of chromosomes may be viewed as a random walk

on a certain graph. The aim of this paper is to show

that there is a cut-o� phenomenon associated with a

class of such \crossover walks." Roughly, the existence

of a cut-o� means that if the number of times point

crossover applied in the crossover phase, n, is less than
a certain critical number n�, the sample remains \far"

from stationarity, but for n > n�, the sample becomes
very \close" to stationarity.

There have been a variety of approaches to analyzing

the role of point crossover, including (to list a few) hy-

perplane and schema analysis[13], dynamical systems

models [5], and explicit Markov modeling [11]. How-

ever, despite the strong similarities between certain

random walks and the crossover operator (for exam-

ple, base swapping walks on matroids), not much work

has been done to explore this connection, though there

are a few outstanding exceptions [12]. In particular,

the relationship between crossover walks and cut-o�

phenomena appears to have been overlooked.

Cut-o� phenomena (\phase transitions") in random

walks, especially those associated with walks on

groups, have been intensely studied with great suc-

cess in the last two decades [2]. The basic machinery

behind these results draws upon deep results from the

representation theory of groups. The techniques were

�rst applied to study the e�ectiveness of various card

shu�ing operations, such as ri�e shu�es, perfect shuf-


es and transposition shu�es. Intuitively, there is a

great deal of similarity between shu�ing sets of cards

and the point crossover operator. In a sense, this pa-

per formalizes this intuition. We eschew a too-rigorous

presentation of results, and focus instead on heuristic

arguments and simulations that will, hopefully, inspire

a much more rigorous analysis.

The structure of the paper is as follows. In Section 2

the concept of a crossover walk is introduced. The

question of its convergence is resolved by using tech-

niques from the theory of doubly stochastic matrices.

An analysis of the rate of convergence of the crossover

walk is taken up in Section 3. In Section 4 it is argued

that the traditional criterion used to measure the de-

gree of randomness, namely, the variation distance,

may be unnecessarily strict, and two alternate criteria

are introduced. Section 5 presents simulations on the



behavior of these alternate measures, and Section 6

introduces an informal model to explain them.

Notation: Sn will denote the symmetric group on n
symbols (the permutation group). All logarithms are

to base e. Results drawn from external sources are

referred to as \Propositions."

2 Crossover Walks

A chromosome is de�ned to be an element in �l, where

� is some �nite alphabet. Any set of chromosomes

de�nes a sample. The size of a sample is the number of

chromosomes in it and two samples are distinct if they

contain di�erent numbers of any given chromosome in

�l. Let Sl(N) (or simply, Sl) denote the set of samples
of size N .

The k-point crossover operator �k : Sl ! Sl maps
one sample to another, and is de�ned as follows. Select

a non-empty set of indices I � f1; 2; : : : ; lg with re-

spect to the \subset" measure Prk (explained below).

Let � = (�1; �2; : : : ; �l) and � = (�1; �2; : : : ; �l) rep-
resent two chromosomes drawn uniformly from the in-

put sample. Then, �k(�; �) = (�0; �0) where for all
j 2 I , �0

j
= �j and �0

j
= �j . For all j 62 I , �0

j
= �j

and �0
j
= �j . The resulting chromosomes �

0; �0 are re-
ferred to the \children" of the \parent" chromosomes

�; �.

The subset measure Prk is used to handle the dif-

ferences between 1-point, 2-point crossover etc. All

point crossover operators select a subset of indices

from f1; : : : ; lg, and swap the corresponding alleles

from the parents at these indices. 1-point crossover

(1PTX) will always select subsets of the form flg,
fl�1; lg, fl�2; l�2; lg etc. The symmetric version of
1PTX will also select subsets of the form f1g, f1; 2g,
f1; 2; 3g etc. 2-point crossover (2PTX) will select sub-
sets of the form fi; i+ 1; i + 2; : : : ; ikg for i � 1 and

ik � l. In other words, each point crossover variant

merely imposes an uniform probability measure on the

set of all subsets of f1; 2; : : : ; lg. This probability mea-
sure is unique to each point crossover, and is denoted

Prk.

