
A re-examination of the Cart Centering problem using the Chorus
system

R. Muhammad Atif Azad

Dept. of Computer Science

and Information Systems

University of Limerick

Ireland

atif.azad@ul.ie

Conor Ryan

Dept. of Computer Science

and Information Systems

University of Limerick

Ireland

conor.ryan@ul.ie

Mark E. Burke

Dept. of Mathematics

and Statistics

University of Limerick

Ireland

mark.burke@ul.ie

Ali R. Ansari

Dept. of Mathematics

and Statistics

University of Limerick

Ireland

ali.ansari@ul.ie

Abstract

The cart centering problem is well known in

the �eld of evolutionary algorithms and has

often been used as a proof of concept prob-

lem for techniques such as Genetic Program-

ming. This paper describes the application of

a grammar based, position independent en-

coding scheme, Chorus, to the problem. It

is shown that using the traditional experi-

mental setup employed to solve the problem,

Chorus is able to come up with the solutions

which appear to beat the theoretically opti-

mal solution, known and accepted for decades

in the �eld of control theory. However, fur-

ther investigation into the literature of the

relevant area reveals that there is an inher-

ent error in the standard E.C. experimental

approach to this problem, leaving room for a

multitude of solutions to outperform the ap-

parent best. This argument is validated by

the performance of Chorus, producing better

solutions at a number of occasions.

1 Introduction

The cart centering problem is a well known problem

that often appears in the introductory literature of op-

timal control (see [Athans, Falb, 66]). In its most basic

form, it involves a cart of massmmoving in one dimen-

sion on a frictionless horizontal surface. The cart can

be moving with any velocity v and can have any po-

sition x along the x-axis. The problem is to bring the

cart to the origin in a position-velocity space with the

values of both x and v approaching zero in minimum

amount of time. The literature shows that the prob-

lem already has a well de�ned solution, which guar-

antees that the cart is centered in minimum amount

of time. Genetic programming (GP) [Koza, 92] (pages

122 through 147) has been shown to have successfully

solved this problem. The experimental setup described

therein shows the absence of any success predicate,

meaning that the system is free to wander in the solu-

tion space and come up with anything that minimizes

the time required to center the cart.

This paper describes the application of a relatively

new, position independent, evolutionary automatic

programming system, Chorus [Ryan et al, 02a] on this

problem. The system involves a genotype pheno-

type distinction and like [Horner, 96], [Paterson, 97],

[Whigham, 95], and Grammatical Evolution (GE)

[Ryan, Collins, O'Neill, 98] [O'Neill, Ryan, 01] evolves

programs using grammars. While our aim initially for

this paper was to demonstrate that Chorus could be

successfully applied to the problem, we were surprised

to discover that our results showed that the system

produced expressions that were able to centre the cart

in less time compared to the theoretical optimal con-

trol strategy. However a closer examination of the

problem, as described in the control genre, reects that

the approach traditionally employed to solve the prob-

lem involves an inherent error. As a result there is

no unique solution for this problem under the circum-

stances.

The paper �rst describes a context free grammar in

Backus Naur form, which is used to partially spec-

ify the behaviour of Chorus, similar to the way in

which one speci�es functions and terminals in GP.

We then describe the Chorus system and the process

involving the mapping from a genotype to phenotype

is discussed, with an example. Section 5 describes the

application of Chorus on the cart centering problem,

the theoretical background, the experimental setup

and then discusses the results in the light of literature

from control theory. Section 6 draws some conclusions

based on the experiences and results presented in the

paper.



2 Backus Naur Form

Backus Naur Form (BNF) is a notation for describ-

ing grammars. A grammar is represented by a tuple

fN;T; P; Sg, where T is a set of terminals, i.e. items

that can appear in legal sentences of the grammar, and

N is a set of non-terminals, which are interim items

used in the generation of terminals. P is the set of

production rules that map the non-terminals to the

terminals, and S is a start symbol, from which all le-

gal sentences may be generated.

Below is a sample grammar, which is similar to that

used by Koza [Koza, 92] in his symbolic regression and

integration problems. Although Koza did not employ

grammars, the terminals in this grammar are similar

to his function and terminal set.

