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Abstract

Elitism and sharing are two mechanisms that are
believed to improve the performance of a multi-
objective evolutionary algorithm (MOEA). Using
a new empirical inquiry framework, this paper
studies the effect of elitism and sharing design
choices using a benchmark suite of two-criterion
problems. Performance is assessed, via known
metrics, in terms of both closeness to the true
Pareto-optimal front and diversity across the
front. Randomisation methods are employed to
determine significant differences in performance.
Informative visualisation of results is achieved
using the attainment surface concept. Elitism is
found to offer a consistent improvement in terms
of both closeness and diversity, thus confirming
results from other studies. Sharing can be
beneficial, but can also prove surprisingly
ineffective. Evidence presented herein suggests
that parameter-less schemes are more robust than
their parameter-based equivalents (including
those with automatic tuning). A multi-objective
genetic algorithm (MOGA) combining both
elitism and parameter-less sharing is shown to
offer high performance across the test suite.

1 INTRODUCTION
Evolutionary multi-criterion optimisation (EMO)
practitioners are faced with a number of design choices
beyond those encountered in a standard evolutionary
algorithm (EA). Suitable strategies for elitism and sharing
can significantly improve optimiser performance. This
paper presents new evidence and understanding
concerning elitism and sharing that will help practitioners
to make informed choices. Through the application of
tractable algorithm modifications and a rigorous
experimental framework, the effect of MOEA component-
level choices can be more clearly exposed.

An EMO empirical inquiry framework is introduced in
Section 2. The dual performance metrics of closeness and
diversity are measured using the generational distance and
spread metrics respectively. Statistical comparisons are
then made using randomisation testing. Information-rich
visualisations of the identified trade-off surfaces are
obtained using attainment surfaces. The analysis is based
on the two-criterion set of test problems proposed by
Zitzler et al [2000].

The performance of a baseline MOGA optimiser is
established in Section 3. The effects of elitism and sharing
are then considered with reference to this baseline. An
elitist strategy, based on Zitzler’s [1999] universal elitism,
is developed in Section 4. Sharing methodologies for the
promotion of diversity are discussed in Section 5. A new
parameter-less technique, formulated as an
accompaniment to Pareto-based ranking, is compared to
the standard parameter-based approach. In Section 6, a
high-performance MOGA incorporating both elitism and
parameter-less sharing is investigated.

2 EMO INQUIRY FRAMEWORK

2.1 TEST SUITE

The established set of test problems developed by Zitzler
et al [2000] (ZDT) is used in this study. The suite consists
of six, tractable, two-criterion functions, with varying
characteristics as summarised in Table 1.

Table 1: Test function characteristics

NAME ATTRIBUTES

ZDT-1 Convex front

ZDT-2 Non-convex front

ZDT-3 Non-contiguous convex front

ZDT-4 Many local fronts, single global convex front

ZDT-5 Deceptive problem, convex front

ZDT-6 Non-uniform distribution, non-convex front

2.2 MEASURING PERFORMANCE

Performance of a MOEA can be decomposed into two
criteria:

• Closeness – the nearness of the obtained non-
dominated solutions to the true front.

• Diversity – the coverage of the trade-off surface by
the obtained solutions.

The ideal outcome, in test cases of this type, is a final
population with a uniform distribution of globally non-
dominated solutions spread across the entire trade-off
surface. Various performance metrics have been proposed
to measure closeness, diversity, and in some cases both
together. Some metrics require that the global trade-off
surface is known and can be sampled (straightforward in
the ZDT cases), whilst others involve a purely relative



comparison of two results sets. This study utilises three
known performance metrics: generational distance to
measure accuracy, spread to measure diversity, and
attainment surfaces to provide visualisation.

• Generational distance – an average of the Euclidean
distances between each obtained solution and the
nearest point on the true front [Veldhuizen, 1999].

• Spread – the sum of the differences between nearest
neighbour distances and the mean of all such
distances, coupled with a term to account for the
extent of the obtained front [Deb et al, 2000].

• Attainment surface – the boundary in criterion-
space that separates the region that is dominated by
the obtained solutions from that which is non-
dominated [Fonseca and Fleming, 1996].