The point crossover operator is usually seen as map-

ping chromosomal pairs to other chromosomal pairs,

rather than one sample to another. While opera-

tionally there is no di�erence between the two views,

modeling point crossover as taking samples to sam-

ples is analytically more convenient (at least for our

purposes).

De�ne the crossover graph G(S) = (V (S); E) where
the node set V (S) = fv1; : : : ; vjV j) is the set of all

distinct samples that can be generated from the initial

sample S by means of k-point crossover. V (S) has at
least one member, namely S, and V (S) is a �nite set

because Sl is �nite. Since k-point crossover replaces
one pair with another, all samples in G have the same

number of chromosomes.

Two nodes vi and vj in G are connected by an edge in

the edge set E i� it is possible to generate vj from vi
in one application of the �k operator. In particular,

every node vi is connected to itself (self loop). The

graph G is also connected (every node is reachable

from every other node).

Let �(S) = f�j

k
(S)gj� 0 denote the sequence of sam-

ples that is generated by repeated applications of �k

on a sample S. Clearly, the sequence of samples in

�(S) then represents a random walk | the crossover

walk | on the graph G(S).

The two fundamental questions concerning the

crossover walk on G are:

� Does the walk converge to a stationary distribu-

tion?

� If so, what is its rate of convergence?

The remainder of this section tackles the �rst question,

and the rest of the paper considers the second.

2.1 Walk Convergence

The convergence to an stationary distribution can

be established using a technique due to Feller [4,

section XV.10]. As mentioned earlier, �(S) repre-

sents the sequences of samples (nodes) encountered

in walking the graph G = (V;E). De�ne P t =

(p1(t); p2(t); : : : ; pjV j(t)) where pi(t) is the probability
that at time instant t, the walk �nds itself at node vi
of the graph G. In other words, it is the probability

that �t

k
(S) = vi. Initially, P 0 is a vector of all ze-

ros except at one index r (say), corresponding to the

fact that the walk starts at S = vr 2 V . From the

de�nition of point crossover, the distributions at two

successive instants of time are related by,

P t+1 = QP t (1)

where Q = [qi;j ] is a jV j � jV j sized matrix. The

elements of Q can be assumed to be time indepen-

dent, since the probability of moving to vj given that

the walk is at vi should depend only the composition

of the sample represented by vi and vj . Theorem 1

states the conditions under which the walk de�ned by

Equation (1) converges.



Theorem 1 Let Q be the aperiodic, time indepen-

dent transition matrix for a walk on the crossover

graph G(S) = (V (S); E). Then, Q is a doubly

stochastic matrix, and the sequence P 0; P 1; P 2; : : : ;
converges to the stationary distribution P1 =

(1=jV j; : : : ; 1=jV j).

Proof: We �rst show that Q is a doubly stochastic

matrix, that is,
P

jV j

j=1
qi;j = 1 and

P
jV j

i=1
qi;j = 1.

The matrix element qi;j is actually a conditional prob-
ability representing the probability of reaching vj in

one step, given that the walk is at vi. By de�nition of

conditional probabilities,
P

j
qi;j = 1.

Observe that for every transition (�; �) ! (�0; �0)
produced by a k-point crossover operator, there corre-
sponds a transition (�0; �0) ! (�; �). In other words,

if the k-point crossover operator transforms a sam-

ple vi ! vj , then it can also transform vj ! vi.
Now, the expression

P
i
qi;j represents the probabil-

ity that the vertex i can be reached from some vertex

j. Since this can always be done, we conclude thatP
i
qi;j = 1. Since Q is both column stochastic as

well as row stochastic, Q is doubly stochastic.

From a standard result in Markov chain theory (for

example, [4, section XV.7]) we know that if Q is per-

sistent, irreducible and aperodic1 then the sequence

P 0; P 1; P 2; : : : converges to a stationary distribution.