S = <expr>

<expr> ::= <expr> <op> <expr> (0)

| ( <expr> <op> <expr>)(1)

| <pre-op> ( <expr> ) (2)

| <var> (3)

<op> ::= + (4) | - (5) | % (6)

| * (7)

<pre-op> ::= Sin (8) | Cos (9)

| Exp (A)| Log (B)

<var> ::= 1.0 (C) | X (D)

3 The Chorus System

Chorus[Ryan et al, 02a] is an automatic programming

system based coarsely on the manner in which en-

zymes regulate the model of a cell. Chorus belongs

to the same family of algorithms as Grammatical Evo-

lution [Ryan, Collins, O'Neill, 98] [O'Neill, Ryan, 01],

and shares several characteristics with it. In particu-

lar, the output of both systems is governed by a BNF

grammar as above, and the genomes, variable length

binary strings, interpreted as 8 bit integers (referred to

as codons), are used to produce legal sentances from

the grammar.

There is, however, a crucial di�erence. It concerns

the interpretation of each codon, which, when being

processed is moded with the total number of produc-

tion rules in the grammar. Thus each codon repre-

sents a particular production rule, regardless of its

position on the chromosome. This behaviour is dif-

ferent from GE, where an integer is moded with only

the number of rules that are relevant at that point in

time, and the meaning of a codon is determined by

those that precede it, leading to the so-called \ripple

e�ect"[Keijzer et al, 01].

For example, consider the individual:

18 28 32 27 42 17 18 31 27 14

45 46 45 18 27 55 65

which can be looked upon as a collection of hard coded

production rules. When moded with the number of

rules in the grammar (see section 2), which in this

case is 14, the same individual can now be represented

as follows (using hexadecimal numbers):

4 0 4 D 0 3 4 3 D 0

3 4 3 4 D D 9

Each gene encodes a protein which, in our case is a pro-

duction rule. Proteins in this case are enzymes that

regulate the metabolism of the cell. These proteins

can combine with other proteins (production rules in

our case) to take particular metabolic pathways, which

are, essentially, phenotypes. The more of a gene that

is present in the genome, the greater the concentra-

tion of the corresponding protein will be during the

mapping process [Zubay, 93] [Lewin, 99]. In a coarse

model of this, we introduce the notion of a concentra-

tion table. The concentration table is simply a mea-

sure of the concentrations of each of the proteins at any

given time, and is initialised with each concentration

at zero. At any stage, the protein with the greatest

concentration will be chosen, switching on the corre-

sponding metabolic pathway, thus, the switching on

of a metabolic pathway corresponds to the develop-

ment of the forming solution with the application of a

production rule.

Many decisions are made during the mapping process.

For example, the start symbol <expr> has four possi-

ble mappings. When such a situation occurs, the rel-

evant area from the concentration table is consulted

and the rule with the maximum concentration is cho-

sen. In case there is a tie, or the concentrations of all

the rules are zero, the genotype is searched for any of

the applicable rules, until a clear winner is found. This

is analogous to the scenario where there are a number

of voices striving for attention, and only the loudest is

heard.

While searching for an applicable production rule, one

may encounter rules that are not relevant at that point

in time. In this case, the concentrations of those rules

are increased, so when that production rule is involved

in a decision, it will be more likely to win. This is what

brings position independence into the system; the cru-

cial thing is the presence or absence of a gene, while

its position is less so. Importantly, absolute position

almost never matters, while occasionally, relative po-

sition (to another gene) is important.



Once chosen, the concentration of that production rule

is decremented. However, it is not possible for a con-

centration to fall below zero.

Sticking to the left most non-terminal in the current

sentence, mapping continues until there are none left

or we are involved in a choice for which there is no

concentration either in the table or the genome. An

incompletely mapped individual is given a �tness value

of exactly zero in the current version of Chorus, thus

removing its chances of indulging into any reproduc-

tive activity.

3.1 Example Individual

Using the grammar from section 2 we will now demon-

strate the genotype-phenotype mapping of a Chorus

individual. The particular individual is encoded by

the following genome:

18 28 32 27 42 17 18 31 27 14

45 46 45 18 27 55 65

For clarity, we also show the normalised values of each

gene, that is, the genes mod 14. This is only done

for readability, as in the Chorus system, the genome is

only read on demand, and not decoded until needed.

4 0 4 D 0 3 4 3 D 0

3 4 3 4 D D 9

The �rst step in decoding the individual is the creation

of the concentration table. There is one entry for each

production rule (0..D), each of which is initially zero.

The table is split across two lines to aid readability.