The superposition of multiple attainment surfaces can be
treated statistically and also provides a rich qualitative
indication of performance. A typical plot is shown later in
Figure 1. The heavy line indicates the 50%-attainment
surface (akin to the median), the thinner lines show the
25% and 75% surfaces (quartiles), and the dotted lines
describe the 0% and 100% surfaces. Thus location,
dispersion, and skewness information can be obtained in a
similar manner to the box plot [Cleveland, 1993].

2.3 ANALYSING PERFORMANCE

Upon completion of a single run of a specific MOEA
configuration on a particular problem, three sets of non-
dominated criterion vectors (and associated solutions) are
obtained, namely:

• final population – the non-dominated vectors in the
final population of the algorithm,

• on-line archive – the final elite set of vectors, and

• off-line archive – the complete set of non-dominated
vectors identified by the algorithm.

The first of these sets is used for analysis and comparison
purposes in this study since it provides the most
appropriate measure of the on-line trade-off surface
maintenance capabilities of an algorithm.

An evolutionary algorithm is a stochastic process and,
thus, multiple runs (samples) are required in order to infer
reliable conclusions as to its performance. Hence, 35 runs
have been conducted for each MOEA configuration when
applied to a particular test problem. The performance of
the algorithm is expressed in the resulting distributions of
generational distance and spread. A statistical comparison
of two configurations is then possible through the use of a
test statistic.

In this study, the mean difference between two
generational distance (or, alternatively, spread)
distributions is taken as the test statistic. The significance
of this observed result is then assessed using
randomisation testing. This is a simple, yet effective,
technique that does not rely on any assumptions
concerning the attributes of the underlying processes,
unlike conventional statistical methods [Manly, 1991].

The central premise of the method is that, if the observed
result has arisen by chance, then this value will not appear
unusual in a distribution of results obtained through many
random relabellings of the samples. The randomisation
method proceeds as follows:

1. Compute the difference between the means of the
samples for each algorithm: this is the observed
difference.

2. Randomly reallocate half of all samples to one
algorithm and half to the other. Compute the
difference between the means as before.

3. Repeat Step 2 until 5000 randomised differences have
been generated, and construct a distribution of these
values.

4. If the observed value is within the central 99% of the
distribution, then accept the null hypothesis.
Otherwise consider the alternative hypotheses. This is
a two-tailed test at the 1%-level.

The null hypothesis is that the observed value has arisen
through chance and so there is no performance difference
between the two configurations. The alternative
hypotheses are that the difference is unlikely to have
arisen through chance and that one configuration has
outperformed the other (depending on which side of the
distribution the observed difference falls, and the direction
in which the difference has been calculated).

Note that the observed value is included as one of the
random relabellings since, if the null hypothesis is true,
then this value is one of the possible randomisation
results. 5000 randomisations is regarded as an acceptable
quantity for a test at the 1%-level [Manly, 1991].

The results of randomisation testing are simple to
visualise, as shown by the example in Figure 3. The
randomised results are described by the grey histogram,
whilst the observed result is depicted as a filled black
circle. Each row shows the performance on a particular
test function (from ZDT-1 at the top, to ZDT-6 at the
bottom). The left-hand column indicates the relative
performance regarding closeness, and the right-hand
column shows the corresponding difference in diversity.

3 BASELINE MOGA

3.1 DESCRIPTION

The baseline optimiser used in this study has been
developed according to the holistic design principles
championed by Michalewicz and Fogel [2000] and has
previously been shown to be effective at solving the ZDT
test problems [Purshouse and Fleming, 2001]. A summary
of the algorithm is provided in Table 2.

The multi-criterion performance of a solution is scalarised
using Fonseca and Fleming’s [1993] Pareto-based ranking
procedure. A solution is ranked according to the number
of solutions in the population that are preferred to it. If the
entire Pareto-optimal front is to be identified, the
preference relation collapses to a test for Pareto
dominance.



Table 2: Baseline configuration

EMO COMPONENT STRATEGY

GENERAL
Population size
Total generations

100
250

ELITISM None
EVALUATION [1] Fonseca and Fleming [1993]

Pareto-based ranking.
[2] Linear fitness assignment with
rank-wise averaging.
[3] No modification of fitness to
account for population density.