Because Q is doubly stochastic, it converges to the sta-

tionary distribution P1 = (1=jV j; 1=jV j; : : : ; 1=jV j)
[4, section XV.7, example 7(h)]. Q is persistent be-

cause it is doubly stochastic, and the construction of

G guarantees that the walk on G is irreducible. From

the aperiodicity, persistence and irreducibility of the

walk, it follows that it converges to the stationary dis-

tribution P1. Q.E.D

The stationary distribution in Theorem 1 is related to

but not the same as the linkage equilibrium distribu-

tion (which refers to the distribution of chromsomes in

a sample randomized by crossover operations). Also,

the assumption that Q is aperiodic is a trivial one,

since any Markov chain can be rede�ned to be aperi-

odic [4, section XV.5].

Theorem 1 asserts that the repeated application of

k-point crossover on a sample eventually random-

izes it, and shows that point crossover belongs to a

class of models known as quadratic dynamical sys-

tems [9]. The relationship between double stochas-

1A Markov chain Q = [qi;j ] is said to be persistent if
it is certain that the chain starting from a state vi will
eventually return to vi. The chain is said to be irreducible

i� every state vi can be reached from any other state vj .
Q is said to be aperiodic if qti;i 6= 0 for any t > 1.

ticity and point crossover leads to the Theorem 2.

It shows that the class of Schur-convex functions are

Lyapanuv functions for the crossover walk. A great

deal is known about this class [8], and its functions

occupy much real estate in mathematics2. A neces-

sary and suÆcient condition for a continuous function

� : Rn ! R to be Schur-convex is that it be symmet-

ric (�(x1; : : : ; xn) = �(xi1 ; : : : ; xin) and for any i; j,
(xi � xj)(@�=@xi � @�=@xj) � 0.

Theorem 2 Let Q be the transition matrix for a walk

on the crossover graph G(S) = (V (S); E). Let P t =

(p1(t); p2(t); : : : ; pjV j(t)) where pi(t) is the probability
that at time t � 0, the walk �nds itself at node vi. If
F : RjV j ! R is a Schur-convex function, then for all

t � 0, F (P (t+ 1) � F (P (t)).

Proof: The theorem is an immediate consequence of

three facts: (1) P (t + 1) = QP (t), (2) Q is doubly

stochastic (Theorem 1) and (3) the Hardy, Littlewood,

Polya theorem (see [8, chap. 2, B.2] and [8, chap. 3,

A.1]. Q.E.D.

3 Rate of Convergence

Any analysis of the convergence rate of a crossover

walk depends on the \intrinsic" aspects of the walk

such as the transition probabilities, and the exact k-
point crossover used. In particular, it depends on the

structure of the graph G. Since the structure of the

graph is determined by the initial sample, the conver-

gence rate of the walk is dependent on it.

The dependency of the walk on the initial sample

complicates matters, perhaps unnecessarily so. Sup-

pose initial sample consists of identical chromosomes.

Clearly, point crossover is not going to change the

composition of the sample. In this scenario, �(S) =

fS; S; : : :g and G(S) = (fSg; E) where E consists of a

single self-loop. On the other hand, consider the e�ect

of point crossover on a sample drawn randomly from

�l. In this case too, point crossover has no e�ect since

the sample is already randomized, and a walk on G is

essentially a walk on a random graph. It is diÆcult to

study the general walk on G, because G can take on so

many di�erent \shapes" depending on how the initial

sample was set up.

An analogy might make this idea clearer. Suppose one

wished to analyze the shu�ing of a pack of cards (pos-

2For example, the Shannon Entropy function is a Schur-
concave function (that is, negentropy is Schur-convex). So
are almost all of the popular diversity metrics, such as sam-
ple variance and the Gini coeÆcient. It is not necessary
that a function be continuous in order for it to be Schur-
convex.



sibly incomplete), where the shu�e operation consists

of transposing (with some probability) pairs of cards

drawn from the pack w.r.t some probability measure.