Rule # 0 1 2 3 4 5 6

Concentration

Rule # 7 8 9 A B C D

Concentration

The sentence starts as <expr>, so the �rst choice must

be made from productions 0..3, that is:

<expr> ::= <expr> <op> <expr> (0)

| ( <expr> <op> <expr>)(1)

| <pre-op> ( <expr> ) (2)

| <var> (3)

None of these have a value yet, so we must read the

�rst gene from the genome, which will cause it to pro-

duce its protein. This gene decodes to 4, which is not

involved in the current choice. The concentration of 4

is incremented, and another gene read. The next gene

is 0, and this is involved in the current choice. Its con-

centration is amended, and the choice made. As this

is the only relevant rule with a positive concentration,

it is chosen and its concentration is reduced, and the

current expression becomes:

<expr><op><expr>

The process is repeated for the next leftmost non-

terminal, which is another expr. In this case, again the

concentrations are at their minimal level for the pos-

sible choices, so another gene is read and processed.

This gene is 4, which is not involved in the current

choice, so we move on and keep reading the genome till

we �nd rule 0 which is a relevant rule. Meanwhile we

increment the concentrations of rule 4 and D. Similar

to the previous step, production rule #0 is is chosen,

so the expression is now

<expr><op><expr><op><expr>

Reading the genome once more for the non-terminal

expr, produces rule 3 so the expression becomes

<var><op><expr><op><expr>

The state of the concentration table at the moment is

given below.

Rule # 0 1 2 3 4 5 6

Concentration 2

Rule # 7 8 9 A B C D

Concentration 1

The next choice is between rules #C and #D, however,

as at least one of these already has a concentration,

the system does not read any more genes from the

chromosome, and instead uses the values present. As

a result, rule <var> -> X is chosen to introduce �rst

terminal symbol in the expression.

Once this non-terminal has been mapped to a termi-

nal, we move to the next left most terminal, <op> and

carry on from there. If, while reading the genome, we

come to the end, and there is still a tie between 2 or

more rules, the one that appears �rst in the concen-

tration table is chosen. However if concentrations of

all the relevant rules is zero, the mapping terminates

and the individual responsible is given a suitably chas-

tening �tness.

With this particular individual, mapping continues

until the individual is completely mapped. The in-

terim choices made by the system are in the order:

4; 3; D; 4; 0; 3; D; 4; 3; D. The mapped individual is

X + X + X + X

The state of the concentration table at the end of the

mapping is given in the next table.

Notice that there are still some concentrations left in

the table. These are simply ignored in the mapping



Rule # 0 1 2 3 4 5 6

Concentration 2

Rule # 7 8 9 A B C D

Concentration

process and, in the current version of Chorus, are not

used again. Notice also that the rule #9 is not read

because the mapping terminates before reading this

codon.

4 Genetic Operators

The binary string representation of individuals e�ec-

tively provides a separation of search and solution

spaces. This permits us to use all the standard genetic

operators at the string level. Crossover is implemented

as a simple, one point a�air, the only restriction be-

ing that it takes place at the codon boundaries. This

is to permit the system to perform crossover on well-

formed structures, which promotes the possibility of

using schema analysis to examine the propagation of

building blocks. Unrestricted crossover will not harm

the system, merely make this kind of analysis more

diÆcult.

Mutation is implemented in the normal fashion, with a

rate of 0.01, with crossover occuring with a probability

of 0.9. Steady state replacement is used, with roulette

wheel selection.

As with GE, if an individual fails to map after a com-

plete run through the genome, wrapping operator is

used to reuse the genetic material. However, the exact

implemenation of this operator has been kept di�er-

ent. Repeated reuse of the same genetic material e�ec-

tively makes a wrapped individual behave like multiple

copies of the same genetic material stacked on top of

each other in layers. When such an individual is sub-

jected to crossover, the stack is broken into two pieces.

When linearized, the resultant of crossover is di�erent

from one or the other parent at regular intervals. In or-

der to minimize such happenings, the use of wrapping

has been limited to initial generation. After wrapping,

the individual is attened or unrolled, by putting all

the layers of the stack together in a linear form. The

unrolled individual then replaces the original individ-

ual in the population. This altered use of wrapping

in combination with position exibility, promises to

maintain the exploitative e�ects of crossover. Unlike

GE, the individuals that fail to map on the second

and subsequent generations are not wrapped, and are

simply considered infeasible individuals.

5 The Cart Centering Problem

The cart centering problem is well known in the area

of evolutionary computation. Koza[Koza, 92] success-

fully applied GP to it, to show that GP was able to

come up with a controller that would center the cart

in the minimum amount of time possible.