SELECTION Stochastic universal sampling
REPRESENTATION
Real parameter
functions

Binary function

Concatenation of real number
decision variables. Accuracy
bounded by machine precision.
Binary string, 80 bits in length.

OPERATORS
For real representations

For binary
representations

[1] Naïve crossover
Probability = 0.8.
[2] Gaussian mutation (initial
search power of 40% of variable
range; sigmoidal scaling set to 15;
feasibility requirement of one
standard deviation).
Probability = Expected value of 1
phenotype per chromosome.
[1] Single-point binary crossover.
Probability = 0.8.
[2] Simple bit-flipping mutation.
Probability = 1/80.

When ranking is complete, initial fitness values can be
prescribed. The population is sorted according to rank and
fitnesses are assigned by interpolating between the highest
fitness value for the best rank and the lowest fitness value
for the worst rank. In the baseline algorithm, linear
interpolation is used and fitness is varied between the
population size (highest) and unity (lowest). The ratio of
these two fitnesses is a definition of the selective pressure
of the assignment mechanism. Solutions of the same rank
then have their fitnesses adjusted to the average of the
original assignments for that rank.

Part of this study is concerned with the effect of diversity-
preserving mechanisms. Therefore no manipulation of the
above fitnesses through sharing is undertaken.

Stochastic universal sampling has been chosen as the
selection mechanism [Baker, 1987]. This method achieves
maximum spread with minimal bias, but is non-
parallelisable. In total, 100 selections are required since
the chosen reinsertion strategy is that all offspring replace
all parents (no generational gap) and since for the chosen
genetic operators two parents are required to produce two
offspring.

Since five of the test problems feature real number
decision variables, it is logical to use a real number
representation for these problems. Hence, a candidate
solution is described by a concatenation of phenotypic

decision variables. The other test problem, ZDT-5,
explicitly uses binary variables, thus a binary
representation is natural for this problem.

Different representations require different search
operators. For the binary chromosome case, the familiar
single-point two-parent crossover and bit-flipping
mutation operators are employed. Good results are known
to be achievable using this simple approach [Zitzler et al,
2000]. For real representations, the so-called naïve
crossover is used in conjunction with a Gaussian mutation
operator. The former of these search tools is a very simple
two-parent single-point crossover operator, where the
crossover sites are limited to points between decision
variables. This offers quite a low-power search, since it
cannot generate any values for decision variables that
were not present in the original population. However,
when coupled with a complementary high-power search
tool, the resulting search capabilities are considerable1.
Gaussian mutation is one such operator. Its main benefit is
that it provides tuneable search power in the form of the
standard deviation. This can be exploited to provide on-
line adaptation that avoids the generation of infeasible
solutions and controls convergence speed by varying the
search from near global early on to very local towards the
end. Sigmoidal variation, as a function of the percentage
of generations completed, of the standard deviation is
useful because it allows concentrated periods of high- and
low-power search [Purshouse and Fleming, 2001].

3.2 PERFORMANCE

Attainment surfaces illustrating the performance of the
baseline algorithm are shown in Figure 1. Particularly
good results were achieved for ZDT-1, ZDT-2, and ZDT-
3 (Figures 1a, 1b, and 1c respectively) in terms of both
closeness to the global Pareto front and diversity across
the front. The tight envelopes of attainment indicate the
high level of consistency achieved in these cases. The
MOGA struggled to achieve good coverage of the surface
as f1 approaches zero on ZDT-2. Note that this is a region
where there is little trade-off between the objectives.

As shown in Figure 1d, the wider envelopes of attainment
produced for the multi-fronted ZDT-4 signify entrapment
in a locally non-dominated front. On no occasions did the
MOGA converge to the global trade-off surface although
coverage across the identified fronts was good.

The baseline MOGA achieved reasonable closeness to the
global front on ZDT-5. Performance on this deceptive test
function is depicted in Figure 1e. Note that on no
occasions was the algorithm able to identify the extreme
right-hand section of the discrete trade-off surface.

