Fitness Distance Correlation and Problem Difficulty
for Genetic Programming

Philippe Collard
I3S Laboratory,
University of Nice,
Sophia Antipolis, France

Manuel Clergue
I3S Laboratory,
University of Nice,
Sophia Antipolis, France

Abstract

This work is a first step in the attempt to
verify whether (and in which cases) fitness
distance correlation can be a good tool for
classifying problems on the basis of their dif-
ficulty for genetic programming. By analogy
with the studies that have already been done
on genetic algorithms, we define some no-
tions of distance between genotypes. Then
we choose one of these distances to calculate
the fitness distance correlation coefficient and
we use it to study the difficulty of some prob-
lems. First, we do this for a syntactically lim-
ited language. Then we extend the study to
standard genetic programming. For the func-
tions used here i.e., traps and royal trees, the
results confirm that fitness distance correla-
tion is a good predictor of genetic program-
ming difficulty.

1 INTRODUCTION

Previous studies of problem difficulty in Genetic Algo-
rithms (GAs) [6] have shown the importance of the no-
tion of distance between genotypes as a tool to measure
the difficulty of problems. The typical distance defi-
nition for GAs is the Hamming distance, while other
distances like alternation [3] have also been used. Here
we present for the first time a study for GP difficulty
in analogy with GA research. For this reason, in the
following, we offer some definitions of distance between
individuals for GP. It should be noted that fitness land-
scape structure depends on the operators used to tra-
verse it [6]. In the present work, the standard GP
crossover [10] is used as the sole genetic operator.

The usual approach to problem difficulty in GP has

Leonardo Vanneschi
Computer Science Inst.,
University of Lausanne,
Lausanne, Switzerland

Marco Tomassini
Computer Science Inst.,
University of Lausanne,
Lausanne, Switzerland

been the use of a more or less agreed upon set of test
problems that have their origin in Koza’s work [10]
such as the even-n parity problem, the multiplexer,
symbolic regression and artificial ant. However, this
point of view, while useful for practical benchmarking
purposes, lacks generality since results are problem-
dependent and it is difficult to infer more general issues
relating to intrinsic GP difficulty by just looking at
statistics derived from these problems.

There have been few attempts to date to character-
ize GP difficulty by means of a single measure. One
early approach was proposed by Koza [10] and con-
sists in calculating, for a given problem, the number
of individuals that must be processed in order for a
solution to be found with a given probability p (usu-
ally p = 99%). This gives a number characterizing the
required computational effort but it cannot be relied
upon for distinguishing easy from hard in GP.

Another potentially more fruitful approach, has been
to transfer to GP some of the considerations that have
proven useful for studying GA difficulty. Thus, syn-
thetic or constructive problems inspired from GA work
have been devised in order to probe GP difficulty. One
early example is the work of Kinnear [9] in which
GP difficulty was related to the shape of the fitness
landscape and analysed through the use of correlation
length, a measure first proposed by Weinberger [16]
and later used in genetic algorithms work by Mand-
erick et al. [11]. Kinnear’s results for GP, however,
were difficult to interpret: essentially no simple re-
lationship was found between correlation length val-
ues and GP hardness. In the same vein, Punch and
coworkers [13, 14] proposed a new synthetic bench-
mark problem of tunable difficulty, the Royal Tree
problem, which was inspired by the well-known Royal
Road problem used in GA theory [12]. However, Royal
Trees were used to test the effectiveness of multipopu-
lation as compared to standard single population GP
and not, to our knowledge, to gauge intrinsic GP diffi-

culty. Even though we know that there are counterex-
amples to the use of fitness distance correlation (fdc)
as a tool for problem difficulty in GA [1], [15], we are
also stimulated by the success of fdc on a large number
of GA functions (see for example [3]) and by the lack
of fdc studies in GP.

