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Abstract

This paper describes an evolutionary method
for identifying a causal model from the ob-
served time series data. We use a system
of ordinary differential equations (ODEs) as
the causal model. This approach is well-
known to be useful for the practical applica-
tion, e.g., bioinformatics, chemical reaction
models, controlling theory etc. To explore
the search space more effectively in the course
of evolution, the right-hand sides of ODEs
are inferred by Genetic Programming (GP)
and the least mean square (LMS) method is
used along with the ordinary GP. We apply
our method to several target tasks and em-
pirically show how successfully GP infers the
systems of ODEs.

1 Introduction

Ordinary differential equations (ODEs) are one of the
easiest media for modeling complex systems, where
basic differential relationships are known between the
system components. Solving a set of differential equa-
tions to produce their equivalent functions is relatively
easy so as to obtain useful time-series data. On the
other hand, the inverse problem, i.e., the inference of
the system of ODE from the observed time-series data,
is not necessarily easy, although very important for
many fields. This is because there is no knowing the
appropriate form, i.e., the order and terms of ODEs,
beforehand.

In this paper, we deal with an arbitrary form in the
right-hand side of the system of ODEs to allow the
flexibility of the model. More precisely, we consider
the following general form:

dXi

dt
= fi(X1,X2, . . . ,Xn) (i = 1, 2, . . . , n), (1)

where Xi is the state variable and n is the number of
the observable components.

For the sake of identifying the system, we use Genetic
Programming (GP) to evolve the ODEs from the ob-
served time series. Although GP is effective in finding
the suitable structure, it is sometimes difficult to opti-
mize the parameters, such as constants or coefficients
of the polynomials. This is because the ordinary GP
searches for them simply by combining randomly gen-
erated constants. To avoid this difficulty, we introduce
the least mean square (LMS) method.

There have been several studies for identifying differ-
ential equation models by means of EAs (Evolution-
ary Algorithms). For instance, GP was used to find a
function in a symbolic form, which satisfies the differ-
ential equation and initial conditions [Koza92]. Cao
and his colleagues used hybrid evolutionary model-
ing algorithms [Cao00]. The main idea was to em-
bed GA in GP, where GP was employed to discover
and optimize the structure of a model, while GA
was used to optimize its parameters, i.e., coefficients.
[Babovic00] also applied GP to approximate several
ODEs from the domain of ecological modeling, e.g.,
Lotka-Volterra and logistic equations. They showed
that the GP-based approach introduced numerous
advantages over the most available modeling meth-
ods. In our previous researches [Sakamoto and Iba00]
and [Sakamoto and Iba01], we proposed another inte-
grated scheme, in which the least mean square (LMS)
method is used along with GP. In this scheme, some
individuals were created by the LMS method at some
intervals of generations and they replaced the worst
individuals in the population.

In this paper, we extend our previous approach so



as to achieve the inference of the ODEs more effec-
tively. More precisely, we empirically show the follow-
ing points:

• The success in the acquisition of ODEs, which are
close to the observed time series.

• The inference of the exact equation form, i.e., the
exact causal relationship.

• The effectiveness of the LMS method.
• The superiority of our approach over the previous
methods.

The rest of this paper is organized as follows. In Sec-
tion 2, we describe the details of our method, i.e., how
GP and LMS methods are integrated to work in the
course of evolution. Three examples are used to exam-
ine the effectiveness of our method. Their experimen-
tal results are shown in Section 3. Then, we discuss
the results in Section 4 and give some conclusion in
Section 5.

2 Integration of GP and LMS

We use GP to identify a causal model in the form of
the system of ODEs. Though GP is capable of finding
a desirable structure effectively, it cannot always be
effective in finding the proper coefficients because GP
uses the combination of randomly selected ones. We
have chosen the least mean square method (LMS) to
tackle this defect of the ordinary GP. For this purpose,
coefficients are not included in the terminal set for a
GP individual tree. The coefficients of each term of
a GP tree are calculated by the LMS method and a
table of them composes a GP individual along with a
tree.