Rather poor performance was observed on the non-
uniform ZDT-6, as shown in Figure 1f. Coverage was
especially poor on the less dense area of the front. This,
together with the missing section of the ZDT-5 front, is

1 Coincidentally, the incorporation of naïve crossover largely
prevents the convergence failures encountered by Ikeda et al
[2001], thus showing that MOEA failure cannot be solely
blamed on the use of Pareto ranking in these cases.



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

f
1

f
2

(a) ZDT−1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

f
1

f
2

(c) ZDT−3

5 10 15 20 25 30
0

2

4

6

8

10

12

14

16

18

20

f
1

f
2

(e) ZDT−5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

f
1

f
2

(b) ZDT−2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

f
1

f
2

(d) ZDT−4

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

f
1

f
2

(f) ZDT−6

Figure 1: Attainment surfaces – baseline MOGA solving the ZDT problems

the strongest indication that density-based sharing would
be beneficial. Closeness to the true Pareto front is also not
good. Only the 0%-attainment surface lies on the global
front, where coverage is particularly poor. Furthermore,
the position of this front with respect to the median and
quartiles suggests that this result is something of an
outlier.

4 ELITIST STRATEGY
Elitism is the process of preserving previous high-
performance solutions from one generation to the next.
This is conventionally achieved by simply copying the
solutions directly into the new generation. Elitism has

long been considered an effective method for improving
the efficiency of an EA [De Jong, 1975]. Various recent
studies in the EMO community have indicated that the
inclusion of an elitist element can considerably improve
the performance of an MOEA [Zitzler et al, 2000; Deb et
al, 2000]. The two main issues are (1) how to manage the
size of the elite sub-population, and (2) how to use elitism
to drive the search effectively.

The elitist strategy adopted in this study is a variant on the
approach developed by Zitzler [1999] and is illustrated by
the schematic in Figure 2. The key difference is that the
archive size is allowed to vary within pre-defined limits,
whilst the number of newly generated candidate solutions



is varied such that the total population size (elites plus
new solutions) is held constant.

MO
Ranking

ARCHIVE

Selection

Genetic
Operators
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+

preferences
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current population
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Figure 2: Elitist strategy

The on-line archive is initialised to the empty set, whilst
the initial population is initialised to a random set of
candidate solutions (possibly seeded with information
provided by the decision-maker). The populations at
subsequent iterations of the algorithm are the combination
of new solutions and current elite solutions. The currently
non-dominated solutions in the population are identified
and are stored as the new, potentially over-sized, archive.
Over-represented solutions are then eliminated from the
archive, if necessary, using the SPEA-2 truncation
procedure [Zitzler et al, 2001]. This is an effective
reduction technique for two-criterion problems.

When the new elite set has been finalised, the size of this
set is known, and thus the number of new candidate
solutions required to fill the population can be calculated.
These solutions are created through the selection and
genetic manipulation of members of the current
population. The new solutions are then combined with the
elite set to form the total population, which completely
replaces the old population.

This elitist strategy has been integrated within the baseline
MOGA and has been applied to the test problems.
Randomisation test results between the elitist model and
the baseline are shown in Figure 3. Observed differences
to the left of the randomisation distribution offer evidence
in favour of the elitist version outperforming the baseline
case.

There is considerable evidence, clearly shown by the
results in Figure 3, that the elitist algorithm produces
results closer to the true front than the baseline for ZDT-1,
2, 3, 4, and 6. Superior performance in terms of diversity
is strongly suggested for ZDT-1, 2, 4, 5, and 6.

Elitism increases the convergence speed of the algorithm.
The danger of sub-optimal convergence is somewhat
reconciled by the distributed nature of the elite set. High-
power search operators, such as the Gaussian mutation
operator used in this work, can also reduce the risk of

premature convergence. Hence, the increased convergence
exhibited in this study is expected.