We should also mention a more recent attempt to
quantify GP problem difficulty by Daida et al. [4].
Their approach is based on the exhaustive study of
the dynamics of a single problem of the symbolic re-
gression type, the binomial-3 problem. The binomial-3
problem is tunable thanks to the existence of a range
of ephemeral random constants. This approach is in-
teresting but it is different from ours. Whereas they
try to fully understand the whole range of behaviors
of this particular problem depending on the parame-
ter interval chosen, our goal is to characterize the GP
difficulty of whole classes of functions. In our opinion,
the two approaches are obviously compatible and both
should be pursued.

This paper is structured as follows. In section 2 we
define a language that will be used at first for con-
structing restricted genotypes, in section 3 we define
different distances between these genotypes, in section
4 we compare these distances for a particular set of
functions (the trap functions) and in section 5 we use
one of these distances to evaluate the problem diffi-
culty. In section 6, we generalize the results to geno-
types without syntactical restrictions. In section 7 we
extend the study to Royal Trees and in section 8 we
give our conclusions.

2 A RESTRICTED LANGUAGE

We have decided to study the dynamics of GP by defin-
ing a syntax for the individuals and by artificially as-
signing a conventional fitness value to each point in
the resulting fitness landscape. For simplicity, our first
step is based on an extremely simple and constrained
GP model. However, we will remove this assumption
in section 6 where unrestricted GP trees are used. We
decided to use function and terminal sets inspired by
those proposed by Punch et al. [13]. Thus, we will
consider a set of functions A, B, C, etc. with increas-
ing arity (an A function has arity 1, a B function has
arity 2, and so on) and a single terminal X as follows:

F={A,B,C,D,.}, T = {X}.

Moreover, we observe that for GAs genomes have a
finite and fixed size, so the number of possible individ-
uals in the search space is finite and numerable. For
GP, this is not the case, which makes the dynamics of
GP more difficult to study. In order to avoid this kind

of problem, we have decided, as a first step, to limit
the structures of the possible individuals of our search
space. In particular, we have forbidden individuals to
have as a child in the tree structure a node represent-
ing a function with an arity greater or equal to the
arity of the function represented by the father. See
figure 1 for some examples of legal and illegal trees.

C
B/‘B\B B\
& A AN AR

] T
\
X X ‘x>‘<x>‘<xx

Legal Trees

B

AN
///D\\
X X X X

lllegal Trees

Figure 1: The three trees in the upper part are legal
because every node has as son a node with a smaller
arity. The other trees are illegal.

This syntactic restriction allows us to automatically
limit the depth of the trees. On the other hand, this
limitation obliges us to define a crossover operator such
that no illegal tree is generated. This definition obvi-
ously limits what GP can do, but it is useful as a first
approximation. From now on, we will refer to GP with
the restrictions mentioned above as limited GP and
to GP without the syntactical constraints as standard

GP.

In our problems, we will consider only one individual
in the search space to be the global optimum. This
tree will be the perfectly balanced tree having as root
the node with the maximum arity between the allowed
nodes and having the maximum depth. The first tree
in the upper left part of figure 1 shows the optimal
tree for the set of functions {4, B} while the second
tree is the optimal one if we also insert node C in
the function set. Note that this tree has C' as root
and three optimum trees of root B as subtrees. By
the same argument, we can deduce the form of the
optimum trees of any other root.

3 DISTANCE DEFINITIONS

Defining a distance between genotypes in GP is much
more difficult than for GAs, given the tree structure
of genotypes. For such a definition of distance for tree

structures, see for instance [8]. In the following, we will
give some new definitions of distance for our restricted
language, starting from a preliminary pseudo-distance.
In the next sections, we will compare these distances
and we will choose one with the aim of measuring the
difficulty of problems for GP.

3.1 THE FIRST STEP: d,;
Let T7 and T5 be two trees. Then, we define

dy (Th, Tz) = |weight(Ty) — weight(Ts)]

where:

VT weight(T)=1-nx(T) +2-na(T)+
3-npg(T)+4-nc(T)+ ...

and: nx (T) is the number of symbols X in the tree T,
n4(T) is the number of symbols A in the tree T, and
S0 on.