The problem, also referred to as the double integrator

problem, appears in introductory optimal control text-

books as the classic application of Pontryagin's Prin-

ciple (see for instance [Athans, Falb, 66]). There has

been considerable research conducted into the theo-

retical background of the problem, and the theoreti-

cal best performance can be calculated, even though

designing an expression to produce this performance

remains a non-trivial activity.

As Evolutionary Computation methods are bottom up

methods, they do not, as such, adhere to problem spe-

ci�c (be it theoretic or practical) information. This

means that E.C. can be used as a testing ground for

theories - if one can break the barriers proposed by

theoreticians, then it probably means that there is a

aw in the theory concerned. However, another possi-

bility is that there is a aw in the experimental set up,

that makes it appear as though the theoretical best

has been surpassed.

This section describes the application of Chorus to the

cart centering problem, an exercise which ppears to

consistently produce individuals that surpass the the-

oretical best, before discussing the implications of the

result.

5.1 Theoretical Background

In its most basic form, we consider a \cart" as a parti-

cle of massmmoving in one dimension with position at

time t of x(t) relative to the origin, and corresponding

velocity v(t). The cart is controlled by an amplitude

constrained thrust force u(t); ju(t)j � 1, and the con-

trol objective is to bring the cart to rest at the origin

in minimum time on a frictionless track. The state

equations are

dx

dt
= v

dv

dt
=

1

m
u

or

d

dt

�
x

v

�
=

�
0 1

0 0

��
x

v

�
+

�
0

1=m

�
u (1)

The solution is a unique \Bang-Bang " control (u(t)

takes only the values +1 or -1) with at most 1 switch



which is expressible in feedback form (u = u
�(x; v))

in terms of a \switching curve" S in the x � v plane.

Following the approach of [Athans, Falb, 66] we �nd

that S is given by

x+
m

2
vjvj = 0; (2)

the optimal control by

u
� =

8<
:

�1; if x+ m

2
vjvj > 0

+1; if x+ m

2
vjvj < 0

�v=jvj; if x+ m

2
vjvj = 0

(3)

and the minimum time T to reach (0; 0) from (x; v) by

T =

8<
:

mv +
p
2m2v2 + 4mx; if x+ m

2
vjvj > 0

�mv +p
2m2v2 � 4mx; if x+ m

2
vjvj < 0

mjvj; if x+ m

2
vjvj = 0

(4)

The above formulae assume that the system can switch

precisely when condition (2) is met. In practice, this

is only approximated. The engineering literature con-

tains analyses of what happens when non-ideal switch-

ing (deadband and/or hysteresis) occurs using real

hardware with the resultant cycling, chattering and

steady state error. (see [Gibson, 63] for more details).

5.2 Experimental Setup

GP has been shown to be able to successfully evolve

the time optimal control strategy (see [Koza, 92]). The

same experimental setup is used by Chorus except

where mentioned otherwise. The simulation essen-

tially entails a discretisation of the problem so as to

enable a numerical approximation of the derivatives in-

volved. This is referred to as an Euler approximation

of the di�erential equations given in (1), i.e.,

x(t+ h) = x(t) + hv(t);

v(t+ h) = v(t) +
h

m
u(t);

where m is the mass of the cart, h represents the time

step size, v(t+ h) and x(t+ h) represent velocity and

distance from the origin respectively at time t+h and

v(t) and x(t) represent velocity and distance from the

origin respectively at time t. The desired control strat-

egy should satisfy the following conditions.

It should specify the direction of the force to be

applied for any given values of x(t) and v(t).

The cart approximately comes to rest at the ori-

gin, i.e., the Euclidean (x; v) distance from the

origin is less than a certain threshold.

The time required is minimal.

The exact time optimal solution is characterised by

the switching condition

�x(t) > v
2(t)Sign v(t)

2jumaxj=m ; (5)

which applies the force in the positive x direction if the

above condition is met and in the negative direction

otherwise. Note that umax represents the maximum

value of u(t), which is 1 here. The Sign function re-

turns +1 for a positive argument and -1 otherwise. For

the sake of simplicity m is considered to be equal to

2.0 kilograms and the magnitude of the force u(t) is

1.0 Newtons, so that the denominator equals 1.0 and

can be ignored. The experimental settings employed

by Koza are summarised in table 1. Note that (5)

does not incorporate the equality condition mentioned

in (3).