As stated, the problem is hard to study because it

mixes the critical issue (the e�ect of random transposi-

tion) with the less important ones (possibly incomplete

packs, unknown initial card distribution, transposition

frequency, a measure on drawing cards etc). It is for

this reason that most random transposition models

assume an initially sorted, complete pack, where ev-

ery shu�ing step results in a transposition (unless the

same card is picked twice).

Of course, the decision as to which factors are impor-

tant and which ones are not, depends on the problem

one is interested in. For example, if the problem is to

study how point crossover \undoes" the e�ect of pro-

portional selection, then the dependency on the ini-

tial sample has to be taken into account. But if the

problem is (say) to prove that repeated applications of

point crossover leads to linkage equilibrium, then the

speci�cs of the initial sample is not too important (as

Theorem 1 demonstrates).

What is needed is a reference sample against which the

e�ectiveness (as measured by rates of convergence) of

various crossover operators can be tested. In other

words, a reference sample will enable the distinction

between \what crossover does" from \what crossover

is applied to."

The de�nition of the point crossover operator suggests

that its action is roughly analogous to a shu�ing op-

eration on sets of decks of cards. Accordingly, a good

reference sample to study its convergence rates should

be an array of permutations. Speci�cally, consider an

array of numbers (N rows and l columns), arranged as
follows:

S =

0
BBB@

1 1 � � � 1

2 2 � � � 2
...

... � � �
...

N N � � � N

1
CCCA (2)

Each row in the array is interpreted as a \permuta-

tion" chromosome of length l. Upon applying k-point
crossover on S, the columns of the array will tend to

get randomized. For example, one such sample is,

S0 =

0
BBB@

1 2 � � � 2

2 1 � � � 1
...

... � � �
...

N N � � � N

1
CCCA (3)

Of course, k-point crossover only disarrays a column,

and does not change the allelic composition, at any

step of the walk. Hence, the sample can be represented

as a vector of permutations (�1; : : : ; �l), with �j 2 SN

where SN is the permutation group onN symbols. Ini-

tially, S � ((1; 2; : : : ; N); : : : ; (1; 2; : : : ; N)). The ac-

tion of k-point crossover at any step consists of select-

ing at random a non-empty, proper subset of compo-

nents from (�1; : : : ; �l) and applying a random trans-

position drawn from the permutation group SN to

each of those components. For example the move from

S ! S0 involves selecting the components 2 through l
and applying the transposition (1; 2) on each of those

components.

In other words, the underlying crossover graph has

(N !)l nodes. An edge connects two nodes vi =

(�1; : : : ; �l) and vj = (�1; : : : ; �l) i� there exists a

transposition � 2 Sn and a subset I � f1; 2; : : : ; lg,
such that,

�j =

(
�(�j) if j 2 I;

�j otherwise:
(4)

The e�ect of k-point crossover on theN \permutation"

chromosomes is thus identical to a nearest-neighbor

random walk on the nodes of the crossover graph.

Of course, real GAs do not typically operate on per-

mutation strings, so the relevance of the above ref-

erence sample may be in question. It would appear

however that the walk on G(N; l) provides a good test
case for analytic techniques, is related to active ar-

eas of research in probability theory, and focuses on

point crossover's central feature, namely, its tendency

to \shu�e" a sample's alleles. Furthermore, there

are techniques to \lift" walks on symmetric groups to

walks on the hypercube [2, pp. 19-20], so results may

transfer as well.

3.1 Walks on G(N; l)

Since the structure of this graph is completely deter-

mined by the parameters N and l, it will be denoted
G(N; l) rather than the usual G(S). It is not hard to

show that G(N; l) is a regular graph, where each node
is connected to d = (2l � 1)

�
N

2

�
other nodes.

The analysis of the convergence rate of the walk on

G(N; l) depends on the criterion used to measure the

\degree of randomness." One criterion popular in

models of random walk on groups [2, chap. 3B] is

the variation distance of two discrete distributions P
and P 0 de�ned by,

jjP � P 0jj =
1

2

nX
i=1

jpi � p0
i
j (5)

In particular, if for any speci�ed � > 0, there exists

a tc such that for all t > tc, jjP
t � P1jj < �, then



the walk is said to converge to P1 w.r.t the variation

distance.