3.1.1 Problems of d;

Figure 2 shows a set of trees with their weights, defined
as in 3.1.

T X ¥R

weight(T) 1 3 5 7 9 7

Figure 2: Some examples of legal trees with their
weights, according to the definition of paragraph 3.1.

From figure 2, we can see that two trees can have a dis-
tance = 0 between each other, without being the same
individual, and also having quite different structures,
as is the case for trees number four and six, counting
from the left in figure 2. For this reason, we called
di a pseudo-distance. The next definition, in a sense,
extends d;.

3.2 dy: SYMBOLS WITH ROOT PRIZES

To overcome the problem presented in 3.1, we define
a new concept of distance as follows:

e Each tree with root ¢ must have a greater weight
than all the trees with root j, if and only if j < 4,
where:

—i,je{X,AB,C,D,..}

— we consider an order such that: X < 4 <
B<(C<D<..

e Since the simpler trees have a difference = 2 in
the weights between each other, we give a prize to
each root, such that the lighter tree of root succ()
has the weight of the heaviest tree of root i plus
2, where we impose that: ...,C = succ(B),B =
succ(A), A = suce(X)

Example

Let T7 be the fifth tree of figure 2 and T5 be the sixth.
Ty, which is the heaviest tree of root B has a weight
= 9. If we don’t give any prize to the root, 75 has
root = 7. Since we want 75 to have a weight = 11, we
have to give a prize of 4 to all the trees with root C.
Tterating this reasoning, we get that the prize for trees
with root D must be = 28, the prize for trees with root
E must be = 148, the prize for trees with root F' must
be = 788, the prize for trees with root G must be =
4688, and so on. With this new definition of distance,
all the different trees have different weights, and so
they have positive distances between each other.

Thus, the formal definition of d> can be given as fol-
lows: Let T} and Ty be two trees. Then, we define

dy(T1, T») = |weight(Ty) — weight(T)|

where:
VT weight(T) =1-nx(T) +2-na(T)+
3-npg(T)+4-nc(T)+ ...+ prize(T)

Even though d> is more similar than d; to our idea
of distance, it has a problem too: two trees that are
symmetrical about the vertical have the same weights
and thus the distance between them is 0, even though
they are not the same tree. This problem is overcome
by d3 defined in the next section.

3.3 ds3: RECURSIVE DISTANCE

This distance has been defined with the idea of extend-
ing it to the case of general trees (i.e. trees without
the limitations exposed in section 2). According to
this definition, the distance of a tree T} from a tree Tb
can be calculated by the following formula:

(k+ [td(Ty) — td(T>)]
if root(Ty) # root(Ts)

0
d3(T1,Ts, k) = if td(Ty) = td(T>) =0
n(T
(Z) d3(si(Th),s:(T),k — 1)
i=1 n(Ty)
| otherwise
where:

e root(T) is a function that returns the root of the
tree T'.

e td(T) is a function that returns the depth of the
tree T', where the depth of the tree containing only
the node X is considered to be = 0.

e n(T) is a function that returns the number of sons
of the root of the tree T' (i.e. if the root of T'is A
it returns 1, if it is B it returns 2 and so on).

e 5;(T) is the i*" subtree of the root of tree T.

e k is a constant that we use in order for two trees
with different roots but the same depth to have a
positive distance. It is useful to have smaller val-
ues of k for the nested recursive cases, so we insert
k between the parameters of function d, and we
pass k—1 to the recursive calls. The choice of the
value of k is arbitrary, with the only restriction
that it has to never become negative with the re-
cursive calls, so it must be at least as large as the
maximum depth allowed for the trees.

In the above formula, the upper limit of the sum is
equal to the number of sons of the root of the tree T;.
We note that this quantity can be substituted by the
number of sons of the root of T without changing the
result, since roots T and T» have the same number of
son nodes. In fact, recursion is applied only when T}
and T have the same root.