2.1 Inference of the form of equations using
GP

We use GP to identify the form of the system of dif-
ferential equations. For this purpose, we encode right-
hand sides of ODEs into a GP individual. Each in-
dividual contains a set of n trees, i.e., an n-tuple of
trees(f1, . . . , fn). For example, consider the two trees
in Fig.1. This shows the following system of ODEs:

{
Ẋ1 = aX1X

2
2 + b

Ẋ2 = cX1X2 + dX2,
(2)

where the coefficients a, b, c, d, are derived by LMS de-
scribed later. Note that the constant term b is added
to the right hand side of the first equation, because of

the constant terminal, i.e., 1. Thus, each equation uses
a distinct program. A GP individual maintains mul-
tiple branches, each of which serves as the right-hand
side of a differential equation.

Crossover operations are restricted to the correspon-
dent branch pairs. Actually, each tree, i.e., each right
hand side of the ODE sytem, is evolved independently
in parallel.

Figure 1: Example of a GP individual.

2.2 Optimization of models using LMS
method

Coefficients of a GP individual is derived by the LMS
method described below. Assume that we want to
acquire the approximate expression in the following
form:

y(x1 , . . . , xL) =
M∑

k=1

akFk(x1 , . . . , xL), (3)

where Fk(x1, . . . , xL) is the basis function, x1, . . . , xL

are the independent variables, y(x1, . . . , xL) is the de-
pendent variable, and M is the number of the basis
functions. Let a be the vector of coefficients, i.e.,
(a1, . . . , aM ). Then, our purpose is to minimize χ2

described in (4) to acquire a.

χ2 =
N∑

i=1

(
y(i)−

M∑
k=1

akFk(x1(i), . . . , xL(i))
)2

, (4)

where x1(i), . . . , xL(i) and y(i) are data given for the
LMS method and N is the number of data points. Let
b be the vector of (y(1), . . . , y(N)) andA be theN×M
matrix described below:



F1(x1(1), . . . , xL(1)) . . . FM (x1(1), . . . , xL(1))
F1(x1(2), . . . , xL(2)) . . . FM (x1(2), . . . , xL(2))

...
. . .

...
F1(x1(N), . . . , xL(N)) . . . FM (x1(N), . . . , xL(N))






Then, (5) should be satisfied to minimize χ2.

(AT · A) · a = AT · b (5)

Thus, a can be acquired by solving this equation.

When applying to the time-series problem, y(i) for the
jth equation of the system of differential equations is
calculated according to the following discrete differ-
ence of the time-series xj(t):

y(i) = Ẋj |t=ti =
xj(ti +∆t)− xj(ti −∆t)

2∆t
, (6)

where ti is the time of the ith selected data point.
For example, consider the first ODE (Ẋ1) of the sys-
tem (2), in which the number of the components is
two (L = n = 2). In this case, we are using two
basis functions, i.e., M = 2 and (F1, F2)=(X1X

2
2 , 1).

Then, the ith row of the matrix A is determined as
(x1(ti)x2(ti)2,1).

The coefficients in the approximate expressions of the
right-hand sides of the equations can be derived by
using A and b(y(1), . . . , y(N)) acquired above.

2.3 Fitness definition

The fitness of each individual is defined as the sum of
the squared error and the penalty for the degree of the
equations:

fitness =
n∑

i=1

T−1∑
k=0

(x′
i(t0+k∆t)−xi(t0+k∆t))2+a·m,

(7)




t0 : the starting time
∆t : the stepsize
n : the number of the observable components
T : the number of the data points




where xi(t0+k∆t) is the given target time series (k =
0, 1, · · · , T −1). x′

i(t0+k∆t) is the time series acquired
by calculating the system of ODEs represented by a
GP individual. All these time series are calculated by
using the forth-order Runge-Kutta method. m is the
number of terms and a is the weight constant. In other
words, the individual which has a smaller number of
terms and is closer to the target time series has the
higher possibility to be selected and inherited to the
next generation. This fitness derivation is based on the
MDL (Minimum Description Length) criterion, which
has been often used in GP (see [Iba94], [Zhang95] and

Exp.1 Exp.2 Exp.3 Exp.4

Population size 1000 1000 1000 3000
Generation 100 100 100 100
Crossover rate 0.80 0.80 0.80 0.80
Mutation rate 0.10 0.10 0.10 0.10
# time series 1 1 3 3
Stepsize 0.01 0.01 0.01
# data points 100 40 30

Table 1: GP and LMS parameters for experiments.