A formal analysis of the rate of convergence of jjP t �
P1jj is complicated and involves the machinery of the
representation theory of the symmetric group. Also, in

this paper, the quantity of interest is not the variation

distance but a di�erent function (described in the next

section). Hence, we will only present heuristic argu-

ments for the rate of convergence of the total variation

distance on G(N; l).

Consider the case when l = 1. The problem then re-

duces to the random walk induced by the action of

random transpositions on the symmetric group SN .

P. Diaconis and M. Shahshahani proved the following

result regarding such walks [3].

Proposition 1 Let k = 1

2
N lnN+cN , where c > 0.

Then, there exists an universal constant a such that,

jjP t � P1jj � a exp(�2c). Correspondingly, let k =
1

2
N lnN � cN , where c > 0. Then, there exists an

universal constant b such that, jjP t � P1jj � 1 �
b exp(�2c).

Proposition 1 shows that k = 1

2
N lnN + cN are suf-

�cient for the variation distance to become \small".

Conversely, k = 1

2
N lnN � cN are also necessary.

This is the celebrated \cut-o�' phenomenon, the value

of jjP t � P1jj is large for k < 1

2
N lnN � cN , but is

small after k � 1

2
N lnN + cN .

This case provides a lower bound on the convergence

rate of the random walk on G(N; l). On the other

hand, it can be shown using several di�erent ways3

that Nl

2
lnN steps is an upper bound on the number

of steps necessary to achieve stationarity

In summary, it takes at most O(Nl lnN) k-point

crossover operations to randomize an array of N chro-

mosomes of length l, where the starting sample is given
by Equation (2). If the reference sample consists of N
binary chromosomes each of length l, rather than per-

mutation strings, the conclusions of the analysis of the

walk on G(N; l) does not fundamentally change. For

example, consider the crossover walk on a reference

sample of binary chromosomes where half the sample

is initially \all 0"' chromosomes, and the other half are

\all 1" chromosomes. This walk can be shown to be

closely related to the Bernoulli-Laplace urn model [2,

pp. 56-58], for which the cuto� number of steps again

turns out to be O(Nl lnN).

3Wald's principle o�ers one route. Another option is
to note that a walk on G(N; l) can be described as a walk
on the Cartesian product of the transposition graph of the
symmetric group, and then use Chung's results [1, pp. 36-
41].

But are such "O(N lnN)" results of any practical use?

In most GAs, the sample size N , and the chromo-

some length l, are both quite large (typically). For

N = 500 and l = 30, the above result would indicate

that the number of crossover steps is of the order of

100; 000 steps. Thus, the number of crossover steps

required to randomize the sample is quite large, and

it would appear that randomization of the sample in

the point crossover phase never happens in real GA

deployments.

However, in the next section it will be argued that

the large number of crossover steps required to ran-

domize the walk on G(N; l) (and by association, walks
on general samples), is an artifact of the variation dis-

tance criterion. The rate of convergence of two alterna-

tive criterion, the Kendall's average � coeÆcient, and

Kendall's W coeÆcient, give a very di�erent picture

on the minimal number of steps required to random-

ize the walk on G(N; l).

4 Convergence Criteria

As far as convergence is concerned, the exact norm

used to measure the distance between two distribu-

tions is not of great importance, since norms are (topo-

logically) equivalent (so convergence w.r.t one norm

implies convergence w.r.t another). But for bounds

on convergence rates , the choice of the norm is very

important [14].

The variation distance may be inappropriate in some

natural context. Suppose one is given a set of decks,

where each deck is arranged in some manner (not nec-

essarily sorted). It is now required to be determined

whether the cards in the decks are randomly ordered

or not. The variation distance is not a very meaningful

measure in this case. The statistical solution is to com-

pute some ranking statistic on the card arrangements,

and see if the null hypothesis (card are randomly ar-

ranged in each deck) can be rejected. Clearly, this

idea can be also applied to each sample produced in

the random walk on G(N; l). Statistical tests have

been evolved to test for randomness (upto speci�ed

levels of signi�cance). It makes sense to use them to

test whether the sample produced by crossover at any

stage passes these tests. If it does, then we have a

rigorous basis for a stopping rule.