4 COMPARISON OF DISTANCES
WITH TRAP FUNCTIONS

A good way to test the distances is using the trap func-
tions [5]. Trap functions allow to define the fitness of
the individuals as a function of their distance from the
optimum, and the difficulty of trap functions can be

changed simply by modifying two parameters. A func-
tion f : distance — fitness is a trap function if it is
defined in the following way:

1- % ifd<B
f(d) = R.(d—B)
-5 elsewhere

where d is the distance of the current individual from
the global optimum, and B and R are constants €
[0,1]. B allows to set the width of the attractive basin
for each optimum and R sets their relative importance.
Figure 3 depicts a trap function with B = 0.2 and
R = 0.8, where we also see that there is a second local
optimum at a maximum distance from the global one.
The difficulty of trap functions decreases as the value

1

0.81

o
o
T

Fitness (f)

I
>
.

0.2

0 0.2 0.4 0.6 0.8 1
Distance (d)

Figure 3: The graphic of a trap function with B = 0.2
and R = 0.8. Note that distances and fitnesses are
normalized into the interval [0, 1].

of B increases, while it increases as the value of R de-
creases. By keeping R constant and changing B, we
are able to define a set S of trap functions of different
difficulties. What we expect from a “good” distance
is that GP is able to find the global optimum for the
so-defined easy trap functions and not for the difficult
ones. To measure the success rate to the global opti-
mum for a function, we define a measure called per-
formance (p), defined as the number of executions for
which the global optimum has been found in less than
200 generations, divided by the total number of exe-
cutions (100 in our experiments). Then, we perform a
series of experiments on the set S and we choose the
distance for which we get the best performance for the
trap-easy functions to be used in the remaining of this
work. All our experiments have been done with the fol-
lowing parameters: population size = 200, tournament
selection with size = 10, crossover probability = 95%,
mutation probability = 0%, maximum node allowed =
F, and two different curves have been drawn for each

series of experiments, respectively with R = 0.8 and
R = 0.2. Results are shown in figures 4 and 5. In

1r

0.8 R=0.8

Performance (p)
o o
5o

o
[N)
:

0.2 0.4 0.6 0.8 1

Figure 4: Curve of the performance as a function of
the constant B, with R = 0.2 and R = 0.8, for distance
2.

Performance (p)
o o o
» (o] o] =
T
o
N

o
[N)
:

0.2 0.4 0.6 0.8 1

Figure 5: Curve of the performance as a function of
the constant B, with R = 0.2 and R = 0.8, for distance
3.

figure 4 we can see that for dy we have always a perfor-
mance = 0 except for the function with R = 0.2 and
B = 0.9, for the function with R = 0.2 and B = 1, and
for the function with R = 0.8 and B = 1. Of these
three functions, the two with B = 1 reach a perfor-
mance of 1. Figure 5 shows the same kind of results for
ds, for which a larger number of functions have a pos-
itive performance. Moreover, even if this result is not
shown here, we observe that solutions, when using ds
as distance, are found in a lower number of generations
than with ds. As a further confirmation of our results,
in table 1, we report some other performance results
calculated on another set of trap functions. From the
table and from the figures it appears that ds is the
one that shows the best performances for the highest

P dist 1 dist 2 dist 3
B = 0.2, R =0.8 0 0 0
B = 0.3,R = 0.7 0 0 0
B =0.4, R = 0.6 0 0 0
B =0.5,R = 0.5 0 0 0
B =0.6, R =0.4 0 0 0
B =0.7, R = 0.3 0 0 0.64
B =0.8, R = 0.2 0 0 0.97
B =0.0, R = 0.1 0 0.9 1
B =1.0, R = 0.0 1 1 1

Table 1: Some values of the performance (p) for some
trap functions calculated with the distances defined in
the text.

number of easy trap functions, and therefore it will be
used it in the following.