[Nikolaev and Iba01] for examples). When calculating
the time series, some individuals may go overflow. In
this case, the individual’s fitness value gets so large
that it will be weeded out from the population.

We use several sets of time series as the training data
for GP. This is to acquire the equations as close to the
target as possible. Each data set was generated from
the same target by using different initial values.

3 Experimental results

We have prepared three different tasks to test the ef-
fectiveness of our method. Experimental parameters
are summarized in Table 1. Function and terminal sets
F and T are as follows:

F = {+,−, ∗}
T = {X1, . . . ,Xn, 1}

3.1 Example 1 : Chemical reaction model

The reaction between formaldehyde (X1) and car-
bamide in the aqueous solution gives methylol urea
(X2) which continues to react with carbamide and
form methylene urea (X3) (see [Cao00] for details).
The reaction equations are described as below:

HCHO + (NH2)2CO
k1−→ H2N · CO · NH · CH2OH

(8)

H2N · CO · NH · CH2OH + (NH2)2CO
k1−→ (NH2CONH)2CH2 (9)

As a kind of typical consecutive reaction, the concen-
trations of the three components in the system satisfy
the following system:




Ẋ1 = −1.4000X1

Ẋ2 = 1.4000X1 − 4.2000X2

Ẋ3 = 4.2000X2

(10)



Experimental parameters for this task are shown in
Table 1. By applying our method, we have acquired
the system of eq.(11), which gave the sums of square
errors as (X1,X2,X3) = (0.000, 2.082 ∗ 10−11, 1.883 ∗
10−11). The time series generated by this system is
shown in Fig.2 along with that of the target.




Ẋ1 = −1.4000X1

Ẋ2 = 1.4004X1 − 4.2006X2

Ẋ3 = 4.1998X2

(11)
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Figure 2: Time series of the acquired model for chem-
ical reaction.

The best kinetic model acquired in [Cao00] was as fol-
lows:




Ẋ1 = −1.400035X1

Ẋ2 = 1.355543(X1 + t)− 4.482911X2

Ẋ3 = 4.069420X2 + t − 0.002812
(12)

where the sums of square errors were (X1,X2,X3) =
(1.600∗10−11, 3.240∗10−8, 3.025∗10−9). Note that the
terminal set used in [Cao00] included the time variable
t.

3.2 Example 2 : Three-species
Lotka-Volterra model

The Lotka-Volterra model describes interactions be-
tween two or more species, i.e., predators and preys,
in an ecosystem [Takeuchi96]. The following DOEs
represent a three-species Lotka-Volterra model:




Ẋ1 = (1− X1 −X2 − 10X3)X1

Ẋ2 = (0.992− 1.5X1 − X2 − X3)X2

Ẋ3 = (−1.2 + 5X1 + 0.5X2)X3

(13)

This system models the introduction of the third
species, i.e., a predator, into a two-species system of
competition, i.e., preys. More precisely, X1 and X2

are the number of preys competing with each other,
whereas X3 represents the number of predators.

The GP and LMS parameters we used are shown in Ta-
ble 1. As a result of experiments, the following DOEs
were acquired in a typical run:




Ẋ1 = −10.001X1X3 − 1.000X1X2 − 0.999X2
1 + 1.000X1

Ẋ2 = 0.992X2 − 1.500X1X2 − 0.996X2X3 − 1.000X2
2

Ẋ3 = 4.998X1X3 + 0.500X2X3 − 1.200X3

(14)

Note that the two systems of DOEs, i.e., eqs.(13) and
eqs.(14), are almost identical except for slightly dif-
ferent coefficients. In all runs, we have succeeded in
acquiring almost the same DOEs. The MES (Mean
Square Error) of the above DOEs are very small
(4.78 ∗ 10−11).