In this case, the sample consists of permutations, and

it is natural to study the change in rank-based con-

cordance measures as a function of the stage in the

random walk on the crossover graph. Two such mea-

sures will now be considered. The �rst, Kendall's W

coeÆcient, is a measure of ranking concordance and



the second, Kendall's average tau coeÆcient, is usu-

ally interpreted as a measure of disarray of in a set of

permutations.

Consider l judges ranking N objects. Each judge as-

signs a distinct rank to each object. The rankings can

be arranged in an array of the type shown in Equa-

tion (2), where each column represents a ranking, and

the ith row re
ects how each judge ranks the ith ob-

ject. Let sij denote the ranking of the ith object by

the jth judge.

If all the columns are identical as in Equation (2), it

indicates complete concordance between the judges.

A standard measure of concordance is Kendall's W
coeÆcient [6, chap. 6] de�ned as follows:

W =
12D

l2N(N2 � 1)
; (6)

where, D =

nX
i=1

(

lX
j=1

si;j � �)2; (7)

and, � =
l(N + 1)

2
: (8)

The idea is to compute for each object, the sum of the

ranks assigned to it by the l judges. The sum of the

squares of the deviation of each sum from the expected

value � then gives D. Kendall's W is the ratio of

D with the maximum possible value. Kendall's W
coeÆcient is widely used to measure the agreement in

l rankings of a common set of objects [6]. W always lies

between 0 and 1, with 1 indicating complete agreement

between the rankings of the l judges.

The second ranking statistic is the average Kendall co-

eÆcient [2, chap. 6]. Let � and � be any two permu-

tations in SN (permutation group on N symbols). Let

K(�; �) (= K(�; �)) be the number of adjacent trans-
positions required to convert the permutation ��1 to

��1. Kendall's � coeÆcient for the pair � and � is

de�ned by,

�(�; �) = 1 �
4K(�; �)

N(N � 1)
: (9)

The � coeÆcient lies between �1 and 1 (inclusive) and
behaves likes a correlation coeÆcient. When � = 1,

the permutations are identical, and when � = �1,
� = ��1. The average Kendall coeÆcient for a set of

permutations (�1; �2; : : : ; �l) is given by,

�� =
2
P

l

i;j=1
�(�i; �j)

l(l � 1)
: (10)

Both these measures are designed to measure the de-

gree of disarray in a sample of permutations, and their

asymptotic behavior is well understood4[6, chap. 6].

This enables their practical use in statistical signi�-

cance tests.

The next section studies the change in these ranking

statistics as a function of the crossover walk on G(N; l)
for various values of N and l. The associated graphs

not only show the existence of cut-o� behavior in these

functions for crossover walks, but also show that, re-

markably, the number of steps required to achieve ran-

domness (upto statistical signi�cance) is of the order

of O(lnN) rather than O(lN lnN).

5 Simulations

Here the behavior of the crossover walk on the graph

G(N; l) for various values of N and l are studied. The
basic procedure for setting up the simulations was to

start with the ordered N � l array shown in Equa-

tion (2). Then, k-point crossover was repeatedly ap-

plied (usually for 100,000 steps). Each application

of the operator corresponds to a step on the graph

G(N; l). After applying the operator, the values of

the average � and/or Kendall's W -coeÆcient for the

sample are computed. These values are then plotted

against the logarithm of the step number 5. The shape

of the curve, its critical points and sensitivity to the

three independent variables, namely, N; l and k, are
the main topics of interest. Here, only the results for

�xed l and k but varying N are presented. It is worth

mentioning however, that all scenarios show the exis-

tence of the cut-o� phenomena, though the exact point

at which cut-o� happens, changes as the dependent

variables are changed.