5 FITNESS DISTANCE
CORRELATION

We now describe a heuristic that should allow us to
measure the difficulty of problems to be solved with
GP. An approach that has been proposed [7] states
that what makes a problem hard for GAs is the rela-
tionship between fitness and the distance of the geno-
types from the optimum. The easiest way to measure
the extent to which the fitness function values are cor-
related with distance to a global optimum is to exam-
ine a problem with known optima, take a sample of
individuals and compute the fitness distance correla-
tion (fdc), given the set of (fitness, distance) pairs. By
the way, correlation is only one of the possible ways
of studying the relationship between fitness and dis-
tance. In some cases, fdc reveals itself to be a poor
summary statistic. In such situations, examining the
scatter plots of fitness versus distance to the optimum
is more useful. Some works on GAs confirm previous
results about the importance of a good fdc, and ex-
emplify the existence of non-artificial problem, such
as TSP, exhibiting this property. According to Al-
tenberg [1], the fact that the fdc is only a statistical
and static measure, based on a distance which is appar-
ently only bound to mutation (like Hamming distance
in GAs), implies two assumptions: either Hamming
distance is connected to the way genetic algorithms
work, or this relation exists in a fortuitous way among
the test set chosen by Jones [7, 6]. In fact, counterex-
amples have been found for which this relation does
not hold, and which, therefore, deceive the fdc. Since
there seems to be no relation between re-combination
operators and Hamming distance, and that mutation
is supposed to play a marginal role in GAs, Altenberg
claims that it is possible to construct a counterexam-
ple. The counterexample he constructs is GA-easy, but

the correlation between distance and fitness to opti-
mum is null by construction. Furthermore, the obser-
vation of the scatter plot gives no more information.
This counterexample deceives Jones’ conjecture which
claims that if the fdc is close to 0 and if the scatter
plot exhibits no particular structure, then the prob-
lem is GA-difficult. Moreover, Quick et al. [15] con-
struct a class of problems, called ridge functions, which
are GA-easy with a high positive correlation. While
the Altenberg’s counterexample is prone to discussion,
in particular on the definition of the GA-easiness, the
counterexample of Quick et al. is clear: there are func-
tions that the fdc predicts misleading and which are
in fact easy. Nevertheless, these two counterexamples
exploit known weaknesses of the fdc: its nullity for
the symmetrical functions and the low contribution of
a particular path in the global calculation. Besides,
Quick et al. recognize that the fdc calculated with the
points actually sampled by the GA gives better results.
Nevertheless, the success of the fdc on a large number
of GA functions remains an unsolved question. Collard
et al. [2] bring some elements of response, exhibiting a
correlation between Hamming distance and instability
implied by crossover.

Formally, given a set F = {fi, fa,..., fa} of n in-
dividual fitnesses and a corresponding set D =
{d;,ds, ...,d,} of the n distances to the nearest global

optimum, fdc is defined as: fdc = fFF;; , where

Crp = %Z(fi — Ndi —d)

i=1

is the covariance of F and D and of, op, f and d are
the standard deviations and means of F' and D. As we
hope that fitness increases as distance to a global op-
timum decreases, we expect that with an ideal fitness
function fde will assume the value of —1. According
to Jones [7], GA problems can be classified in three
classes , depending on the value of the coefficient fde:

e Misleading (fdc > 0.15), in which fitness in-
creases with distance.

e Difficult (—0.15 < fdec < 0.15) in which there is
virtually no correlation between fitness and dis-
tance.

e Straightforward (fdc < —0.15) in which fitness
increases as the global optimum approaches.

The second class corresponds to problems for which
the difficulty can’t be estimated, because the coeffi-
cient fdc doesn’t bring any information.

Our goal is to check if the same properties are also
valid for GP on trap functions using distance d3. For
this reason, we have calculated the performance p and
the coefficient fdc for various trap functions changing
the values of the constants B and R. In these exper-
iments, fdc has been computed via a sample of 4000
randomly chosen individuals. Figures 6 and 7 show the
results of these experiments in a tridimensional space.