We have conducted the further experiments with this
Lotka-Volterra model to compare the performances of
the following methods:

• Standard GP
• Old version of GP with LMS
• Proposed method of GP with LMS

As mentioned in Section 1, in our previous papers
[Sakamoto and Iba01] and [Sakamoto and Iba00], we
used the least mean square (LMS) method along with
GP in a different way, i.e., some individuals were cre-
ated by the LMS method at some intervals of gener-
ations and they replaced the worst individuals in the
population. We compared the performance of the old
version to see the effectiveness of the approach pro-
posed in this paper.

The experimental results are given in Table 2. The ta-
ble shows the MSE data and hit percentages, i.e., the
ratios of successes in acquiring the target DOEs, aver-
aged over ten runs. As clearly shown in the table, GP
with LMS performed better than GP alone (standard
GP), in view of MSE values. Moreover, the superior-
ity of the proposed approach over the old version has
been confirmed by the hit percentage.

3.3 Example 3 : E-cell simulation

We have conducted the experiment on the data of a
metabolic network that consists of three substances.



MSE Hit(%)
Standard GP 4.47 ∗ 10−5 0%
Old version 2.85 ∗ 10−7 0%
Proposed method 4.78 ∗ 10−11 100%

Table 2: Comparision of Three methods.

This target network is a part of the biological phos-
pholipid pathway. The data were derived from the E-
cell simulation model. E-cell Simulation Environment
(E-CELL SE) is a software package for cellular and
biochemical modeling and simulation (see [Tomita99]
for details of bioinformatics). This network can be
approximated as (15).




Ẋ1 = −k1X1X3

Ẋ2 = k1X1X3 − k2X2

Ẋ3 = −k1X1X3 + k2X2

(15)

Note that the parameters k1, k2, and k3 are unknown
for the simulation experiment.

Three sets of time series generated by E-cell with a
different initial value were used for the training of GP.
Experimental parameters are shown in Table 1. By
applying our method, we have acquired the following
equations in a typical run:




Ẋ1 = −10.3176X1X3

Ẋ2 = 9.7149X1X3 − 17.5084X2

Ẋ3 = −9.7018X1X3 + 17.4766X2

(16)

When we compare the two systems, i.e., eq.(16) and
eq.(15), we can confirm the success in acquiring the
almost identical model to the target ODEs. The time
series generated by eq.(16) is shown in Fig.3 along with
that of the target. The average MSE (Mean Square
Error) of 10 runs was 2.545 ∗ 10−3.

We have also conducted a comparative experiment
without the LMS method to confirm its effectiveness
(in this case, coefficients are added to the terminal
set). The average MSE of 10 runs is 5.328 ∗ 10−3,
whereas that of the experiment with the LMS method
is 2.545 ∗10−3. Besides, the correct form of ODEs was
not always acquired without the LMS method. For
example, in no runs, the correct ODE for X3 was ac-
quired without the LMS method.

3.4 Example 4 : S-system model

S-system is a type of power-law formalism and has
been proposed for the causality model. The concrete

0

0.2

0.4

0.6

0.8

1

1.2

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

C
on

ce
nt

ra
tio

ns

Time

X1
X2
X3

pred X1
pred X2
pred X3

Figure 3: Time series of the acquired model for E-cell
simulation.

form of S-system is given as follows:

dXi

dt
= αi

n∏
j=1

X
gij

j − βi

n∏
j=1

X
hij

j (i = 1, 2, . . . , n),

where Xi is a state variable. The first term repre-
sents all influences that increase Xi, whereas the sec-
ond term represents all the influences that decrease
Xi [Savageau76]. S-system is commonly used in many
fields and its parameters were optimized by using GA
[Tominaga00].

We tested on the gene regulatory network which con-
sists of five nodes and had been generated from the
S-system. This causality model can be approximated
as follows (see [Tominaga00] for details):




Ẋ1 = 15.0X3X
−0.1
5 − 10.0X2.0

1

Ẋ2 = 10.0X2.0
1 − 10.0X2.0

2

Ẋ3 = 10.0X−0.1
2 − 10.0X−0.1

2 X2.0
3

Ẋ4 = 8.0X2.0
1 X−1.0

5 − 10.0X2.0
4

Ẋ5 = 10.0X2.0
4 − 10.0X2.0

5

(17)

Three sets of time series with a different initial value
were used for the training of GP. Experimental pa-
rameters are shown in Table 1. To cope with the real-
valued power of the component variables, we used the
following terminal set:

T = {X1,X
−1
1 ,X0.1

1 ,X−0.1
1 ,X2,X

−1
2 ,X0.1

2 ,X−0.1
2 ,

· · · ,X5,X
−1
5 ,X0.1

5 ,X−0.1
5 } (18)

By applying our method, we have acquired the follow-
ing equations in a typical run:
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Figure 4: Acquired and target time series data of S-system.