Spread

ZDT−1    

−0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06

0

50

100

150

200
Generational distance

−2 −1.5 −1 −0.5 0 0.5 1 1.5

x 10−4

0

50

100

150

200

250

ZDT−2    

−0.1 −0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08

0

50

100

150

200

−2 −1.5 −1 −0.5 0 0.5 1 1.5

x 10−4

0

50

100

150

200

250

ZDT−3    

−0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04 0.05

0

20

40

60

80

100

120

140

160

−2 −1.5 −1 −0.5 0 0.5 1 1.5

x 10−4

0

50

100

150

200

ZDT−4    

−0.12 −0.1 −0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08

0

50

100

150

200

−0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06

0

50

100

150

200

ZDT−5    

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15

0

50

100

150

200

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2

0

20

40

60

80

100

120

140

ZDT−6    

♦ = observed difference
−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3

0

20

40

60

80

100

120

140

160

difference between population means

fr
eq

ue
nc

y

−0.3 −0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15

0

50

100

150

200

250

Figure 3: Elite versus baseline

The elitist scheme also maintains the characteristics of the
currently identified trade-off surface within the on-line
population. Thus, diversity of non-dominated solutions in
the population is maintained and encouraged (through the
thinning of similar criterion vectors) by the truncation
mechanism. This helps to explain the improvement in
diversity seen in the results. However, the truncation
process only represents the current distribution: it does
not, directly (though fitness), drive the search towards a
superior distribution. Despite this fact, the inclusion of
elitism did lead to improved diversity on the non-
uniformly distributed ZDT-6. Modifications to the fitness,
such as those arising through sharing, may assist further in
improving diversity across the trade-off surface.

5 SHARING STRATEGY

5.1 INTRODUCTION

One of the aims of a multi-objective evolutionary
algorithm is to obtain a suitable distribution of candidate
solutions in regions of interest to the decision-maker. In
an evolutionary algorithm, this can be achieved through
the formation of sub-population clusters – known as
niches – within the global population. Fitness sharing is
the most popular method for fostering this niching process
[Goldberg and Richardson, 1987]. In this approach, the
raw fitness value of a candidate solution is reduced by a
factor dependent on the local population density. This
measure should be made in the domain over which a good
distribution is of interest: usually criterion-space.

5.2 PARAMETER-BASED METHODS

Fitness sharing has been shown to combat the problem of
genetic drift (population convergence to a single point due
to stochastic selection errors), thus helping to attenuate the
possibility of sub-optimal convergence and to enhance
coverage of trade-off surfaces. However, the power law
equation on which the technique is based requires a
definition of closeness in order to calculate the population
densities. This can be difficult to estimate in practice.
Furthermore, the method is sensitive to choice of this



niche size parameter. Several methods have been
proposed in order to estimate the niche size, for example
Deb and Goldberg [1989] and Fonseca and Fleming
[1993], of which the dynamic approach of Fonseca and
Fleming [1995] is particularly interesting.

Fonseca and Fleming [1995] noted the similarity between
the power law sharing function and the Epanechnikov
kernel density estimator used by statisticians. The kernel
smoothing parameter used in the estimator was found to
be directly analogous to the fitness sharing niche size
parameter. The key benefit of this is that statisticians have
developed successful techniques for estimating the value
of this parameter [Silverman, 1986]. Furthermore, the
approach is amenable to update at each generation of the
EA population. This approach can be regarded as
parameter-based sharing with automatic tuning.

Epanechnikov sharing has been added to the baseline
MOGA and has been applied to the benchmark problems.
Sharing is performed using the Euclidean distance metric
in the criterion domain. Results of a randomisation
comparison with the baseline algorithm are shown in
Figure 4. Observed values that favour the sharing scheme
will lie to the left of the randomisation distribution.
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Figure 4: Epanechnikov versus baseline

The inclusion of Epanechnikov sharing has improved both
aspects of performance on the non-uniform ZDT-6. Note
in particular that a method designed to improve diversity
has also helped to improve convergence, thus suggesting
the strong interaction between the two performance
criteria. However, no improvements in either diversity or
closeness have been achieved for any other test function.
Indeed there is some evidence to suggest deterioration in
diversity on ZDT-1. The lack of improvement to diversity
is of particular concern, since the elitist results in Section
4 have indicated that diversity can be greatly improved on
these problems. A possible explanation for the lack of
success is that the automatic parameter selection is
providing poor estimates.