These results show that for GP and with distance

[y

a4
3

|
ot
o

Fitness Distance Correlation (fdc)
NN o
"

Figure 6: The values of the correlation fdc for the trap
functions.

Figure 7: The values of the performance p for the trap
functions.

ds, we obtain approximately the same ranges as for
GAs with unitation. In particular, from this figures,
we can see that the performance is around 1 when the
correlation is around —1, the performance is around 0
when the correlation is around 1 and the performance
is comprised between 0 and 1 when the correlation is
comprised between —1 and 1. These are exactly the
results we were expecting.

6 EXTENSION TO STANDARD GP

The constraints we have imposed until now allow the
creation and the survival of a restricted set of indi-
viduals (see section 2). Now we want to release this
restriction, with the only obvious limitation of a max-
imum depth constraint. Thus, we consider the same
sets of functions F = {4,B,C,D,...} and terminals
T = {X} as before but we allow the creation of any
buildable tree with these symbols and with a maxi-
mum depth of 17. As before, we impose only one tree
to be the optimum and, as a first step, we consider the
same tree that was used for limited GP (see 6.1).

As a measure of the distance between trees, we have
decided to use distance ds for two main reasons: it
works with standard GP, and it is the distance that
gives the highest performances with limited GP. Some
experiments not reported here have shown that, if we
consider GP without syntactical limitations, and we
consider F' as the function with the maximum arity,
the convergence for trap functions is rather slow. In
fact, no global optimum for a trap function was ever
found before generation 600. This behavior is no doubt
due to the huge increase in the search space when going
from limited to standard GP and is also confirmed in
[13]. For this reason, we have decided to perform our
studies eliminating F' from the function set, only af-
ter having observed that this doesn’t change the main
results.

6.1 FDC RESULTS

We have calculated p and fde (see section 5) for vari-
ous trap functions for the same optimum considered in
limited GP. Figures 8 and 9 show the results of these
experiments. From these figures we can see that the

[y

a4
3

|
ot
2]

i
o
N

()

()
)

0
i
0
&
(i

0
|
|
i

|

)
{
i

Fitness Distance Correlation (fdc)
o
!
(i
&

X
N
A
e
00
g
e
i
i

T
:.:,o
i
0,0

T
"

/
o
3]

Figure 8: The values of the correlation fdc in the case
of standard GP for some trap functions obtained by
changing the values of the constants B and R.

Figure 9: The values of the performance p in the case
of standard GP for some trap functions obtained by
changing the values of the constants B and R.

same fdc ranges also hold for standard GP with dis-
tance dz (see section 5) . The results are essentially
the same as in the case of limited GP, with the only
difference that in the case of standard GP, the number
of trap functions for which —0.15 < fdc¢ < 0.15 is con-
siderably smaller. Moreover, in the case of standard
GP, the number of trap functions for which fde = —1
is larger than in the case of limited GP. This is partly
due to the fact that we have considered F' as the maxi-
mum arity function for limited GP and FE for standard
GP. But some results not reported here show that this
would also be the case if we considered F for standard
GP. Thus, for standard GP, there is a larger number of
trap functions for which we can predict the difficulty,
while the number of functions for which the difficulty is
unpredictable is considerably smaller. In any case, the
most important result is that, even for standard GP
with distance ds3, the fitness distance correlation is a
good measure for predicting the difficulty of problems
for the class of trap functions.

6.2 RESULTS WITH A DIFFERENT
OPTIMUM

In order to understand whether the results are depen-
dent on the particular optimum chosen, we perform
the same experiments with the tree shown in figure 10
as the optimum (see 6.2). This tree has an irregular
structure and it is different from the optimum used
until now. Values of p and fdc for various trap func-
tions are shown in figures 11 and 12, where it appears
that, even if the choice of the optimum has an influ-
ence on difficulty, the same fdc ranges previously found
(see section 5) hold, and fdec with distance ds is con-
firmed to be a good measure for predicting problems
difficulty. In the next section, we study the behaviour

ST
X/)'(\X X/)I(\X

Figure 10: The tree used as optimum in the experi-
ments of section 6.2.