Table 1: A Koza-style Tableau For The Cart Centering

Problem.

Objective: Find a time optimal bang-bang
control strategy to center a cart on a
one dimensional frictionless track.

Terminal Set: The state variables of the system:
x (position of the cart along X
axis), v (velocity V of the cart)
and -1.0.

Function Set: +,-,*,%,ABS,GT.
Fitness cases: 20 initial condition points (x; v)

for position and velocity chosen
randomly from the square in
position-velocity space having
opposite corners, (�0:75; 0:75)
and (0:75;�0:75).

Fitness: Reciprocal of sum of the time, over
20 �tness cases, taken to center the
cart. When a �tness case times out,
the contribution to the sum is 10.0
seconds.

Hits: Number of �tness cases that did
not time out.

Wrapper: Converts any positive value
returned by an expression to +1 and
converts all other values
(negative or zero) to -1.

Parameters: M = 500, G = 75
Success Predicate: None.

The grammar used for the problem is:

S = <expr>

<expr> ::= <expr> <op> <expr>

| ( <expr> <op> <expr>)



| <pre-op> ( <expr> )

| <var>

<op> ::= + | - | % | * | GT

<pre-op> ::= ABS

<var> ::= X | V | -1.0

The randomly generated 20 �tness cases used by Cho-

rus are given in the table 2.

Table 2: Randomly Generated 20 Starting Points,

given as ((x; v) pairs).

0.50,0.67 -0.65,0.40 -0.16,-0.57 0.10,0.50

-0.71,0.66 0.43,0.01 -0.28,-0.71 0.27,-0.73

-0.50,0.34 -0.57,0.32 0.43,-0.69 -0.52,-0.16

-0.33,-0.21 -0.16,-0.06 0.71,-0.69 -0.04,-0.63

0.39,0.70 -0.52,-0.42 -0.59,0.38 0.58,-0.35

The cart is considered to be centered if the Euclidean

distance from the origin (0; 0) is less than or equal to

0.01. The total time taken by the strategy (5) over all

the given set of starting points is 56.07996 seconds. On

average it takes 2.803998 seconds per �tness case for

the cart to be centered. This means that any strategy

which centers the cart in less time, does better than

the theoretical solution (5) for this experimental setup.

5.3 Experimental Results

The work of Koza [Koza, 92] shows that the optimal

control strategy can be evolved using GP. However,

it has not been shown that even in the absence of

any success predicate, any strategy was evolved which

could beat the result as described by the inequality

(5). When the same task is given to the Chorus sys-

tem, 17 times out of 20 independent runs, it evolves

what appears to be a better strategy in terms of time

minimisation. Out of those 17 runs, on the average,

a better strategy is produced in the 39th generation,

the earliest being 20th and the latest being 65th.

One of the samples which broke the barrier is given as

(�1:0 �X) GT (V �ABS(V ) + V � V � V );

which can be rewritten as

�x(t) > v
2(t)Sign v(t) + v

3(t); (6)

returning +1 if the condition is satis�ed and �1 oth-

erwise. Total time recorded for this control law men-

tioned by inequality (6) is 50.799965 seconds over 20

�tness cases which is clearly less than the solution

shown by the inequality (5). However, the least time

that was recorded was 49.919968 seconds. A plot of x

versus v for the control strategy given in (5) is shown

in Fig 1(a) for the starting point (0:50; 0:67). A simi-

lar plot for the strategy evolved by the Chorus system

is shown in Fig 1(b). Notice that in (a) the control

strategy crosses the y-axis leading into the negative

x-axis region and then it returns to the origin. This

shows the longer route traversed by (a) compared to

(b) where there is no such occurrence, thus reecting

the time di�erence between the two strategies.

(a)
x

v

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-1 -0.5 0 0.5 1

(b)
x

v

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-1 -0.5 0 0.5 1

Figure 1: .Trajectories traversed by the two strategies

to reach the origin. (a) represents inequality (5) and

(b) represents the evolved strategy (6)

5.4 Discussion

It appears from the results in the previous section

that a solution better than the theoretical has been

achieved. However, a careful consideration of the

problem undertaken shows otherwise. This problem

has been solved by �rst discretising the main di�eren-

tial equations as mentioned earlier. The discretisation

brings with it an element of error. The time step h



used now plays a major role, in the sense that a smaller

time step would lead to a better solution i.e., closer to

the theoretical solution (3), and as h! 0 the solution

converges to (3).