5.3 PARAMETER-LESS METHODS

The difficulty and inconvenience involved in determining
the niche size value has led many researchers to
investigate parameter-less methods for achieving niching.
A new approach is presented here that increases the

resolution of the Fonseca and Fleming [1993] Pareto-
based ranking procedure through the inclusion of
population density information. An intra-ranking is
performed on candidate solutions of identical Pareto-
based rank, discriminating on the basis of population
density at that rank. Solutions in less dense areas receive a
superior intra-ranking to their counterparts in denser
regions. This approach requires a definition of distance
(Euclidean nearest neighbour is used herein) but does not
require a definition of closeness. In practice, the distance
metric is likely to be problem dependent and could
conceivably include decision-maker preference
information. Following the new fine-grained ranking
process, the fitness assignment procedure remains
unchanged.

Using this scheme, if one candidate solution is preferred
to (dominates) another, then the former is guaranteed to
have a superior fitness value. Also, when all solutions are
non-dominated, discrimination is based purely on density.
If, in addition, the density is globally uniform then all
fitnesses are identical.

With any type of ranking scheme, information content is
lost. Ranking indicates that one solution lies in a more
densely packed region than another solution but the actual
difference in density between the two is lost. This limits
the amount of information available to the search
procedure but protects against premature convergence to
locally superfit solutions and removes the requirement for
a niche size setting.

The results for this new sharing scheme, compared to the
non-sharing baseline model, are shown in Figure 5. The
central aim of sharing is to improve the distribution of
solutions in criterion-space and this should be primarily
evident in the spread results. There is strong evidence to
suggest that the new method improved spread on ZDT-3
and ZDT-4. The use of the Epanechnikov kernel, by
contrast, did not improve results on these problems. In no
case was the absence of a sharing mechanism shown to be
preferable. However, there is little evidence to suggest
that the use of sharing made any difference to the results
for ZDT-6. This is particularly disappointing since this
problem has a non-uniform distribution across its trade-off
surface: a situation in which sharing is considered a highly
appropriate strategy.
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Figure 5: New sharing versus baseline
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Figure 6: Attainment surfaces – elitist, parameter-less sharing MOGA solving the ZDT problems

6 HIGH-PERFORMANCE MOGA
The use of an elitist strategy or a parameter-less sharing
strategy in isolation has been shown to offer improved
performance. It is instructive to also consider the effect of
these schemes in combination. Attainment surfaces for
such an algorithm are shown in Figure 6. The envelopes
of attainment are generally very tight, indicating good
consistency. As evident from Figure 6d, closeness has
been greatly improved on ZDT-4: indeed the 25%-
attainment surface lies very close to the global front of
this difficult test problem. Complete coverage of the right-
hand portion of the trade-off surface has been achieved for

ZDT-5, as shown in Figure 6e. Finally, closeness and
diversity have been much improved on ZDT-6 (Figure 6f).

Comparisons with the baseline MOGA are made using
randomisation testing in Figure 7. Observed differences
that lie to the left of the randomisation distribution favour
the new algorithm. Compelling evidence points to the
algorithm substantially outperforming the baseline in
terms of diversity across all six benchmark problems. The
combination of elitism and new sharing was required in
order to achieve this notable result: neither elitism nor
sharing alone was shown to be sufficient. Improved
closeness was observed for ZDT-1, 2, 4, and 6 (the result
for ZDT-5 is not significant at the 1%-level).
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Figure 7: Elitist, sharing MOGA versus baseline

7 CONCLUSION
Using a progressive and tractable experimental approach,
supported by appropriate statistical and visual analyses,
this paper has shown that elitist and sharing strategies can
significantly improve the performance of an evolutionary
multi-criterion optimiser. Existing elitist heuristics are
again shown to be beneficial, this time using a new
analysis technique and in the context of MOGA.
However, the shortcomings of a popular parameter-based
sharing technique have been exposed, as have the dangers
of relying too heavily on an automatic parameter-setting
method. A new parameter-less method of sharing has been
introduced and has been shown to be more reliable than
the standard method. Impressive results were achieved
when both elitism and sharing were used together. As a
final word of caution, these results have been obtained for
two-criterion problems: further research is required to
ascertain the effectiveness of these methods as the
dimension of the problem increases.

The results described in this paper, together with an
extended research report, are available for download from
the following site:

http://www.shef.ac.uk/~acse/research/studen
ts/r.c.purshouse/
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