=

e
3

|
o
2

I
R

Fitness Distance Correlation (fdc)
o

Figure 11: The values of the correlation fdc in the
case of standard GP for some trap functions obtained
by changing the values of the constants B and R. The
optimum tree is the one shown in figure 10.

Figure 12: The values of the performance p in the case
of standard GP for some trap functions obtained by
changing the values of the constants B and R. The
optimum tree is the one shown in figure 10.

of fdc for another class of functions.

7 ROYAL TREES

The last functions we take into account in this paper
are the Royal Trees proposed by Punch and cowork-

ers [13, 14]. These functions are based on the same
language that was used in section 6, but the fitness
is not calculated on the basis of the distance from the
optimum (as it was the case for the trap functions); in-
stead, the following algorithm is used: the raw fitness
of a tree (or any subtree) is the score of its root. Each
function calculates its score by summing the weighted
scores of its direct children. If the child is a perfect tree
of the appropriate level (for instance, a complete level-
C tree beneath a D node), then the score of that sub-
tree, times a FullBonus weight, is added to the score
of the root. If the child has a correct root but is not
a perfect tree, then the weight is PartialBonus. If the
child’s root is incorrect, then the weight is Penalty.
After scoring the root, if the function is itself the root
of a perfect tree, the final sum is multiplied by Com-
pleteBonus. Values used here are: FullBonus = 2,
PartialBonus = 1, Penalty = 0.0001, CompleteBonus
= 2. Results on the study of fdc are shown in table 2.
In this table, p (respectively pi1, p2, p3) indicates the
number of executions for which the global optimum
has been found in less than 200 (respectively 300, 400,
500) generations, divided by the total number of execu-
tions (100 in our experiments). From the table we can
see that fdc correctly predicts the difficulty of level-A,
level-B, level-C, and level-D functions. Level-E func-
tion is predicted by the fdc to be “straightforward”
and it actually is, if we consider that the global opti-
mum is found with a rate of 79% before generation 500.
Level-F function is predicted to be “difficult” (where
difficult means that the fdc doesn’t give information on
function hardness), and the global optimum is never
found before generation 500. Finally, the level-G tree
is predicted to be “misleading” (in accord with Punch
[13, 14]). In conclusion, it appears that Royal Trees
are a synthetic GP problem that effectively spans the
classes of difficulty as described by the fdc.

8 CONCLUSIONS AND FUTURE
WORK

In this work, we have shown that, at least for Trap
Functions and Royal Trees, fitness distance correla-
tion is a reasonable way of quantifying GP difficulty.
In view of some counterexamples that have been men-
tioned in the text, it remains to be seen whether this
measure extends to other cases such as typical GP
benchmarks. This work is only a first step towards the
characterization of GP difficulty from a fitness land-
scape point of view. In the future, we plan to extend
our research to other classes of functions, to other dis-
tances, for instance the one defined in [8], and to fitness
landscapes induced by operators other than standard

Root fde | fdc prevision p p1 P2 p3
B -0.45 straightf. 1 1 1 1
C -0.33 straightf. 1 1 1 1
D -0.26 straightf. 0.77 | 0.81 | 0.81 | 0.81
E -0.22 straightf. 0.42 | 0.62 | 0.74 | 0.79
F 0.035 difficult 0 0 0 0
G 0.26 misleading 0 0 0 0

Table 2: Results of fdc for the Royal Trees

crossover, especially various kinds of tree mutations,
as mutation seems to play an important role when us-
ing fdc. We also plan to look for a better measure than
performance to identify the success rate of functions,
possibly independent from the maximum number of
generations chosen.

References

[1]

2]

[4]

[7]

L. Altenberg. Fitness distance correlation analy-
sis: an instructive counterexemple. In T. Back,
editor, Seventh International Conference on Ge-
netic Algorithms, pages 57-64. Morgan Kauf-
mann, 1997.