Figure 2 and Figure 3 show the plots obtained by

sampling the values of Kendall's W coeÆcient and

Kendall's average � after every 1PTX step of the ran-

dom walk on G(N; l) for N = 50; 100; 150; 200 and

l = 15. The curves become smoother for larger values

of N , but in general the behavior is relatively insen-

sitive to changes in values of N . Consider the point

at which the Kendall's W coeÆcient falls below 0:5.
For N = 50; 100; 150; 200, this happens (roughly) at
exp(3:2) � 25, exp(4:8) � 122, exp(5:2) � 181 and

4For example, the asymptotic distribution of Fried-
man's function �2r = l(N � 1)W can be shown to be ap-
proximately �2 with N � 1 degrees of freedom for large
l. On the other hand, the average � can be shown to dis-
tributed normally.

5The cuto� phenomenon implied by the sigmoid growth
curve disappears if the ranking statistics is plotted directly
against the step number. This may be one reason why the
cut-o� phenomena in ranking statistics for random walk
models appears to have escaped the attention of probability
theorists.



Figure 2: Kendall's W versus Ln(Crossover Step) for

various population sizes

exp(5:57) � 262 number of steps, respectively. This

may seem like a signi�cant change, but if considers

the ratio of the number of steps (to get to the half-

way point) to the sample size, the ratios are roughly

constant.

The most signi�cant aspect of these �gures is how soon

the cut-o� point manifests itself. For N = 200, by

about exp(2) to exp(3) number of steps, the Kendall's

W starts to fall sharply, and by about exp(7) to exp(8)

number of steps, it reaches its equilibrium value. Thus

a few hundred applications of point crossover does have

a signi�cant impact on the value of Kendall's W coef-

�cient for the walk on G(N; l). Similar comments hold
for the average � .

6 Logistic Models

A rigorous analysis of the behavior of Kendall's W
coeÆcient, or the average � coeÆcient is likely to be

very complicated. Yet, the curves are so simple in

their shape that it is very tempting to believe that an

equally simple explanation must be available.

In this section, an explanation based on an population

growth model will be developed; it is simplistic, but

the basic idea is very general and holds much promise

(e.g. [7, 10]).

The problem is to model the change in a statistic Y
w.r.t. the step number. Suppose it was the case that

there were two kinds of events that a�ected the growth

Figure 3: Kendall's Average Tau versus Ln(Crossover

Step) for various population sizes

of Y . The \good" events cause it to increase, but the
\bad" events cause it to decrease. It is also given that

if only bad events happen, then the relative change in

Y is inversely (directly) proportional to the relative

change in r. One way to model this is,

�Y

Y
= �(Y )

�t

t
; � > 0; (11)

�Y

Y
= ��(Y )

�t

t
; � > 0: (12)

The linear relationship has been setup not between Y
and t, but between the relative growths �Y=Y and

�t=t. The basic reason for this is that cuto� phe-

nomena persist under scaling changes, that is, cannot

be removed by ratio transformations of the dependent

and independent variables. If the di�erential equation

we are constructing is to exhibit cut-o� phenomenon,

then it has to be invariant under ratio transformations

as well. Equations (11) and (12) have this property.

The quantities � and � have been marked as a func-

tion of Y but not time. The reason for this is that the

dynamics of any two variables U and V can be related

vacuously by a \constant" that varies with respect to

U and V . To prevent this, the proportionality con-

stants can depend at most on Y . The dependency on

Y models the fact that Y , being a ranking statistic,

cannot grow ceaselessly. Since it is a ranking statistic,

it takes on at a �nite number of values (there are only

a �nite number of rankings, and each ranking corre-

sponds to one value for the statistic).