Ẋ1 = 14.926X3X
−0.1
5 − 9.941X2.0

1

Ẋ2 = 9.950X2.0
1 − 9.938X2.0

2

Ẋ3 = 10.010X−0.1
2 − 10.005X−0.1

2 X2.0
3

Ẋ4 = 7.880X2.0
1 X−1.0

5 − 9.826X2.0
4

Ẋ5 = 9.935X2.0
4 − 9.919X2.0

5

(19)

Note that two systems, i.e., eq.(19) and eq.(17), are
almost identical. The acquired and the given target
time series are shown in Fig.4. As can be seen, the
acquired time series is quite close to the target one.

For the above task, the average MSE (Mean Square
Error) of 10 runs was 4.532∗10−6. On the other hand,
that of the experiment without the LMS method was
6.145 ∗ 10−4. The equations of the correct forms were
acquired in 92% of the runs with LMS, whereas in no
runs the correct form of equations was acquired with-
out the LMS method. Fig.5 shows the fitness transi-
tions for both methods in typical cases. Thus, we can
confirm that the search became more effective by using
GP along with LMS method.
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Figure 5: Typical case of the evolution for S-sytem.

4 Discussion

Although the above section shows the effectiveness of
our approach in acquiring the exact form which is very
close to the target observed data, there is another



factor to be considered, i.e., the robustness. To test
the robustness of our method to the real noisy world,
we conducted the E-cell experiment (i.e., Exp.2) with
noise-added data sets. 5% and 10% random noises
were added to the target time series. The acquired
time series are plotted in Fig.6 with the target data.
The MSE values and the success ratios averaged over
15 runs are shown in Table 3. The table compares
these values by our approach and the standard GP,
in which the right hand sides of ODEs are evolved in
a similar way to the symbolic regression (see [Koza92]
for details). We can observe that the proposed method
worked effectively to acquire the better individual with
noisy environments than the standard GP.
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Figure 6: Acquired time series of noisy data.

As can be seen in Section3.1, the proposed approach
is superior to the traditional method [Cao00]. Re-
member that the coefficients of ODEs were derived
by means of GA in Cao’s scheme, whereas we used
LMS for this purpose. Therefore, the superiority of
our approach can also be confirmed when we consider
the difference of computational burden of these tech-

niques.

As with many other proposed models, the solution
which fits the given time series quite well is not nec-
essarily determined uniquely. In other words, there
may exist more than one solution which behave consis-
tently with the target. Therefore, even if one system
of ODEs is acquired as a solution, we cannot disre-
gard other candidates. Our aim is to obtain the candi-
dates scattered in the huge search space and to propose
to users the possible causal relationship among the
observable components. Therefore, as future works,
we will concentrate on the construction of the inter-
active system, which proposes the possible solutions
and tells users what kinds of data are needed to de-
termine the relationship among the components (see
[Mimura and Iba02] for details).

5 Conclusion

We have proposed the inference method of the system
of ODEs from the observed time series by using GP
along with the LMS method. We showed how success-
fully our method can infer the causal model by several
experiments. More precisely, we succeeded in acquir-
ing the system of ODEs which is very close to the
observed time series and inferring the exact equation
form. The effectiveness of the LMS method and the
superiority of our approach over the previous method
were confirmed by comparative experiments.

As a future research, we will apply our approach to
some real-world tasks. For this purpose, we are work-
ing on the development of the interactive inference sys-
tem, in which users will be able to pick up the cor-
rect equations or discard the meaningless equations
from the suggested ones. We are trying to solve some
of the real biological problems by using this system
[Mimura and Iba02].
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