M. Clergue and P. Collard. Genetic heuristic for
search space exploration. In International Joint
Conference on Artificial Intelligence (iJCAI’99),
pages 1218-1224. Ed. Morgan Kaufmann, 1999.

P. Collard, M. Clergue, and F. Bonnin.
Misleading functions designed from alterna-
tion. In Congress on FEvolutionary Computation
(CEC’2000), pages 1056-1063. IEEE Press, Pis-
cataway, NJ, 2000.

J. M. Daida, R. Bertram, S. Stanhope, J. Khoo,
S. Chaudhary, and O. Chaudhary. What makes
a problem GP-hard? analysis of a tunably dif-
ficult problem in genetic programming. Genetic
Programming and FEvolvable Machines, 2:165-191,
2001.

K. Deb and D. E. Goldberg. Analyzing deception
in trap functions. In D. Whitley, editor, Foun-
dations of Genetic Algorithms, 2, pages 93—108.
Morgan Kaufmann, 1993.

T. Jones. Evolutionary Algorithms, Fitness Land-
scapes and Search. PhD thesis, University of New
Mexico, Albuquerque, 1995.

T. Jones and S. Forrest. Fitness distance correla-
tion as a measure of problem difficulty for genetic
algorithms. In L. J. Eshelman, editor, Proceedings

8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

of the Sixzth International Conference on Genetic
Algorithms, pages 184-192. Morgan Kaufmann,
1995.

R. Keller and W. Banzhaf. Explicit mainte-
nance of genotypic diversity on genospaces. Un-
published, 1994. http://1s11-www.informatik.uni-
dortmund.de/people/banzhaf/gp.html.

K. E. Kinnear. Fitness landscapes and difficulty
in genetic programming. In Proceedings of the
First IEEEConference on Fvolutionary Comput-
ing, pages 142-147. IEEE Press, Piscataway, NY,
1994.

J. R. Koza. Genetic Programming. The MIT
Press, Cambridge, Massachusetts, 1992.

B. Manderick, M. de Weger, and P. Spiessens. The
genetic algorithm and the structure of the fitness
landscape. In R. K. Belew and L. B. Booker, edi-
tors, Proceedings of the Fourth International Con-
ference on Genetic Algorithms, pages 143-150.
Morgan Kaufmann, 1991.

M. Mitchell, S. Forrest, and J. Holland. The
royal road for genetic algorithms: fitness land-
scapes and ga performance. In F. J. Varela and
P. Bourgine, editors, Toward a Practice of Au-
tonomous Systems, Proceedings of the First Euro-
pean Conference on Artificial Life, pages 245-254.
The MIT Press, 1992.

B. Punch, D. Zongker, and E. Goodman. The
royal tree problem, a benchmark for single and
multiple population genetic programming. In
P. Angeline and K. Kinnear, editors, Advances
in Genetic Programming 2, pages 299-316, Cam-
bridge, MA, 1996. The MIT Press.

W. Punch. How effective are multiple popula-
tions in genetic programming. In J. R. Koza,
W. Banzhaf, K. Chellapilla, K. Deb, M. Dorigo,
D. B. Fogel, M. Garzon, D. Goldberg, H. Iba,
and R. L. Riolo, editors, Genetic Programming
1998: Proceedings of the Third Annual Confer-
ence, pages 308-313, San Francisco, CA, 1998.
Morgan Kaufmann.

R.J. Quick, V.J. Rayward-Smith, and G.D.
Smith. Fitness distance correlation and ridge
functions. In Fifth Conference on Parallel Prob-
lems Solving from Nature (PPSN’98), pages 77—
86. Springer-Verlag, Heidelberg, 1998.

E. D. Weinberger. Correlated and uncorrelated
fitness landscapes and how to tell the difference.
Biol. Cybern., 63:325-336, 1990.