� and � are duals to each other. Assume without loss

of generality that � + � = 1 and � � 1 (if they are

not, the equations can always be rescaled to make it

so). Then, for some function g(Y ), the functions �
and � can be expressed as,

�(Y ) = 1 �
g(Y )

K
; (13)

�(Y ) =
g(Y )

K
: (14)

where K is large enough to make �; � � 1. Putting

the above equations together,

�Y

Y
=

�t

t
(1 � 2

g(Y )

K
): (15)

Passing to the limit implies,

dy

dt
=

y

t
(1 � 2

g(y)

K
): (16)

To \draw" the above curve with respect to the loga-

rithmic axis, set t = lnx. Consequently,

dy

dx
= y(1 � 2

g(y)

K
): (17)

Equation 17 produces a sigmoid curve under very mild

restrictions on the function g(y). The case g(y) = y
leads it to the classic Verhulst-Pearl equation of (sig-

moid) growth.

The assumptions behind this heuristic argument are

minimal. All that is required is that Y be density

limited, its growth has to be explainable by a two fac-

tor model (good events/bad events), and (�Y=Y ) /
(�t=t).

Consider Kendall's average � coeÆcient. Since it is a

ranking statistic, it cannot grow without bounds. Ev-

ery application of point crossover splits the permuta-

tions in the sample into two groups, namely, those that

got a�ected by the crossover, and those that didn't.

The � coeÆcient of each pair changes only linearly with
every crossover step6. The � coeÆcients within each

group do not change, but the inter-group � -coeÆcients
do change. The extent of that change is proportional

to the product of the relative sizes of the two groups,

and hence the log of the changes is linearly propor-

tional to the logs of the relative sizes.

The growth in the average � is also driven by a two-

factor model, because the change in � is driven by

a two factor-model. A \good" change consist of a

6Recall that the � -coeÆcient of a pair of permutations is
an aÆne function of the number of adjacent transpositions
needed to transform one permutation to the other.

Figure 4: Kendall's W versus Ln(Crossover Step) for

1PTX walk on G(300; 30) (sample of 300 chromosomes
each of length 30)

transposition which reduces the disarray, and hence in-

creases the value of � . Correspondingly, a bad transpo-
sition is one which increases the disarray and reduces

the value of � .

Similar arguments can be made for Kendall's W coef-

�cient, though the details are a lot more tedious. In

any event, these arguments are meant to be suggestive

of the possibilities of an alternative to the currently

popular group-theoretic approaches.

Finally, Figure 4 shows a plot of Kendall's W for re-

peated applications of 1PTX on a population of 300

permutations each of length 30. Clearly, even for

these small population sizes and non-trivial chromo-

some lengths, the sigmoid growth curve is obtained.

Notice that by approximately 6 log(N) steps, the mea-

sure falls to its mid value (0:5).

7 Conclusion

What does point crossover do? The results of the pa-

per formalize the intuition that repeated applications

of point crossover \shu�es" a sample's alleles. The

formalization was achieved by modeling the action of

point crossover as a random walk on the crossover

graph. Two aspects of this walk were studied. First,

it was demonstrated that this walk is characterized by

a homogeneous doubly stochastic Markov chain and

hence may be shown to converge to a stationary distri-



bution. Second, the rate of convergence was analyzed,

and it was shown that there is a cut-o� phenomenon

in the rate at which the original sample get random-

ized by the repeated action of point crossover. As long

as the number of crossover steps is less than a certain

critical number, the total variation distance (with re-

spect to the stationary distribution) is large, and re-

mains essentially constant. But once the critical num-

ber has been crossed, the total variation distance goes

to zero (at an exponential rate). The cut-o� number

of steps is of order of O(lN lnN) steps, where N is the

sample size, and l is the length of the chromosome.

If di�erent metrics are considered, say, Kendall's W

or average � coeÆcient, then simulation indicate that

cut-o� occurs at O(N lnN) rather than O(lN lnN). A

heuristic explanation based on population arguments

was provided for the general sigmoid nature of these

curves. The existence of the cut-o� suggests that point

crossover is something of an all-or-nothing randomiza-

tion operator. Apply it for more than the cut-o� num-

ber, and the sample is rapidly randomized. Apply it

for less, and as far as randomization is concerned, the

sample remains far from random. Whether such phase

transitions exist for other crossover operators remains

an open question.
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