The time step employed by Koza [Koza, 92] is h =

0:02, and using this time step, the error in the deriva-

tives is substantial enough to cause the systems to con-

verge to control laws other than the theoretical result

in (3). In this sense Chorus actually validates this by

evolving to what is a better solution than (5).

A study of the appropriate literature in the control

theory genre indicates that the theoretical model is

just that, theoretical. Practical implementation of a

control system which brings the cart to the target po-

sition is not even \bang-bang" (i.e u(t) is either +1 or

-1). Instead, the magnitude of the applied force is any

real number between 0 and 1.

One approach is to model the situation as one in which

the control can change only at discrete-time steps, ei-

ther as a sampled data system or a discretised version

of eq(1). The former leads to state equations

x(t + h) = x(t) + Æv(t) +
Æ
2

2m
u(t)

v(t+ h) = v(t) +
Æ

m
u(t)

where 1=Æ is the sampling rate. The latter, using an

Euler discretisation scheme, leads to state equations

x(t+ h) = x(t) + hv(t)

v(t+ h) = v(t) +
h

m
u(t)

where h is the step size.

When Æ = h, both models are of the form

�
x(t+ h)

v(t+ h)

�
=

�
1 h

0 1

��
x(t)

v(t)

�
+

�
b

h=m

�
u(t)

(7)

where b = h
2
=2m for the sampled data model and

b = 0 for the discretised model.

The control objective is again to bring the state of eq

(7) to the origin in minimum time using a sequence of

amplitude constrained controls juj � 1. However, due

to the discrete time steps, the solution of the problem

is fundamentally di�erent to that of the continuous

time problem of (1). The optimal control is in general

no longer unique, nor except for a set of isolated points

in the x� v plane is it Bang-Bang throughout. Hence

there are di�erent approaches and algorithms.

The more general problem in n dimensions was

initially formulated in [Kalman, 57], and then

analysed comprehensively in [Desoer, Wing, 61a] -

[Desoer, Wing, 61c]. This analysis, when applied to

the cart centering problem recursively constructs a se-

quence of convex sets fCkg, where Ck is the set of

states for which there exists an admissible input se-

quence which transfers the state to the origin in k time

steps but no fewer (C0 = f(0; 0)g). For instance, if we
want to centre the cart in 1 time step then C1 rep-

resents the region of interest. For any (x1; v1) 2 C1,

the cart is guaranteed to be centered in exactly 1 time

step. In addition, a piecewise linear switching curve

is constructed which divides the plane into regions of

positive and negative control values (see �gure 2).

x

v

Figure 2: The sets C1 - C8 for the Euler discretised

system with a cart of mass m = 2 and h = 0:02

Later work has looked at describing the Ck in

terms of their facets with associated algorithms

[Keerthi, Gilbert, 87], and there is still much interest

in improving the eÆciency of the existing algorithms

(see [Jamak, 00] for a good review).

6 Conclusions

We have described the application of a position inde-

pendent, representation scheme for Evolutionary Algo-

rithms, termed Chorus, on the cart centering problem.

Much to our surprise, Chorus apparently succeeded in

producing individuals that performed better than the

theoretical best. However, further analysis of the prob-

lem and traditional experimental set up revealed aws

that changed the nature of the problem.



The paper describes how Chorus was able to exploit

these aws to produce surprisingly �t individuals, and

how an Evolutionary Computation system can be used

to help test models of physical systems. Also, it re-

emphasizes the point that while attempting to solve

continuous problems numerically, we should be ware

of the resultant discretisation errors. It is also worth

noting that the way these problems are typically solved

by control engineers is by starting with the discretised

analogues of the continuous problems and then pro-

ceeding to solve. It might be worth exploring what a

system like Chorus may have to o�er in the solution

process of such a discretised problem.

6.1 Future Work

The results shown in the cart centering problem en-

courage the use of Chorus for real world problems.

Coupled with the strengths of the system discussed in

[Ryan et al, 02a], the system can be applied but not

limited to the problems in the �eld of control theory

and uid dynamics.

Chorus diverges considerably from algorithms in the

same \family", e.g. Grammatical Evolution and

GAUGE[Ryan et al, 02b] in that it does not exploit

the ripple e�ect, and instead uses position indepen-

dent, absolute genes. This makes Chorus very suit-

able for schema analysis, and also possible that the

Genetic Algorithm Schema Theory could, with very

little extension, be applied to an automatic program-

ming system.
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